19,060 research outputs found

    Exploiting sparsity and sharing in probabilistic sensor data models

    Get PDF
    Probabilistic sensor models defined as dynamic Bayesian networks can possess an inherent sparsity that is not reflected in the structure of the network. Classical inference algorithms like variable elimination and junction tree propagation cannot exploit this sparsity. Also, they do not exploit the opportunities for sharing calculations among different time slices of the model. We show that, using a relational representation, inference expressions for these sensor models can be rewritten to make efficient use of sparsity and sharing

    Bayesian Logic Programs

    Full text link
    Bayesian networks provide an elegant formalism for representing and reasoning about uncertainty using probability theory. Theyare a probabilistic extension of propositional logic and, hence, inherit some of the limitations of propositional logic, such as the difficulties to represent objects and relations. We introduce a generalization of Bayesian networks, called Bayesian logic programs, to overcome these limitations. In order to represent objects and relations it combines Bayesian networks with definite clause logic by establishing a one-to-one mapping between ground atoms and random variables. We show that Bayesian logic programs combine the advantages of both definite clause logic and Bayesian networks. This includes the separation of quantitative and qualitative aspects of the model. Furthermore, Bayesian logic programs generalize both Bayesian networks as well as logic programs. So, many ideas developedComment: 52 page

    Nonparametric Bayes dynamic modeling of relational data

    Full text link
    Symmetric binary matrices representing relations among entities are commonly collected in many areas. Our focus is on dynamically evolving binary relational matrices, with interest being in inference on the relationship structure and prediction. We propose a nonparametric Bayesian dynamic model, which reduces dimensionality in characterizing the binary matrix through a lower-dimensional latent space representation, with the latent coordinates evolving in continuous time via Gaussian processes. By using a logistic mapping function from the probability matrix space to the latent relational space, we obtain a flexible and computational tractable formulation. Employing P\`olya-Gamma data augmentation, an efficient Gibbs sampler is developed for posterior computation, with the dimension of the latent space automatically inferred. We provide some theoretical results on flexibility of the model, and illustrate performance via simulation experiments. We also consider an application to co-movements in world financial markets

    Inference Optimization using Relational Algebra

    Get PDF
    Exact inference procedures in Bayesian networks can be expressed using relational algebra; this provides a common ground for optimizations from the AI and database communities. Specifically, the ability to accomodate sparse representations of probability distributions opens up the way to optimize for their cardinality instead of the dimensionality; we apply this in a sensor data model.\u

    Graphs in machine learning: an introduction

    Full text link
    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network i

    Bayesian dynamic financial networks with time-varying predictors

    Full text link
    We propose a Bayesian nonparametric model including time-varying predictors in dynamic network inference. The model is applied to infer the dependence structure among financial markets during the global financial crisis, estimating effects of verbal and material cooperation efforts. We interestingly learn contagion effects, with increasing influence of verbal relations during the financial crisis and opposite results during the United States housing bubble
    corecore