16 research outputs found

    Power of Counting by Nonuniform Families of Polynomial-Size Finite Automata

    Full text link
    Lately, there have been intensive studies on strengths and limitations of nonuniform families of promise decision problems solvable by various types of polynomial-size finite automata families, where "polynomial-size" refers to the polynomially-bounded state complexity of a finite automata family. In this line of study, we further expand the scope of these studies to families of partial counting and gap functions, defined in terms of nonuniform families of polynomial-size nondeterministic finite automata, and their relevant families of promise decision problems. Counting functions have an ability of counting the number of accepting computation paths produced by nondeterministic finite automata. With no unproven hardness assumption, we show numerous separations and collapses of complexity classes of those partial counting and gap function families and their induced promise decision problem families. We also investigate their relationships to pushdown automata families of polynomial stack-state complexity.Comment: (A4, 10pt, 21 pages) This paper corrects and extends a preliminary report published in the Proceedings of the 24th International Symposium on Fundamentals of Computation Theory (FCT 2023), Trier, Germany, September 18-24, 2023, Lecture Notes in Computer Science, vol. 14292, pp. 421-435, Springer Cham, 202

    The complexity of parameters for probabilistic and quantum computation

    Get PDF
    In this dissertation we study some effects of allowing computational models that use parameters whose own computational complexity has a strong effect on the computational complexity of the languages computable from the model. We show that in the probabilistic and quantum models there are parameter sets that allow one to obtain noncomputable outcomes;In Chapter 3 we define BP[beta]P the BPP class based on a coin with bias [beta]. We then show that if [beta] is BPP-computable then it is the case that BP[beta]P = BPP. We also show that each language L in P/CLog is in BP[beta]P for some [beta]. Hence there are some [beta] from which we can compute noncomputable languages. We also examine the robustness of the class BPP with respect to small variations from fairness in the coin;In Chapter 4 we consider measures that are based on polynomial-time computable sequences of biased coins in which the biases are bounded away from both zero and one (strongly positive P-sequences). We show that such a sequence [vector][beta] generates a measure [mu][vector][beta] equivalent to the uniform measure in the sense that if C is a class of languages closed under positive, polynomial-time, truth-table reductions with queries of linear length then C has [mu][vector][beta]-measure zero if and only if it has measure zero relative to the uniform measure [mu]. The classes P, NP, BPP, P/Poly, PH, and PSPACE are among those to which this result applies. Thus the measures of these much-studied classes are robust with respect to changes of this type in the underlying probability measure;In Chapter 5 we introduce the quantum computation model and the quantum complexity class BQP. We claim that the computational complexity of the amplitudes is a critical factor in determining the languages computable using the quantum model. Using results from chapter 3 we show that the quantum model can also compute noncomputable languages from some amplitude sets. Finally, we determine a restriction on the amplitude set to limit the model to the range of languages implicit in others\u27 typical meaning of the class BQP

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Complexity of certificates, heuristics, and counting types , with applications to cryptography and circuit theory

    Get PDF
    In dieser Habilitationsschrift werden Struktur und Eigenschaften von Komplexitätsklassen wie P und NP untersucht, vor allem im Hinblick auf: Zertifikatkomplexität, Einwegfunktionen, Heuristiken gegen NP-Vollständigkeit und Zählkomplexität. Zum letzten Punkt werden speziell untersucht: (a) die Komplexität von Zähleigenschaften von Schaltkreisen, (b) Separationen von Zählklassen mit Immunität und (c) die Komplexität des Zählens der Lösungen von ,,tally`` NP-Problemen

    Sublinear-Time Cellular Automata and Connections to Complexity Theory

    Get PDF
    Im Gebiet des verteilten Rechnens werden Modelle untersucht, in denen sich mehrere Berechnungseinheiten koordinieren, um zusammen ein gemeinsames Ziel zu erreichen, wobei sie aber nur über begrenzte Ressourcen verfügen — sei diese Zeit-, Platz- oder Kommunikationskapazitäten. Das Hauptuntersuchungsobjekt dieser Dissertation ist das wohl einfachste solche Modell überhaupt: (eindimensionale) Zellularautomaten. Unser Ziel ist es, einen besseren Überblick über die Fähigkeiten und Einschränkungen des Modells und ihrer Varianten zu erlangen in dem Fall, dass die gesamte Bearbeitungszeit deutlich kleiner als die Größe der Eingabe ist (d. h. Sublinear-Zeit). Wir führen unsere Analyse von dem Standpunkt der Komplexitätstheorie und stellen dabei auch Bezüge zwischen Zellularautomaten und anderen Gebieten wie verteiltes Rechnen und Streaming-Algorithmen her. Sublinear-Zeit Zellularautomaten. Ein Zellularautomat (ZA) besteht aus identischen Zellen, die entlang einer Linie aneinandergereiht sind. Jede Zelle ist im Wesentlichen eine sehr primitive Berechnungseinheit (nämlich ein deterministischer endlicher Automat), die mit deren beiden Nachbarn interagieren kann. Die Berechnung entsteht durch die Aktualisierung der Zustände der Zellen gemäß derselben Zustandsüberführungsfunktion, die gleichzeitig überall im Automaten angewendet wird. Die von uns betrachteten Varianten sind unter anderem schrumpfende ZAs, die (gewissermaßen) dynamisch rekonfigurierbar sind, sowie eine probabilistische Variante, in der jede Zelle mit Zugriff auf eine faire Münze ausgestattet ist. Trotz überragendem Interesse an Linear- und Real-Zeit-ZAs scheint der Fall von Sublinear-Zeit im Großen und Ganzen von der wissenschaftlichen Gemeinschaft vernachlässigt worden zu sein. Wir arbeiten die überschaubare Anzahl an Vorarbeiten zu dem Thema auf, die vorhanden ist, und entwickeln die daraus stammenden Techniken weiter, sodass deren Spektrum an Anwendungsmöglichkeiten wesentlich breiter wird. Durch diese Bemühungen entsteht unter anderem ein Zeithierarchiesatz für das deterministische Modell. Außerdem übertragen wir Techniken zum Beweis unterer Schranken aus der Komplexitätstheorie auf das Modell der schrumpfenden ZAs und entwickeln neue Techniken, die auf probabilistische Sublinear-Zeit-ZAs zugeschnitten sind. Ein Bezug zu Härte-Magnifizierung. Ein Bezug zu Komplexitätstheorie, die wir im Laufe unserer Untersuchungen herstellen, ist ein Satz über Härte-Magnifizierung (engl. hardness magnification) für schrumpfende ZAs. Hier bezieht sich Härte-Magnifizierung auf eine Reihe neuerer Arbeiten, die bezeugen, dass selbst geringfügig nicht-triviale untere Schranken sehr beeindruckende Konsequenzen in der Komplexitätstheorie haben können. Unser Satz ist eine Abwandlung eines neuen Ergebnisses von McKay, Murray und Williams (STOC, 2019) für Streaming-Algorithmen. Wie wir zeigen kann die Aussage dabei genauso in Bezug auf schrumpfende ZAs formuliert werden, was sie auch beweisbar verstärkt. Eine Verbindung zu Sliding-Window Algorithmen. Wir verknüpfen das verteilte Zellularautomatenmodell mit dem sequenziellen Streaming-Algorithmen-Modell. Wie wir zeigen, können (gewisse Varianten von) ZAs von Streaming-Algorithmen simuliert werden, die bestimmten Lokalitätseinschränkungen unterliegen. Konkret ist der aktuelle Zustand des Algorithmus vollkommen bestimmt durch den Inhalt eines Fensters fester Größe, das wenige letzte Symbole enthält, die vom Algorithmus verarbeitet worden sind. Dementsprechend nennen wir diese eingeschränkte Form eines Streaming-Algorithmus einen Sliding-Window-Algorithmus. Wir zeigen, dass Sliding-Window-Algorithmen ZAs sehr effizient simulieren können und insbesondere in einer solchen Art und Weise, dass deren Platzkomplexität eng mit der Zeitkomplexität des simulierten ZA verbunden ist. Derandomisierungsergebnisse. Wir zeigen Derandomisierungsergebnisse für das Modell von Sliding-Window-Algorithmen, die Zufall aus einer binären Zufallsquelle beziehen. Dazu stützen wir uns auf die robuste Maschinerie von Branching-Programmen, die den gängigen Ansatz zur Derandomisierung von Platz-beschränkten Maschinen in der Komplexitätstheorie darstellen. Als eine Anwendung stellen sich Derandomisierungsergebnisse für probabilistische Sublinear-Zeit-ZAs heraus, die durch die oben genannten Verknüpfung erlangt werden. Vorhersageproblem für Pilz-Sandhaufen. Ein letztes Problem, das wir behandeln und das auch einen Bezug zu Sublinear-Zeitkomplexität im Rahmen von Zellularautomaten hat (obwohl nicht zu Sublinear-Zeit-Zellularautomaten selber), ist das Vorhersageproblem für Sandhaufen-Zellularautomaten. Diese Automaten sind basierend auf zweidimensionalen ZAs definiert und modellieren einen deterministischen Prozess, in dem sich Partikel (in der Regel denkt man an Sandkörnern) durch den Raum verbreiten. Das Vorhersageproblem fragt ob, gegeben eine Zellennummer yy und eine initiale Konfiguration für den Sandhaufen, die Zelle mit Nummer yy irgendwann vor einer gewissen Zeitschranke einen von Null verschiedenen Zustand erreichen wird. Die Komplexität dieses mindestens zwei Jahrzehnte alten Vorhersageproblems ist für zweidimensionelle Sandhaufen bemerkenswerterweise nach wie vor offen. Wir lösen diese Frage im Wesentlichen für eine neue Variante von Sandhaufen namens Pilz-Sandhaufen, die von Goles u. a. (Phys. Lett. A, 2020) vorgeschlagen worden ist. Unser Ergebnis ist besonders relevant, weil es innovative Erkenntnisse und neue Techniken liefert, die für die Lösung des offenen Problems im allgemeinen Fall von hoher Relevanz sein könnten
    corecore