5 research outputs found

    Open Higher-Order Logic

    Get PDF
    We introduce a variation on Barthe et al.’s higher-order logic in which formulas are interpreted as predicates over open rather than closed objects. This way, concepts which have an intrinsically functional nature, like continuity, differentiability, or monotonicity, can be expressed and reasoned about in a very natural way, following the structure of the underlying program. We give open higher-order logic in distinct flavors, and in particular in its relational and local versions, the latter being tailored for situations in which properties hold only in part of the underlying function’s domain of definition

    Bidirectional Type Checking for Relational Properties

    Full text link
    Relational type systems have been designed for several applications including information flow, differential privacy, and cost analysis. In order to achieve the best results, these systems often use relational refinements and relational effects to maximally exploit the similarity in the structure of the two programs being compared. Relational type systems are appealing for relational properties because they deliver simpler and more precise verification than what could be derived from typing the two programs separately. However, relational type systems do not yet achieve the practical appeal of their non-relational counterpart, in part because of the lack of a general foundations for implementing them. In this paper, we take a step in this direction by developing bidirectional relational type checking for systems with relational refinements and effects. Our approach achieves the benefits of bidirectional type checking, in a relational setting. In particular, it significantly reduces the need for typing annotations through the combination of type checking and type inference. In order to highlight the foundational nature of our approach, we develop bidirectional versions of several relational type systems which incrementally combine many different components needed for expressive relational analysis.Comment: 14 page

    Formal verification of higher-order probabilistic programs

    Full text link
    Probabilistic programming provides a convenient lingua franca for writing succinct and rigorous descriptions of probabilistic models and inference tasks. Several probabilistic programming languages, including Anglican, Church or Hakaru, derive their expressiveness from a powerful combination of continuous distributions, conditioning, and higher-order functions. Although very important for practical applications, these combined features raise fundamental challenges for program semantics and verification. Several recent works offer promising answers to these challenges, but their primary focus is on semantical issues. In this paper, we take a step further and we develop a set of program logics, named PPV, for proving properties of programs written in an expressive probabilistic higher-order language with continuous distributions and operators for conditioning distributions by real-valued functions. Pleasingly, our program logics retain the comfortable reasoning style of informal proofs thanks to carefully selected axiomatizations of key results from probability theory. The versatility of our logics is illustrated through the formal verification of several intricate examples from statistics, probabilistic inference, and machine learning. We further show the expressiveness of our logics by giving sound embeddings of existing logics. In particular, we do this in a parametric way by showing how the semantics idea of (unary and relational) TT-lifting can be internalized in our logics. The soundness of PPV follows by interpreting programs and assertions in quasi-Borel spaces (QBS), a recently proposed variant of Borel spaces with a good structure for interpreting higher order probabilistic programs
    corecore