332 research outputs found

    Descriptive Complexity of Deterministic Polylogarithmic Time and Space

    Full text link
    We propose logical characterizations of problems solvable in deterministic polylogarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We introduce a novel two-sorted logic that separates the elements of the input domain from the bit positions needed to address these elements. We prove that the inflationary and partial fixed point vartiants of this logic capture PolylogTime and PolylogSpace, respectively. In the course of proving that our logic indeed captures PolylogTime on finite ordered structures, we introduce a variant of random-access Turing machines that can access the relations and functions of a structure directly. We investigate whether an explicit predicate for the ordering of the domain is needed in our PolylogTime logic. Finally, we present the open problem of finding an exact characterization of order-invariant queries in PolylogTime.Comment: Submitted to the Journal of Computer and System Science

    Alternation on cellular automata

    Get PDF
    AbstractIn this paper we consider several notions of alternation in cellular automata: non-uniform, uniform and weak alternation. We study relations among these notions and with alternating Turing machines. It is proved that the languages accepted in polynomial time by alternating Turing machines are those accepted by alternating cellular automata in polynomial time for all the proposed alternating cellular automata. In particular, this is true for the weak model where the difference between existential and universal states is omitted for all the cells except the first one. It is proved that real time alternation in cellular automata is strictly more powerful than real time alternation in Turing machines, with only one read-write tape. Moreover, it is shown that in linear time uniform and weak models agree

    Structure of computations in parallel complexity classes

    Get PDF
    Issued as Annual report, and Final project report, Project no. G-36-67

    Tree-size bounded alternation

    Get PDF
    AbstractThe size of an accepting computation tree of an alternating Turing machine (ATM) is introduced as a complexity measure. We present a number of applications of tree-size to the study of more traditional complexity classes. Tree-size on ATMs is shown to closely correspond to time on nondeterministic TMs and on nondeterministic auxiliary pushdown automata. One application of the later is a useful new characterization of the class of languages log-space-reducible to context-free languages. Surprising relationships with parallel-time complexity are also demonstrated. ATM computations using at most space S(n) and tree-size Z(n) (simultaneously) can be simulated in alternating space S(n) and time S(n) · log Z(n) (simultaneously). Several well-known simulations, e.g., Savitch's theorem, are special cases of this result. It also leads to improved parallel complexity bounds for many problems in terms of both time and number of “processors.” As one example we show that context-free language recognition in time O(log2 n) is possible on several parallel models. Further, this bound is achievable with only a polynomial number of processors, in contrast to all previously known sub-linear time CFL recognizers

    A Uniform Method for Proving Lower Bounds of the Computational Complexity of Logical Theories

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/154178/1/39015100081655.pd

    守屋悦朗教授 略歴・業績

    Get PDF

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Machine Characterizations of the Classes of the W-Hierarchy

    Full text link
    corecore