588 research outputs found

    Tissue Doppler imaging of carotid plaque wall motion: a pilot study

    Get PDF
    BACKGROUND: Studies suggest the physical and mechanical properties of vessel walls and plaque may be of clinical value in the diagnosis and treatment of cardiovascular atherosclerotic disease. The purpose of this pilot study was to investigate the potential clinical application of ultrasound Tissue Doppler Imaging (TDI) of Arterial Wall Motion (AWM) and to quantify simple wall motion indices in normal and diseased carotid arteries. METHODS: 224 normal and diseased carotid arteries (0–100% stenoses) were imaged in 126 patients (age 25–88 years, mean 68 ± 11). Longitudinal sections of the carotid bifurcation were imaged using a Philips HDI5000 scanner and L12-5 probe under optimized TDI settings. Temporal and spatial AWMs were analyzed to evaluate the vessel wall displacements and spatial gradients at peak systole averaged over 5 cardiac cycles. RESULTS: AWM data were successfully extracted in 91% of cases. Within the carotid bifurcation/plaque region, the maximum wall dilation at peak systole ranged from -100 to 750 microns, mean 335 ± 138 microns. Maximum wall dilation spatial gradients ranged 0–0.49, mean 0.14 ± 0.08. The AWM parameters showed a wide variation and had poor correlation with stenoses severity. Case studies illustrated a variety of pertinent qualitative and quantitative wall motion features related to the biophysics of arterial disease. CONCLUSION: Our clinical experience, using a challenging but realistic imaging protocol, suggests the use of simple quantitative AWM measures may have limitations due to high variability. Despite this, pertinent features of AWM in normal and diseased arteries demonstrate the potential clinical benefit of the biomechanical information provided by TDI

    Non-invasive ultrasound monitoring of regional carotid wall structure and deformation in atherosclerosis

    Get PDF
    Thesis (Ph. D.)--Harvard--Massachusetts Institute of Technology Division of Health Sciences and Technology, 2001.Includes bibliographical references (p. 223-242).Atherosclerosis is characterized by local remodeling of arterial structure and distensibility. Developing lesions either progress gradually to compromise tissue perfusion or rupture suddenly to cause catastrophic myocardial infarction or stroke. Reliable measurement of changes in arterial structure and composition is required for assessment of disease progression. Non-invasive carotid ultrasound can image the heterogeneity of wall structure and distensibility caused by atherosclerosis. However, this capability has not been utilized for clinical monitoring because of speckle noise and other artifacts. Clinical measures focus instead on average wall thickness and diameter distension in the distal common carotid to reduce sensitivity to noise. The goal of our research was to develop an effective system for reliable regional structure and deformation measurements since these are more sensitive indicators of disease progression. We constructed a system for freehand ultrasound scanning based on custom software which simultaneously acquires real-time image sequences and 3D frame localization data from an electromagnetic spatial localizer. With finite element modeling, we evaluated candidate measures of regional wall deformation.(cont.) Finally, we developed a multi-step scheme for robust estimation of local wall structure and deformation. This new strategy is based on a directionally-sensitive segmentation functional and a motion-region-of-interest constrained optical flow algorithm. We validated this estimator with simulated images and clinical ultrasound data. The results show structure estimates that are accurate and precise, with inter- and intra-observer reproducibility surpassing existing methods. Estimates of wall velocity and deformation likewise show good overall accuracy and precision. We present results from a proof-of-principle evaluation conducted in a pilot study of normal subjects and clinical patients. For one example, we demonstrate the combination of 2D image processing with 3D frame localization for visualization of the carotid volume. With slice localization, estimates of carotid wall structure and deformation can be derived for all axial positions along the carotid artery. The elements developed here provide the tools necessary for reliable quantification of regional wall structure and composition changes which result from atherosclerosis.by Raymond C. Chan.Ph.D

    Ultrafast Ultrasound Imaging

    Get PDF
    Among medical imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), ultrasound imaging stands out due to its temporal resolution. Owing to the nature of medical ultrasound imaging, it has been used for not only observation of the morphology of living organs but also functional imaging, such as blood flow imaging and evaluation of the cardiac function. Ultrafast ultrasound imaging, which has recently become widely available, significantly increases the opportunities for medical functional imaging. Ultrafast ultrasound imaging typically enables imaging frame-rates of up to ten thousand frames per second (fps). Due to the extremely high temporal resolution, this enables visualization of rapid dynamic responses of biological tissues, which cannot be observed and analyzed by conventional ultrasound imaging. This Special Issue includes various studies of improvements to the performance of ultrafast ultrasoun

    Atherosclerotic Plaque Characterization in Humans with Acoustic Radiation Force Impulse (ARFI) Imaging

    Get PDF
    Cardio- and cerebrovascular diseases (CVD) are among the leading causes of death and disability in the United States. A vast majority of heart attacks and strokes are linked to atherosclerosis; a condition characterized by inflammation and plaque accumulation in the arterial wall that can rupture and propagate an acute thrombotic event. Identification of plaques that are vulnerable to rupture is paramount to the prevention of heart attacks and strokes, but a noninvasive plaque characterization imaging technology that is cost-effective, safe, and accurate has remained elusive. The goal of this dissertation is to evaluate whether acoustic radiation force impulse (ARFI) imaging, an ultrasound-based elastography technique, can noninvasively characterize plaque components and identify features that have been shown to correlate with plaque vulnerability. Data are presented from preclinical studies, done in a porcine model of atherosclerosis, and clinical studies, performed in patients undergoing carotid endarterectomy (CEA), to demonstrate the sensitivity and specificity of ARFI for various plaque components. Additionally, the ability of ARFI to measure fibrous cap thickness is assessed with finite element method (FEM) modelling, and the limits of ARFI fibrous cap resolution are analyzed. Lastly, advanced ARFI-based plaque imaging methods are explored, including intravascular ARFI for coronary plaque characterization. Overall, these studies demonstrate that ARFI can delineate features consistent with vulnerable plaque in a clinical imaging context and suggest that ARFI has the potential to improve the current state of the art in atherosclerosis diagnostics.Doctor of Philosoph

    Carotid artery contrast enhanced ultrasound

    Get PDF
    • …
    corecore