9,438 research outputs found

    Relational algebra operations and sizes of relations

    Get PDF

    The equational theory of the natural join and inner union is decidable

    Full text link
    The natural join and the inner union operations combine relations of a database. Tropashko and Spight [24] realized that these two operations are the meet and join operations in a class of lattices, known by now as the relational lattices. They proposed then lattice theory as an algebraic approach to the theory of databases, alternative to the relational algebra. Previous works [17, 22] proved that the quasiequational theory of these lattices-that is, the set of definite Horn sentences valid in all the relational lattices-is undecidable, even when the signature is restricted to the pure lattice signature. We prove here that the equational theory of relational lattices is decidable. That, is we provide an algorithm to decide if two lattice theoretic terms t, s are made equal under all intepretations in some relational lattice. We achieve this goal by showing that if an inclusion t ≤\le s fails in any of these lattices, then it fails in a relational lattice whose size is bound by a triple exponential function of the sizes of t and s.Comment: arXiv admin note: text overlap with arXiv:1607.0298

    On tractability and congruence distributivity

    Get PDF
    Constraint languages that arise from finite algebras have recently been the object of study, especially in connection with the Dichotomy Conjecture of Feder and Vardi. An important class of algebras are those that generate congruence distributive varieties and included among this class are lattices, and more generally, those algebras that have near-unanimity term operations. An algebra will generate a congruence distributive variety if and only if it has a sequence of ternary term operations, called Jonsson terms, that satisfy certain equations. We prove that constraint languages consisting of relations that are invariant under a short sequence of Jonsson terms are tractable by showing that such languages have bounded relational width

    Fast and Simple Relational Processing of Uncertain Data

    Full text link
    This paper introduces U-relations, a succinct and purely relational representation system for uncertain databases. U-relations support attribute-level uncertainty using vertical partitioning. If we consider positive relational algebra extended by an operation for computing possible answers, a query on the logical level can be translated into, and evaluated as, a single relational algebra query on the U-relation representation. The translation scheme essentially preserves the size of the query in terms of number of operations and, in particular, number of joins. Standard techniques employed in off-the-shelf relational database management systems are effective for optimizing and processing queries on U-relations. In our experiments we show that query evaluation on U-relations scales to large amounts of data with high degrees of uncertainty.Comment: 12 pages, 14 figure

    Formal Representation of the SS-DB Benchmark and Experimental Evaluation in EXTASCID

    Full text link
    Evaluating the performance of scientific data processing systems is a difficult task considering the plethora of application-specific solutions available in this landscape and the lack of a generally-accepted benchmark. The dual structure of scientific data coupled with the complex nature of processing complicate the evaluation procedure further. SS-DB is the first attempt to define a general benchmark for complex scientific processing over raw and derived data. It fails to draw sufficient attention though because of the ambiguous plain language specification and the extraordinary SciDB results. In this paper, we remedy the shortcomings of the original SS-DB specification by providing a formal representation in terms of ArrayQL algebra operators and ArrayQL/SciQL constructs. These are the first formal representations of the SS-DB benchmark. Starting from the formal representation, we give a reference implementation and present benchmark results in EXTASCID, a novel system for scientific data processing. EXTASCID is complete in providing native support both for array and relational data and extensible in executing any user code inside the system by the means of a configurable metaoperator. These features result in an order of magnitude improvement over SciDB at data loading, extracting derived data, and operations over derived data.Comment: 32 pages, 3 figure

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page

    Taylor's modularity conjecture and related problems for idempotent varieties

    Full text link
    We provide a partial result on Taylor's modularity conjecture, and several related problems. Namely, we show that the interpretability join of two idempotent varieties that are not congruence modular is not congruence modular either, and we prove an analogue for idempotent varieties with a cube term. Also, similar results are proved for linear varieties and the properties of congruence modularity, having a cube term, congruence nn-permutability for a fixed nn, and satisfying a non-trivial congruence identity.Comment: 27 page
    • …
    corecore