894,587 research outputs found

    The becoming of bodies : girls, media effects and body image.

    Get PDF
    The relations between women's bodies and images have long interested and occupied feminist theoretical and empirical work. Recently, much feminist research has focused on the relations between girls' and young women's bodies and images in “the media.” Underpinning much of this research, I argue, is an oppositional model of subject/object onto which bodies and images are mapped. Developing Deleuze's concept of becoming and exploring my own research with a small number of white British teenage girls, I develop an alternative model of the relations between bodies and images. I suggest that while the subject/object model relies upon a notion of media effects, an understanding of bodies as becoming opens up feminist research to consider the ways in which bodies are not separate to images but rather are known, understood and experienced through images. If feminist research takes seriously this conception of bodies as becoming, its task is to account for how bodies become through their relations with images; what becomings of bodies do images limit or extend

    Magnification relations of quad lenses and applications on Einstein crosses

    Full text link
    In this work, we mainly study the magnification relations of quad lens models for cusp, fold and cross configurations. By dividing and ray-tracing in different image regions, we numerically derive the positions and magnifications of the four images for a point source lying inside of the astroid caustic. Then, based on the magnifications, we calculate the signed cusp and fold relations for the singular isothermal elliptical lenses. The signed fold relation map has positive and negative regions, and the positive region is usually larger than the negative region as has been confirmed before. It can also explain that for many observed fold image pairs, the fluxes of the Fermat minimum images are apt to be larger than those of the saddle images. We define a new quantity cross relation which describes the magnification discrepancy between two minimum images and two saddle images. Distance ratio is also defined as the ratio of the distance of two saddle images to that of two minimum images. We calculate the cross relations and distance ratios for nine observed Einstein crosses. In theory, for most of the quad lens models, the cross relations decrease as the distance ratios increase. In observation, the cross relations of the nine samples do not agree with the quad lens models very well, nevertheless, the cross relations of the nine samples do not give obvious evidence for anomalous flux ratio as the cusp and fold types do. Then, we discuss several reasons for the disagreement, and expect good consistencies for more precise observations and better lens models in the future.Comment: 12 pages, 11 figures, accepted for publication in MNRA

    Thick 2D Relations for Document Understanding

    Get PDF
    We use a propositional language of qualitative rectangle relations to detect the reading order from document images. To this end, we define the notion of a document encoding rule and we analyze possible formalisms to express document encoding rules such as LATEX and SGML. Document encoding rules expressed in the propositional language of rectangles are used to build a reading order detector for document images. In order to achieve robustness and avoid brittleness when applying the system to real life document images, the notion of a thick boundary interpretation for a qualitative relation is introduced. The framework is tested on a collection of heterogeneous document images showing recall rates up to 89%

    An Investigation of Sloan Digital Sky Survey Imaging Data and Multi-Band Scaling Relations of Spiral Galaxies (with Dynamical Information)

    Full text link
    We have compiled a sample of 3041 spiral galaxies with multi-band gri imaging from the Sloan Digital Sky Survey (SDSS) Data Release 7 and available galaxy rotational velocities derived from HI line widths. We compare the data products provided through the SDSS imaging pipeline with our own photometry of the SDSS images, and use the velocities (V) as an independent metric to determine ideal galaxy sizes (R) and luminosities (L). Our radial and luminosity parameters improve upon the SDSS DR7 Petrosian radii and luminosities through the use of isophotal fits to the galaxy images. This improvement is gauged via VL and RV relations whose respective scatters are reduced by ~8% and ~30% compared to similar relations built with SDSS parameters. The tightest VRL relations are obtained with the i-band radius, R235i, measured at 23.5 mag/arcsec^-2, and the luminosity L235i, measured within R235i. Our VRL scaling relations compare well, both in scatter and slope, with similar studies (such comparisons however depend sensitively on the nature and size of the compared samples). The typical slopes, b, and observed scatters, sigma, of the i-band VL, RL and RV relations are bVL=0.27+/-0.01, bRL=0.41+/-0.01, bRV=1.52+/-0.07, and sigmaVL=0.074, sigmaRL=0.071, sigmaRV=0.154 dex. Similar results for the SDSS g and r bands are also provided. Smaller scatters may be achieved for more pruned samples. We also compute scaling relations in terms of the baryonic mass (stars + gas), Mbar, ranging from 10^8.7 Msol to 10^11.6 Msol. Our baryonic velocity-mass (VM) relation has slope 0.29+/-0.01 and a measured scatter sigma_meas = 0.076 dex. While the observed VL and VM relations have comparable scatter, the stellar and baryonic VM relations may be intrinsically tighter, and thus potentially more fundamental, than other VL relations of spiral galaxies.Comment: Submitted to MNRAS, comments welcom
    • …
    corecore