127,439 research outputs found

    Towards an Intelligent Database System Founded on the SP Theory of Computing and Cognition

    Full text link
    The SP theory of computing and cognition, described in previous publications, is an attractive model for intelligent databases because it provides a simple but versatile format for different kinds of knowledge, it has capabilities in artificial intelligence, and it can also function like established database models when that is required. This paper describes how the SP model can emulate other models used in database applications and compares the SP model with those other models. The artificial intelligence capabilities of the SP model are reviewed and its relationship with other artificial intelligence systems is described. Also considered are ways in which current prototypes may be translated into an 'industrial strength' working system

    Schema Independent Relational Learning

    Full text link
    Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions
    • …
    corecore