11,858 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    OFDM Synthetic Aperture Radar Imaging with Sufficient Cyclic Prefix

    Full text link
    The existing linear frequency modulated (LFM) (or step frequency) and random noise synthetic aperture radar (SAR) systems may correspond to the frequency hopping (FH) and direct sequence (DS) spread spectrum systems in the past second and third generation wireless communications. Similar to the current and future wireless communications generations, in this paper, we propose OFDM SAR imaging, where a sufficient cyclic prefix (CP) is added to each OFDM pulse. The sufficient CP insertion converts an inter-symbol interference (ISI) channel from multipaths into multiple ISI-free subchannels as the key in a wireless communications system, and analogously, it provides an inter-range-cell interference (IRCI) free (high range resolution) SAR image in a SAR system. The sufficient CP insertion along with our newly proposed SAR imaging algorithm particularly for the OFDM signals also differentiates this paper from all the existing studies in the literature on OFDM radar signal processing. Simulation results are presented to illustrate the high range resolution performance of our proposed CP based OFDM SAR imaging algorithm.Comment: This version has been accepted by IEEE Transactions on Geoscience and Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing 201

    Transmitted Energy as a Basic System Resource

    Get PDF
    Energy is a basic resource in digital transmission links. Physically, radio channels correspond to passive circuits and most of the transmitted energy is lost in the channel. Two alternative approaches are used for performance measurements in terms of energy. Either the average transmitted or received energy per bit is used, both usually normalized by the receiver noise spectral density. This leads to the average transmitted or received signal-to-noise ratio (SNR) per bit, respectively. However, the transmitted energy is the basic system resource. The average energy gain of a channel depends on the transmitted signal. For convenience, the transmitted SNR referred to the receiver is defined to be the product of the transmitted SNR and the representative energy gain, which is defined as the average energy gain of a signal that is uniformly distributed in all dimensions: time, frequency and space. An explicit relationship between the transmitted and received SNR’s using the covariance concept is derived. Limitations of the use of different SNR definitions are summarized

    A nearly zero-energy microgrid testbed laboratory: Centralized control strategy based on SCADA system

    Get PDF
    Currently, despite the use of renewable energy sources (RESs), distribution networks are facing problems, such as complexity and low productivity. Emerging microgrids (MGs) with RESs based on supervisory control and data acquisition (SCADA) are an effective solution to control, manage, and finally deal with these challenges. The development and success of MGs is highly dependent on the use of power electronic interfaces. The use of these interfaces is directly related to the progress of SCADA systems and communication infrastructures. The use of SCADA systems for the control and operation of MGs and active distribution networks promotes productivity and efficiency. This paper presents a real MG case study called the LAMBDA MG testbed laboratory, which has been implemented in the electrical department of the Sapienza University of Rome with a centralized energy management system (CEMS). The real-time results of the SCADA system show that a CEMS can create proper energy balance in a LAMBDA MG testbed and, consequently, minimize the exchange power of the LAMBDA MG and main grid

    Performance of optimum detector structures for noisy intersymbol interference channels

    Get PDF
    The errors which arise in transmitting digital information by radio or wireline systems because of additive noise from successively transmitted signals interfering with one another are described. The probability of error and the performance of optimum detector structures are examined. A comparative study of the performance of certain detector structures and approximations to them, and the performance of a transversal equalizer are included

    Efficient Radio Resource Allocation Schemes and Code Optimizations for High Speed Downlink Packet Access Transmission

    No full text
    An important enhancement on the Wideband Code Division Multiple Access (WCDMA) air interface of the 3G mobile communications, High Speed Downlink Packet Access (HSDPA) standard has been launched to realize higher spectral utilization efficiency. It introduces the features of multicode CDMA transmission and Adaptive Modulation and Coding (AMC) technique, which makes radio resource allocation feasible and essential. This thesis studies channel-aware resource allocation schemes, coupled with fast power adjustment and spreading code optimization techniques, for the HSDPA standard operating over frequency selective channel. A two-group resource allocation scheme is developed in order to achieve a promising balance between performance enhancement and time efficiency. It only requires calculating two parameters to specify the allocations of discrete bit rates and transmitted symbol energies in all channels. The thesis develops the calculation methods of the two parameters for interference-free and interference-present channels, respectively. For the interference-present channels, the performance of two-group allocation can be further enhanced by applying a clustering-based channel removal scheme. In order to make the two-group approach more time-efficient, reduction in matrix inversions in optimum energy calculation is then discussed. When the Minimum Mean Square Error (MMSE) equalizer is applied, optimum energy allocation can be calculated by iterating a set of eigenvalues and eigenvectors. By using the MMSE Successive Interference Cancellation (SIC) receiver, the optimum energies are calculated recursively combined with an optimum channel ordering scheme for enhancement in both system performance and time efficiency. This thesis then studies the signature optimization methods with multipath channel and examines their system performances when combined with different resource allocation methods. Two multipath-aware signature optimization methods are developed by applying iterative optimization techniques, for the system using MMSE equalizer and MMSE precoder respectively. A PAM system using complex signature sequences is also examined for improving resource utilization efficiency, where two receiving schemes are proposed to fully take advantage of PAM features. In addition by applying a short chip sampling window, a Singular Value Decomposition (SVD) based interference-free signature design method is presented
    corecore