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Abstract
Diversity maximization is an important concept in information retrieval, computational geometry
and operations research. Usually, it is a variant of the following problem: Given a ground set,
constraints, and a function f(·) that measures diversity of a subset, the task is to select a feasible
subset S such that f(S) is maximized. The sum-dispersion function f(S) =

∑
x,y∈S d(x, y), which

is the sum of the pairwise distances in S, is in this context a prominent diversification measure.
The corresponding diversity maximization is the max-sum or sum-sum diversification. Many
recent results deal with the design of constant-factor approximation algorithms of diversification
problems involving sum-dispersion function under a matroid constraint.

In this paper, we present a PTAS for the max-sum diversification problem under a matroid
constraint for distances d(·, ·) of negative type. Distances of negative type are, for example, metric
distances stemming from the `2 and `1 norms, as well as the cosine or spherical, or Jaccard
distance which are popular similarity metrics in web and image search.

Our algorithm is based on techniques developed in geometric algorithms like metric embed-
dings and convex optimization. We show that one can compute a fractional solution of the usually
non-convex relaxation of the problem which yields an upper bound on the optimum integer solu-
tion. Starting from this fractional solution, we employ a deterministic rounding approach which
only incurs a small loss in terms of objective, thus leading to a PTAS. This technique can be
applied to other previously studied variants of the max-sum dispersion function, including com-
binations of diversity with linear-score maximization, improving the previous constant-factor
approximation algorithms.
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1 Introduction

Diversification is an important concept in many areas of computing such as information
retrieval, computational geometry or optimization. When searching for news on a particular
subject, for example, one is usually confronted with several relevant search results. A news
reader might be interested in news from various sources and viewpoints. Thus, on the one
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26:2 Max-Sum Diversity Via Convex Programming

hand, the articles should be relevant to his search and, on the other hand, they should be
significantly diverse.

The so-called max-sum diversification or max-sum dispersion is a diversity-measure that
has been subject of study in operations research [19, 28, 5, 13] for a while and it is currently
receiving considerable attention in the information retrieval literature [16, 4, 7]. It is readily
described. Given a ground set X together with a distance function d : X ×X → R≥0. The
diversity, or dispersion, of a subset S ⊆ X is the sum of the pairwise distances

f(S) =
∑
i,j∈S

d(i, j).

Since documents are often represented as vectors in a high-dimensional space, their
similarity is measured by norms in Rn and their induced distances, see, e.g., [24, 29]. Among
the most frequent distances are the ones induced by the `1 and `2 norms, the cosine distance
or the Jaccard distance [26]. These norms are also used to measure similarity via much
lower-dimensional bit-vectors stemming from sketching techniques [9]. So, usually, the ground
set X is a finite set of vectors in Rd and d(·, ·) is a metric on Rd which makes diversity
maximization a geometric optimization problem.

Before we go on, we state the general version of the maximum sum diversification or
maximum sum dispersion (MSD) problem which generalizes many previously studied variants.
It is in the focus of this paper, and is described by the following quadratic integer programming
problem:

maximize xTDx

subject to Ax ≤ b

xi ∈ {0, 1} for i ∈ [n],

(1)

where the symmetric matrix D ∈ Rn×n represents the distances between the points of a
distance space and Ax ≤ b is a set of additional linear constraints where A ∈ Rm×n and b ∈ Rm.
If x ∈ {0, 1}n is the characteristic vector of the set S ⊆ X, then xTDx =

∑
i,j∈S d(i, j).

We recall the notion of a distance space; see, e.g., [11]. It is a pair (X, d) where X is a
finite set and d(·, ·) is the distance function d : X × X → R≥0. The function d satisfies
d(i, i) = 0 and d(i, j) = d(j, i) for all i, j ∈ X. If in addition d satisfies the triangle inequality
d(i, j) ≤ d(i, k) +d(j, k) for all i, j, k ∈ X, then d is a (semi) metric and (X, d) a finite metric
space.

We now mention some previous algorithmic work on diversity maximization with this
objective function. For the case where Ax ≤ b represents one cardinality constraint,

∑n
i=1 xi ≤

k, and d(·, ·) is a metric, the problem is also coined MSDk [7]. Constant-factor approximation
algorithms for MSDk have been developed in [28, 19]. Birnbaum and Goldman [5] presented
an algorithm with approximation factor converging to 1/2. This is tight under the assumption
that the planted clique problem [3] is hard, see [7]. Fekete and Meijer [13] have shown that
this problem has a PTAS for X ⊂ Rd and d(·, ·) being the `1-distance, provided that the
dimension d is fixed. Bhattacharya et al. [4] developed a 1/2-approximation algorithm for
MSDk where the objective function is replaced by xTDx+ cTx for some c ∈ Rn. This has
been useful in accommodating also scores of documents in the objective function.

Recently, Abbassi et al. [1] have shown that MSD has a 1/2-approximation algorithm if
d(·, ·) is a metric and Ax ≤ b models the independent sets of a matroid. This is particularly
relevant in situations where documents are partitioned into subsets D1, . . . , D` and only pi
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results should be returned from partition Di for each i. The possible sets are then independent
sets of a partition matroid. The case of one cardinality constraint only is subsumed by ` = 1.
Thus, the tightness of their result also follows from the planted clique assumption as described
in [7].

Contributions of this paper
The 1

2 + ε hardness of MSDk [7] is based on a metric that does not play a prominent role as
a similarity measure. Are there better approximation algorithms, possibly polynomial-time
approximation schemes, for other relevant distance metrics?

We give a positive answer to this question for the case where d(·, ·) is a distance of negative
type. We review the notion of negative-type distances in Section 2 and here only note that
the previously mentioned distances, like the ones stemming from the `2 and `1 norms, as well
as the cosine-distance and the Jaccard distance are, among many other relevant distance
functions, of negative type. Our main result is the following.

I Theorem 1. There exists a polynomial-time approximation scheme for MSD for the case
that d(·, ·) is of negative type and Ax ≤ b is a matroid constraint. In particular, there is a
polynomial-time approximation scheme for MSDk for negative-type distances.

Theorem 1 is shown by following these two steps.

1. We show that one can compute a fractional solution x∗ ∈ Rn that fulfills all the constraints
Ax ≤ b and satisfies x∗TDx∗ ≥ OPT , where OPT is the objective-function value of
the optimal solution. More precisely, our algorithm does not optimize over the natural
relaxation, but only over a family of slices of it, one for each possible `1 norm of the
solution vector. The key property we show and exploit is that the optimization problem on
each slice is a convex optimization problem that can be attacked by standard techniques,
despite the fact that the natural relaxation is not convex. This allows us to obtain an
optimal solution to the relaxation via the ellipsoid method for a wide family of constraints
Ax ≤ b, even if only a separation oracle is given; in particular, this includes matroid
polytopes [18].

2. For the case in which Ax ≤ b describes the convex hull of independent sets of a matroid,
we furthermore describe a polynomial-time rounding algorithm that computes an integral
feasible solution x̄ which satisfies x̄TDx̄ ≥

(
1− c · log k

k

)
x∗TDx∗, for some universal

constant c and where k is the rank of the matroid.
Thus, step 1) is via a suitable convexification of a non-convex relaxation. Convexifications
have proved useful in the design of approximation algorithms before, see for example [33].

We also want to mention that we obtain similar results for the case where the objective
function is a combination of max-sum dispersion and linear scores, a scenario that has been
considered in [4]. Finally, to complement our results, we prove strong NP-hardness of MSDk

for negative-type distances. We prove as well that, for the rounding algorithm mentioned in
point b), the approximation factor of 1−O

(
log k
k

)
almost matches the integrality gap of our

relaxation, which we can show to be at least 1− 1
k .

2 Preliminaries

In this section, we review some preliminaries that are required for the understanding of this
paper. A polynomial-time approximation scheme (PTAS) for an optimization problem in
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which the objective function is maximized, is an algorithm that, given an instance and any
ε > 0, computes a solution that has an objective function value of at least (1− ε) ·OPT , in
time polynomial in the size of the instance, where OPT denotes the objective-function value
of the optimal solution. If the running time is also polynomial in ε−1, the algorithm is called
a fully polynomial-time approximation scheme (FPTAS). Clearly, our rounding algorithm
is a PTAS (but not FPTAS) since we can compute the optimal solution in the case where
ε < c · log k

k by brute force.

Norms and embeddings
Our results rely heavily on the theory of embeddings. We review some notions that are relevant
for us and refer to [11, 25] for a thorough account. For a vector v = (v1, · · · , vt)T ∈ Rt, we
define the `p norm in the usual way, ‖v‖∞ := max1≤i≤t |vi|, and ‖v‖p := (

∑t
i=1 |vi|p)1/p for

p ≥ 1, and we extend this last definition to 0 < p < 1, even if these are not proper norms as
they do not respect the triangle inequality. For 0 < p ≤ ∞, the space (X, d) is `p-embeddable
if there is a dimension t and a function v : X → Rt (the isometric embedding), such that for
all i, j ∈ X we have d(i, j) = ‖vj − vi‖p. Any finite metric space is `∞-embeddable with the
Fréchet embedding [14] vji = d(i, j) for i, j ∈ X.

For the remainder of this paper, we assume that X = {1, . . . , n} and n ≥ 2. Let b1, . . . , bn
be real coefficients. The inequality∑

1≤i,j≤n
bibjxij ≤ 0

with variables xij is a negative-type inequality if
∑n
i=1 bi = 0. The distance space (X, d) is

of negative type if d(·, ·) satisfies all negative-type inequalities, i.e.,
∑

1≤i,j≤n bibjd(i, j) ≤ 0
holds for all b1, . . . , bn ∈ R with

∑n
i=1 bi = 0. Schoenberg [30, 31] characterized the metric

spaces that are `2-embeddable as those whose square distance is of negative type.

I Theorem 2 ([30, 31]). A finite distance space (X, d) is of negative type if and only if
(X,
√
d) is `2-embeddable.

The following assertions, which help identifying distance spaces of negative type, can be
found in [11].

1. If (X, d) is a metric space, then
(
X, dlog2( n

n−1 )
)
is of negative type. [12]

2. For any 0 < α ≤ p ≤ 2, if (X, d) is `p-embeddable, then (X, dα) is of negative type. [31]
3. If (X, d) is of negative type, then (X, f(d)) is also of negative type for any of the following

functions: f(x) = x
1+x , f(x) = ln(1 + x), f(x) = 1− e−λx for λ > 0, and f(x) = xα for

0 ≤ α ≤ 1. [30]

We now list some distance functions that are of negative type and which are often used in
information retrieval and web search. The `1-metric is of negative type. This follows from the
assertion 2 above with α = p = 1. In fact, any `p-metric with 1 ≤ p ≤ 2 is of negative type.
The `1-metric is a prominent similarity measure in information retrieval [24] in particular
when using sketching techniques [22] where data points are represented by small-dimensional
bit-vectors whose Hamming-distance approximates the distance of the corresponding points.

Also, the spherical and cosine distances, which measure the distance of two points on the
sphere S(t−1) by the angle Θ that they enclose and by 1− cos Θ, respectively, are of negative
type. This follows from a result of Blumenthal [6], see also [11].
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For subsets A,B of a finite ground set U , the Jaccard distance d(A,B) = |A4B|
|A∪B| is of

negative type [17]. Similarly, many other distances of sets are of negative type, such as Simple
Matching |A4B||U | , Russell and Rao 1− |A∩B||U | , and Dice |A4B|

|A|+|B| distances (see [26, Table 5.1]
for a more complete list). Assertion 3 above presents some examples of transformations
of distance spaces that preserve this property, and thus permit to construct new spaces of
negative type from existing ones.

It is important to remark that distance spaces of negative type are in general not metric, or
vice-versa. Hence results for these two families of distance spaces are not directly comparable.
For instance, the cosine distance and the Dice distance mentioned before are not metric.

Matroids and the matroid polytope
We mention some basic definitions and results on matroid theory, see, e.g., [32, Volume B] for
a thorough account. A matroid M over a finite ground set X is a tuple M = (X, I), where
I ⊆ 2X is a family of independent sets with the following properties.
(M1) ∅ ∈ I.
(M2) If A ⊆ B and B ∈ I, then A ∈ I.
(M3) If A,B ∈ I and |A| > |B|, then there exists an element e ∈ A\B such that B∪{e} ∈ I.

In particular, the family of all subsets of X of cardinality at most k, that is, I = {S ⊆
X : | S |≤ k}, forms a matroid known as uniform matroid of rank k, often denoted by
Ukn . Thus, MSDk can be understood as picking an independent set S ∈ I from the uniform
matroid that maximizes the sum of the pairwise distances.

The rank r(A) of A ⊆ X is the maximum cardinality of an independent set contained in
A. Any inclusion-wise maximal independent set B is called a basis, and a direct consequence
of the definition of matroids is that all bases have the same cardinality r(X), called the rank
of the matroid.

The matroid polytope P (M) is the convex hull of the characteristic vectors of the
independents sets of the matroid M. It can be described by the following inequalit-
ies: P (M) =

{
x ∈ Rn≥0 :

∑
i∈A xi ≤ r(A) ∀A ⊆ X

}
. The base polytope of a matroid M

of rank k is the convex hull of all characteristic vectors of bases of M, and is given by
P (M) ∩ {x ∈ Rn :

∑n
i=1 xi = k}.

Convex quadratic programming
A quadratic program is an optimization problem of the form

min{xTQx+ cTx : x ∈ Rn, Ax ≤ b},

where Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n and b ∈ Rm. If Q is positive semidefinite, then it is
a convex quadratic program. Convex quadratic programs can be solved in polynomial time
with the ellipsoid method [20], see, e.g., [21]. This also holds if Ax ≤ b is not explicitly given
but the separation problem for Ax ≤ b can be solved in polynomial time [18]. In this case
the running time is polynomial in the input size of Q and c and the largest binary encoding
length of the coefficients in A and numbers in b. The separation problem for the matroid
polytope P (M) can be solved in polynomial time, provided that one can efficiently decide
whether a set S ⊆ X is an independent set, see [18]. Moreover, the largest encoding length of
the numbers in the above-mentioned description of the matroid polytope is O(logn). Thus a
convex quadratic program over the matroid polytope can be solved in polynomial time.

SoCG 2016
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3 A relaxation that can be solved by convex programming

We now describe how to efficiently compute a fractional point x∗ f or the relaxation of
(1) with an objective value x∗TDx∗ ≥ OPT . The function f : Rn → R, f(x) = xTDx is
in general non-concave, even if the distances d(i, j) are `2-embeddable or of negative type.
However, we have the following useful observation.

I Lemma 3. Let (X, d) be a finite distance space of negative type, then

f(x) = xTDx

is a concave function over the domain {x ∈ Rn :
∑n
i=1 xi = α} for each fixed α ∈ R.

Proof. The statement is equivalent to saying that, for any two distinct points x, y ∈ Rn such
that

∑
i xi =

∑
i yi, the function f(·) is concave over the line connecting x and y. Or in

other words, for any point x ∈ Rn and vector b with
∑
i b = 0, the function g(λ) := f(x+λb),

λ ∈ R, is concave. Now, since the distance is of negative type, and
∑
i b = 0, we obtain the

negative-type inequality bTDb =
∑
i,j bibjd(i, j) ≤ 0. The function g(λ) can be written as

g(λ) = f(x+ λb) = (x+ λb)TD(x+ λb) = xTDx+ 2λbTDx+ λ2bTDb;

and hence its second derivative is d2

(dλ)2 g(λ) = 2bTDb ≤ 0. This proves the lemma. J

Using Lemma 3, we can efficiently determine a relaxed solution for MSD on distance
spaces of negative type for a wide class of constraints, by solving a family of convex problems,
one for each possible `1 norm of the solution vector. There is a rich set of algorithms for
convex optimization problems as we encounter here. In the following theorem, for simplicity,
we focus on consequences stemming from the ellipsoid algorithm. The ellipsoid algorithm
has the advantage that it only needs a separation oracle, and often allows us to obtain an
optimal solution without any error. As a technical requirement, we need that the coefficients
of the underlying linear constraints have small encoding lengths, which holds for most natural
constraints.

I Theorem 4. Consider the max-sum dispersion problem with general linear constraints, for
which the separation problem can be solved in polynomial time

maximize xTDx

subject to Ax ≤ b

xi ∈ {0, 1} for i ∈ X.

(2)

If d(·, ·) is of negative type, then one can compute a fractional point x∗ ∈ [0, 1]n satisfying
Ax ≤ b with x∗TDx∗ ≥ OPT in time polynomial in the input size and the maximal binary
encoding length of any coefficient or right-hand side of Ax ≤ b.

Before proving the theorem, we briefly discuss the above-mentioned dependence of the
running time on the encoding length. Notice that if Ax ≤ b is given explicitly, then the
claimed point x∗ is always obtained in polynomial time because the encoding length of
Ax ≤ b is part of the input. Similarly, Theorem 4 implies that we can obtain x∗ efficiently
for matroid polytopes, since the inequality-description mentioned in Section 2 has only
{0, 1}-coefficients and right-hand sides within {1, . . . , n}. We highlight that our techniques
can often be used even if the encoding length condition is not fulfilled by accepting a small
additive error.
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Proof. Using the ellipsoid method, we solve each of the following n convex quadratic
programming problems that are parameterized by α ∈ {1, . . . , n}

maximize xTDx

subject to Ax ≤ b∑n
i=1 xi = α

0 ≤ xi ≤ 1, for i ∈ X,

(3)

with optimum solutions x∗,1, . . . , x∗,n respectively; see [21, 18] for details on why an optimal
solution can be obtained (without any additive error which is typical for many convex
optimization techniques). Since each feasible x̄ ∈ {0, 1}n satisfies one of these constraints, x∗
being one of these solutions with largest objective function value is a point satisfying the
claim. Clearly, x∗ can be computed in polynomial time. J

I Remark. We notice that for very simple constraints, like a cardinality constraint where at
most k elements can be picked, a randomized rounding approach [27] can now be employed.
More precisely, when working with a cardinality constraint one can simply scale down the
fractional solution x∗ satisfying

∑n
i=1 x

∗
i = k by a (1 − ε)-factor to obtain y = (1 − ε)x∗,

and then round each component of y independently. Independent rounding preserves the
objective in expectation, and the number of picked elements is (1− ε)k in expectation and
sharply concentrates around this value due to Chernoff-type concentration bounds. However,
this simple rounding approach fails for more interesting constraint families like matroid
constraints.

4 Negative-type MSD under matroid constraint

Consider the MSD problem for the case that the distance space is of negative type and
Ax ≤ b is a matroid constraint. The main result of this section is the following theorem
which immediately implies Theorem 1.

I Theorem 5. There exists a deterministic algorithm for the MSD problem in distance
spaces of negative type with a matroid constraint, which outputs in polynomial time a basis B
with

(
χB
)T
DχB ≥

(
1− c log k

k

)
OPT, where k is the rank of the matroid and c is an absolute

constant.

We solve the relaxation to obtain an optimal fractional point over the matroid polytope,
as in Theorem 4, and perform a deterministic rounding algorithm. The suggested rounding
procedure has similarities with pipage rounding for matroid polytopes (see [8], which is
based on work in [2]) and swap rounding [10], in the sense that it iteratively changes at
most two components of the fractional point until an integral point is obtained. However,
contrary to these previous procedures we need to judiciously choose the two coordinates.
Also, our analysis differs substantially from the above-mentioned prior rounding procedures
on matroids, since we deal with a quadratic objective function where we must accept a
certain loss in the objective value due to rounding, because there is a strictly positive
integrality gap. (Pipage rounding and swap rounding are typically applied in settings where
the objective function is preserved in expectation.) Makarychev, Schudy, and Sviridenko [23]
build up on the swap rounding procedure and show how to obtain concentration bounds

SoCG 2016
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for polynomial objective functions. Their concentration results apply to general polynomial
objective functions with coefficients in [0, 1]; however, they are not strong enough for our
purposes.

Our deterministic rounding algorithm exploits the fact that we are dealing with negative-
type distance spaces, and shows that only a very small loss in the objective value is necessary
to obtain an integral solution. In order to bound this loss we use a very general inequality,
stemming from the definition of distance spaces of negative type, that compares the (fractional)
dispersion of two sets to that of its union. Given a vector x ∈ Rn and a set S ⊆ {1, · · · , n},
we define the restricted vector xS as xSi = xi if i ∈ S, and 0 otherwise.

I Lemma 6. Let D ∈ Rn×n be the matrix representing a negative-type distance space. Given
a vector x ∈ Rn≥0 of coefficients, and two disjoint sets A,B ⊆ [n] such that ‖xA‖1 > 0 and
‖xB‖1 > 0, we have(

xA∪B
)T
DxA∪B

‖xA∪B‖1
≥
(
xA
)T
DxA

‖xA‖1
+
(
xB
)T
DxB

‖xB‖1
.

Proof. Define the vector b ∈ Rn as b = xA

‖xA‖1
− xB

‖xB‖1
. Since

∑n
i=1 bi = 0, the inequality

bTDb ≤ 0 is of negative type. Expanding it yields

0 ≥
(

xA

‖xA‖1
− xB

‖xB‖1

)T
D

(
xA

‖xA‖1
− xB

‖xB‖1

)
=
(
xA
)T
DxA

‖xA‖2
1

+
(
xB
)T
DxB

‖xB‖2
1
−

2
(
xA
)T
DxB

‖xA‖1‖xB‖1
.

Hence 2
(
xA
)T
DxB ≥ ‖x

B‖1
‖xA‖1

(
xA
)T
DxA + ‖xA‖1

‖xB‖1

(
xB
)T
DxB . Finally,(

xA∪B
)T
DxA∪B =

(
xA + xB

)T
D(xA + xB)

=
(
xA
)T
DxA +

(
xB
)T
DxB + 2

(
xA
)T
DxB

≥
(
‖xA‖1 + ‖xB‖1

)((xA)T DxA
‖xA‖1

+
(
xB
)T
DxB

‖xB‖1

)

= ‖xA∪B‖1

((
xA
)T
DxA

‖xA‖1
+
(
xB
)T
DxB

‖xB‖1

)
. J

Consider an MSD instance consisting of a distance space of negative type represen-
ted by a matrix D ∈ Rn×n, and a matroid M over the ground set X = {1, . . . , n} of
rank k. We assume that one can efficiently decide whether a set S ⊆ X is independ-
ent. We apply Theorem 4 to find a fractional vector x∗ over the matroid polytope
P (M) =

{
x ∈ Rn≥0 :

∑
i∈A xi ≤ r(A) ∀A ⊆ X

}
, with (x∗)T Dx∗ ≥ OPT. Due to the mono-

tonicity of the diversity function xTDx, we can assume that ‖x∗‖1 = k, i.e., x∗ is on
the base polytope of the matroid M.1 We describe now a deterministic rounding al-
gorithm that takes x∗ as input, and outputs in polynomial time a basis B of M with(
χB
)T
DχB ≥

(
1−O

(
log k
k

))
(x∗)T Dx∗ ≥

(
1−O

(
log k
k

))
OPT.

1 Indeed, using standard techniques from matroid optimization (see [32, Volume B]), one can, for any
point y ∈ P (M), determine a point z ∈ P (M) ∩ {x ∈ Rn : ‖x‖1 = k} satisfying z ≥ y component-wise.
Hence, if the fractional point x∗ we obtain is not on the base polytope, we can replace it efficiently with
a point on the base polytope that dominates it and therefore has no worse objective value than x∗ due
to monotonicity of the considered objective.
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In the remainder of the section, for any vector x ∈ P (M) we ignore the elements i with
xi = 0 and assume without loss of generality that x has no zero components. We call an
element i ∈ X integral or fractional (with respect to x), respectively, if xi = 1 or xi < 1,
and we call a set S ⊆ X tight or loose, respectively, if ‖xS‖1 = r(S) or ‖xS‖1 < r(S). We
will need the following result about faces of the matroid polytope, which is a well-known
consequence of combinatorial uncrossing (see [15], or [32, Section 44.6c in Volume B]).

I Lemma 7. Let x ∈ P (M) with xi 6= 0 for i ∈ {1, . . . , n}, and let ∅ = S0 ( S1 ( · · · ( Sp =
X be a (inclusion-wise) maximal chain of tight sets with respect to x, i.e.,

∑
i∈Sl

xi = r(Sl)
for l ∈ {1, . . . , p}. Then the polytope P (M)∩ {y ∈ Rn≥0 :

∑
i∈Sl

yi = r(Sl) for l ∈ {1, . . . , p}}
defines the minimal face of P (M) that contains x. (In other words, all other x-tight sets are
implied by the ones in the chain.)

Also, given a point x ∈ P (M), one can efficiently find a maximal chain of tight sets as
described in Lemma 7. Our algorithm starts with such a chain ∅ = S0 ( S1 ( · · · ( Sp = X

for the vector x∗. For 1 ≤ l ≤ p define the set Rl = Sl \ Sl−1; we call these sets rings. The
rings form a partition of X, their weights ‖ (x∗)Rl ‖1 = r(Sl)− r(Sl−1) are strictly positive
integers whose sum is k, and each ring Rl either consists of a single integral element, or
of at least 2 elements, all fractional. This is because whenever i ∈ Rl is integral, the set
Sl−1∪{i} is tight, hence it can be added to the chain. We call the rings integral or fractional,
accordingly. We start with x = x∗, we iteratively change two coordinates of x without leaving
the minimal face of the matroid polytope on which x lies; one coordinate will be increased
and the other one decreased by the same amount.

The rounding procedure

Starting with x = x∗, the rounding of x proceeds in iterations, and stops when all elements
are integral. Among all fractional rings, and all pairs of fractional elements within the
same ring, select the pair i, j that minimizes the term xixjd(i, j). We perturb vector x by
adding to xi and subtracting from xj a certain quantity ε. The dispersion xTDx is linear
in ε except for the term 2xixjd(i, j), hence we can select the sign of ε so that the value
of xTDx − 2xixjd(i, j) does not decrease. We assume without loss of generality that this
choice is ε > 0, hence xi is increasing and xj decreasing. We increment ε until a new tight
constraint appears. If the constraint corresponds to xj becoming zero, we erase that element
and end the iteration step. Otherwise, a previously loose set S ⊆ X becomes tight, and S
must contain i but not j, else its weight ‖xS‖1 would not increase during this process. If
the ring containing i and j is Rl = Sl \ Sl−1, then the set S′ = (S ∪ Sl−1) ∩ Sl is also tight,2
and it also contains i but not j, hence Sl1 ( S′ ( Sl (see Figure 1). We add S′ to the chain,
update the list of rings, and end the iteration step.

We now argue that the above-described rounding procedure runs in polynomial time and
computes the characteristic vector χB of a basis B of the matroid M with

(
χB
)T
DχB ≥

(
1− c log k

k

)
x∗TDx∗ (4)

where k is the rank of the matroid and c is an absolute constant.

2 This follows from the uncrossing property: if A and B are tight sets then A ∪ B and A ∩ B are also
tight. This property is a consequence of the submodularity of the matroid rank function.
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(a) The fractional ring containing the pair
i, j with minimal value xm

i xm
j d(i, j).

(b) Elements i and j are separated by a new
tight set that fits in the chain structure.

Figure 1 The refinement of a fractional ring in an iteration of the rounding procedure.

At any stage of the algorithm, if q is the number of fractional rings and f is the number
of fractional elements, the number of iterations remaining is at most f − q. This is because
the value f − q can never be negative, and it decreases in each iteration. Either f decreases,
or q increases, or q decreases by 1 but f decreases by at least 2 (any disappearing fractional
ring has at least 2 fractional elements that become integral).

Suppose there are M iterations. We enumerate them in reverse order, and add a
superscript m to all variables to signify their value when there are m iterations remaining.
Hence x0 = χB is the integral output vector, x1 is the vector at the beginning of the last
iteration, and so on until xM = x∗. Clearly, all vectors xm are in P (M), and their weights
‖xm‖1 = k remain unchanged, hence each xm is on the base polytope, and x0 will be the
characteristic vector of a basis in M. From the previous claim we know that m ≤ fm − qm,
and in particular M ≤ n, hence the algorithm runs in polynomial time. For 1 ≤ m ≤ M ,
define lossm = (xm)T Dxm −

(
xm−1)T Dxm−1, hence the total additive loss incurred in the

rounding algorithm is
∑M
m=1 lossm. We postpone for a moment the proof of the following

inequality.

I Lemma 8. The loss in iteration m is bounded by

lossm ≤ min
{

2
m · k

,
2
m2

}
(x∗)T Dx∗.

The total additive loss incurred by the algorithm is

(x∗)T Dx∗ −
(
x0)T Dx0 =

M∑
m=1

lossm ≤ (x∗)T Dx∗
(

k∑
m=1

2
m · k

+
∑
m>k

2
m2

)

≤ (x∗)T Dx∗ · 2
(

1 + ln k
k

+ 1
k

)
= (x∗)T Dx∗ ·

(
4 + 2 ln k

k

)
,

where the second inequality follows from
∑k
m=1

1
m ≤ 1+ln k and

∑
m>k

1
m2 ≤ 1

k . In summary,
the algorithm finds a basis with dispersion(

x0)T Dx0 ≥ (x∗)T Dx∗
(

1− 4 + 2 ln k
k

)
≥ OPT

(
1−O

(
log k
k

))
which is our main result.

Proof of Lemma 8. If the pair i, j of fractional elements is chosen during the m-th iteration,
then lossm ≤ 2xmi xmj d(i, j). We bound this term from above, using the inequality in Lemma 6
multiple times over the vector xm and its partition into rings. We skip the superscript m to
simplify notation and obtain
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xTDx

k
≥
∑

ring R

(
xR
)T
DxR

‖xR‖1
≥

∑
fractional R

(
xR
)T
DxR

‖xR‖1
≥

∑
fractional R

(|R|
2
)
loss

‖xR‖1
,

where the last inequality comes from lossm ≤ 2xmi xmj d(i, j), and the choice of elements i
and j that minimizes this quantity over all pairs of elements within any fractional ring. We
complete the above inequality in two ways. First, for every fractional ring R, |R| ≥ ‖xR‖1,
hence (|R|2 )

‖xR‖1
≥ |R|−1

2 and thus

xTDx

k
≥ loss

2
∑

frac. R
(|R| − 1) = loss

2 (f − q) ≥ m

2 loss ,

which implies

lossm ≤ 2
m · k

(xm)T Dxm ≤ 2
m · k

(x∗)T Dx∗ .

Next,
(|R|

2
)
≥ (|R|−1)2/2, and using a Cauchy-Schwarz inequality (for the third inequality

below), we get:

xTDx ≥k · loss
2

∑
frac. R

(|R| − 1)2

‖xR‖1
≥ loss

2

( ∑
frac. R

‖xR‖1

)( ∑
frac. R

(|R| − 1)2

‖xR‖1

)

≥ loss
2

( ∑
frac.R

(|R| − 1)
)2

= loss
2 (f − q)2 ≥ m2

2 loss ,

and hence,

lossm ≤ 2
m2 (xm)T Dxm ≤ 2

m2 (x∗)T Dx∗ . J

I Remark. The integrality gap of the convex program max{xTDx | x ∈ P (M)} above is
at least 1 − 1

k , which matches the approximation factor of our rounding algorithm up to
a logarithmic term. Consider the matrix D with Di,j = 1 for all i 6= j, which defines a
distance space of negative type, and a cardinality constraint corresponding to the polytope
{x ∈ [0, 1]n |

∑
i xi = k}. An optimal solution is any k-set B ⊆ X, with value OPT =

(χB)TDχB = k(k − 1); but the fractional vector x∗ = (k/n, · · · , k/n) is feasible and has
value (x∗)TDx∗ = k2

n2n(n− 1). Hence, OPT
(x∗)TDx∗

= k−1
k

n
n−1 → 1− 1

k , as n→∞.
I Remark. The previous approximation extends to the more general case of a combination
of dispersion and linear scores, as follows. Consider the problem of maximizing the objective
function g(x) = xTDx+ wTx, with a matroid constraint of rank k, and where D represents
a distance space of negative type. The vector w here corresponds to non-negative scores on
the elements of the ground set, and the objective is to find a feasible set with both high
dispersion and high scores. The extra linear term does not change the concavity of xTDx,
hence Lemma 3 and Theorem 5 are valid for this problem and provide a fractional vector
x∗ ∈ P (M) with g(x∗) ≥ OPT. Moreover, g(x) is still monotone, which means we can assume
that ‖x∗‖1 = k. In each iteration of this section’s rounding algorithm, g(x)− 2xixjd(i, j) is
linear in ε, so we can bound the loss of value of g(x) during this iteration by 2xixjd(i, j), as
before. Hence, the above analysis still holds and shows that the total loss is very small, even
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when comparing it only to the contribution of the quadratic term (x∗)TDx∗ to the objective,
and ignoring the additional nonnegative term wTx∗. Thus, we get the same approximation
guarantee for this setting.

To conclude, we prove that MSD remains strongly NP-hard on distance spaces of negative
type, even for a cardinality constraint. For this, we give a reduction from Densest k-Subgraph
(DkS), which is strongly NP-hard. An instance of DkS consists of a graph G = (V,E) and a
number k ≤ n = |V |, and the object is to find a k-set W ⊆ V whose induced subgraph G[W ]
contains the largest number of edges. Now, the distance function d′ : V 2 → R≥0 defined by
d′(i, j) = 2 if {i, j} ∈ E, 1 if {i, j} 6∈ E is metric.3 Thus, by assertion 1) (below Theorem 2),
we conclude that the distance d = (d′)log2

n
n−1 is of negative type, where d(i, j) = n

n−1 if
{i, j} ∈ E, 1 otherwise. Finally, it is evident that an exact solution to the MSD instance
(V, d) with cardinality constraint k corresponds to an exact solution to the DkS instance.
This completes the proof. As is typical for many strongly NP-hard problems, one can easily
deduce that an FPTAS for MSD for distance spaces of negative type subject to a cardinality
constraint could be transformed into an exact algorithm for the same problem by choosing
the error parameter ε sufficiently small. We therefore obtain the following.

I Theorem 9. Max-sum dispersion MSD is strongly NP-hard, even for distance spaces of
negative type and Ax ≤ b representing one cardinality constraint. In particular, this problem
does not admit a fully polynomial-time approximation scheme unless P = NP.

Finally, we can show that a randomized version of our rounding algorithm allows for
dealing with a combination of a matroid and a constant number of knapsack constraints.
Due to space constraints, we defer the proof of the following result to a long version of this
paper.

I Theorem 10. There exists a randomized polynomial-time approximation scheme for MSD
for the case that d(·, ·) is of negative type and Ax ≤ b describes one matroid constraint and
O(1) knapsack constraints.

References
1 Z. Abbassi, V. S. Mirrokni, and M. Thakur. Diversity maximization under matroid con-

straints. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 32–40. ACM, 2013.

2 A.A. Ageev and M. I. Sviridenko. Pipage rounding: a new method of constructing al-
gorithms with proven performance guarantee. Journal of Combinatorial Optimization,
8(23):307–328, 2004.

3 N. Alon, S. Arora, R. Manokaran, D. Moshkovitz, and O. Weinstein. Inapproximability of
densest κ-subgraph from average case hardness. Unpublished manuscript, 2011.

4 S. Bhattacharya, S. Gollapudi, and K. Munagala. Consideration set generation in commerce
search. In Proceedings of the 20th international conference on World wide web, pages 317–
326. ACM, 2011.

5 B. Birnbaum and K. J. Goldman. An improved analysis for a greedy remote-clique algorithm
using factor-revealing LPs. Algorithmica, 55(1):42–59, 2009.

6 L.M. Blumenthal. Theory and Applications of Distance Geometry, volume 347. Oxford,
1953.

3 Any distance space, where the distance between distinct points is either 1 or 2, is metric.



A. Cevallos, F. Eisenbrand, and R. Zenklusen 26:13

7 A. Borodin, H.C. Lee, and Y. Ye. Max-sum diversification, monotone submodular functions
and dynamic updates. In Proceedings of the 31st Symposium on Principles of Database
Systems, pages 155–166. ACM, 2012.

8 G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

9 M.S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, pages 380–388. ACM, 2002.

10 C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. In Proceedings of the 51st IEEE Symposium on
Foundations of Computer Science, pages 575–584, 2010.

11 M.M. Deza and M. Laurent. Geometry of Cuts and Metrics. Springer-Verlag, Berlin, 1997.
12 M.M. Deza and H. Maehara. Metric transforms and euclidean embeddings. Transactions

of the American Mathematical Society, 317(2):661–671, 1990.
13 S. P. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight cliques.

Algorithmica, 38(3):501–511, 2004.
14 M. Fréchet. Les dimensions d’un ensemble abstrait. Mathematische Annalen, 68(2):145–168,

1910.
15 F.R. Giles. Submodular Functions, Graphs and Integer Polyhedra. PhD thesis, University

of Waterloo, 1975.
16 S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In Pro-

ceedings of the 18th International Conference on World Wide Web, pages 381–390. ACM,
2009.

17 J.C. Gower and P. Legendre. Metric and euclidean properties of dissimilarity coefficients.
Journal of Classification, 3(1):5–48, 1986.

18 M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Op-
timization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

19 R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion.
Operations Research Letters, 21(3):133–137, 1997.

20 L.G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii Nauk
SSSR, 244:1093–1097, 1979.

21 M.K. Kozlov, S. P. Tarasov, and L.G. Khachiyan. The polynomial solvability of convex
quadratic programming. USSR Computational Mathematics and Mathematical Physics,
20(5):223–228, 1980.

22 Q. Lv, M. Charikar, and K. Li. Image similarity search with compact data structures.
In Proceedings of the 13th ACM International Conference on Information and Knowledge
Management, pages 208–217. ACM, 2004.

23 K Makarychev, W Schudy, and M Sviridenko. Concentration inequalities for nonlinear
matroid intersection. Random Structures & Algorithms, 46(3):541–571, 2015.

24 C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval,
volume 1. Cambridge university press Cambridge, 2008.

25 J. Matoušek. Lecture notes on metric embeddings. kam.mff.cuni.cz/~matousek/ba-a4.
pdf, 2013.

26 E. Pekalska and R.P.W. Duin. The Dissimilarity Representation for Pattern Recognition:
Foundations And Applications (Machine Perception and Artificial Intelligence). World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 2005.

27 P. Raghavan and C.D. Tompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

28 S. S. Ravi, D. J. Rosenkrantz, and G.K. Tayi. Heuristic and special case algorithms for
dispersion problems. Operations Research, 42(2):299–310, 1994.

SoCG 2016

kam.mff.cuni.cz/~matousek/ba-a4.pdf
kam.mff.cuni.cz/~matousek/ba-a4.pdf


26:14 Max-Sum Diversity Via Convex Programming

29 G. Salton and M. J. MacGill. Introduction to modern information retrieval. McGraw-Hill
computer science series, 1983.

30 I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics,
pages 811–841, 1938.

31 I. J. Schoenberg. Metric spaces and positive definite functions. Transactions of the Amer-
ican Mathematical Society, 44(3):522–536, 1938.

32 A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

33 M. Skutella. Convex quadratic and semidefinite programming relaxations in scheduling.
Journal of the ACM, 48(2):206–242, 2001.


	Introduction
	Preliminaries
	A relaxation that can be solved by convex programming
	Negative-type MSD under matroid constraint

