1,538 research outputs found

    An Improved Approach For Multi-Robot Localization

    Get PDF
    Cooperative multi-robot localization techniques use sensor measurements to estimate poses (locations, orientations) of robots relative to a given map of the environment. Existing approaches update a robot\u27s pose instantly whenever it detects another robot. However, such instant update may not be always necessary and effective, since both robots\u27 pose estimates could be highly uncertain at the time of the detection. In this thesis, we develop a new information exchange mechanism to collaborative multi-robot localization. We also propose a new scheme to calculate how much information is contained in a robot\u27s belief by using entropy. Instead of updating beliefs whenever detection occurs, our approach first compares the beliefs of the robots which are involved in the detection, and then decide whether the information exchange is necessary. Therefore, it avoids unnecessary information exchange whenever one robot perceives another robot. On the other hand, this approach does allow information exchange between detecting robots and such information exchange always contributes positively to the localization process, hence, improving the effectiveness and efficiency of multi-robot localization. The technique has been implemented and tested using two mobile robots as well as simulations. The results indicate significant improvements in localization speed and accuracy when compared to the single mobile robot localization

    Robotic Specialization in Autonomous Robotic Structural Assembly

    Get PDF
    Robotic in-space assembly of large space structures is a long-term NASA goal to reduce launch costs and enable larger scale missions. Recently, researchers have proposed using discrete lattice building blocks and co-designed robots to build high-performance, scalable primary structure for various on-orbit and surface applications. These robots would locomote on the lattice and work in teams to build and reconfigure building-blocks into functional structure. However, the most reliable and efficient robotic system architecture, characterized by the number of different robotic 'species' and the allocation of functionality between species, is an open question. To address this problem, we decompose the robotic building-block assembly task into functional primitives and, in simulation, study the performance of the the variety of possible resulting architectures. For a set consisting of five process types (move self, move block, move friend, align bock, fasten block), we describe a method of feature space exploration and ranking based on energy and reliability cost functions. The solution space is enumerated, filtered for unique solutions, and evaluated against energy and reliability cost functions for various simulated build sizes. We find that a 2 species system, dividing the five mentioned process types between one unit cell transport robot and one fastening robot, results in the lowest energy cost system, at some cost to reliability. This system enables fastening functionality to occupy the build front while reducing the need for that functional mass to travel back and forth from a feed station. Because the details of a robot design affect the weighting and final allocation of functionality, a sensitivity analysis was conducted to evaluate the effect of changing mass allocations on architecture performance. Future systems with additional functionalities such as repair, inspection, and others may use this process to analyze and determine alternative robot architectures
    corecore