164 research outputs found

    Ideal Membership Problem for Boolean Minority and Dual Discriminator

    Get PDF

    Computing isogenies between Jacobian of curves of genus 2 and 3

    Get PDF
    We present a quasi-linear algorithm to compute isogenies between Jacobians of curves of genus 2 and 3 starting from the equation of the curve and a maximal isotropic subgroup of the l-torsion, for l an odd prime number, generalizing the V\'elu's formula of genus 1. This work is based from the paper "Computing functions on Jacobians and their quotients" of Jean-Marc Couveignes and Tony Ezome. We improve their genus 2 case algorithm, generalize it for genus 3 hyperelliptic curves and introduce a way to deal with the genus 3 non-hyperelliptic case, using algebraic theta functions.Comment: 34 page

    On the hardness of the hidden subspaces problem with and without noise. Cryptanalysis of Aaronson-Christiano’s quantum money scheme

    Get PDF
    [ES] El boom de internet ha marcado el comienzo de la era digital y ésta ha traído consigo un desarrollo espectacular de las tecnologías de la información y de las comunicaciones, entre las que la criptografía es la reina. La criptografía de clave pública actual está basada principalmente en dos problemas que la comunidad criptográfica asume como difíciles: la factorización y el logaritmo discreto. Sin embargo, si se llegase a construir un computador cuántico lo suficientemente potente, esta dificultad no sería tal. Así pues, la computación cuántica pondría en un grave aprieto a la criptografía moderna y, puesto que la trayectoria reciente del campo sugiere que ésta podría convertirse en una realidad en un futuro no muy lejano, la comunidad criptográfica ha comenzado a explorar otras opciones para estar lista en caso de que se logre construir un computador cuántico eficiente. Esto ha dado un im- pulso a lo que se conoce como criptografía post-cuántica, aquella cuya dificultad no se vería afectada por este nuevo paradigma de computación y que está basada en los llamados problemas resistentes a la computación cuántica. La criptografía post-cuántica ha suscitado mucho interés recientemente y actualmente está en proceso de estandarización, por lo que en el momento de iniciar esta tesis resultaba relevante estudiar problemas supuestamente resistentes al computador cuántico. La parte central de esta tesis es el análisis de la dificultad del problema de los subespacios ocultos (HSP por sus siglas en inglés) y del problema de los subespacios ocultos con ruido (NHSP), dos problemas resistentes al computador cuántico según sus autores. Además de la relevancia que su supuesta resistencia a la computación cuántica les confiere, estos dos problemas son también importantes porque en su dificultad se sustenta la seguridad de las dos versiones del primer esquema de dinero cuántico de clave pública que cuenta con una prueba de seguridad. Este primer esquema es el de Aaronson-Christiano, que implementa dinero cuántico — un tipo de dinero que explota las leyes de la mecánica cuántica para crear dinero infalsificable — que cualquiera puede verificar. Los resultados obtenidos acerca de la dificultad del HSP y del NHSP tienen un impacto directo sobre la seguridad del esquema de Aaronson-Christiano, lo cual nos motivó a centrar esta tesis en estos dos problemas. El Capítulo 3 contiene nuestros resultados acerca del problema de los subespacios ocultos y está fundamentalmente basado en nuestro trabajo [Conde Pena et al.,2015]. Los autores del HSP lo definieron originalmente sobre el cuerpo binario, pero nosotros extendemos la definición a cualquier otro cuerpo finito de orden primo, siempre considerando que la instanciación es la que los autores proponen. Después de modelar el HSP con un sistema de ecuaciones con buenas propiedades, usamos técnicas de criptoanálisis algebraico para explorar el sistema en profundidad. Para el HSP sobre cualquier cuerpo que no sea el binario diseñamos un algoritmo que resuelve de manera eficiente instancias que satisfacen una cierta condición. Utilizando técnicas distintas, construimos un algoritmo heurístico, sustentado por argumentos teóricos, que resuelve eficientemente instancias del HSP sobre el cuerpo binario. Ambos algo-ritmos comprometen la dificultad del HSP siempre que las instancias del problema sean escogidas como Aaronson-Christiano proponen. Como consecuencia, nuestros algoritmos vulneran la seguridad de la versión del esquema sin ruido. El capítulo 4 contiene nuestros resultados acerca del problema de los subespacios ocultos con ruido y está fundamentalmente basado en nuestro trabajo [Conde Pena et al., 2018]. Al igual que con el HSP, extendemos la definición del NHSP a cualquier otro cuerpo de orden primo y consideramos instancias generadas como especifi- can Aaronson-Christiano. Mostramos que el NHSP se puede reducir al HSP sobre cualquier cuerpo primo que no sea el binario para ciertas instancias, mientras que el NHSP sobre el cuerpo binario se puede resolver con una probabilidad mayor de la asumida por los autores en la conjetura sobre la que la seguridad de su esquema con ruido se sustenta. Aunque nuestros resultados se obtienen desde un punto de vista puramente no cuántico, durante el desarrollo de esta tesis otro autor demostró que existe una reducción cuántica del NHSP al HSP también en el caso binario. Por tanto, la dificultad del NHSP y la seguridad del esquema de Aaronson-Christiano con ruido se han visto comprometidas por nuestros descubrimientos acerca del HSP

    Representations of fundamental groups of 3-manifolds into PGL(3,C): Exact computations in low complexity

    Full text link
    In this paper we are interested in computing representations of the fundamental group of a 3-manifold into PSL(3;C) (in particular in PSL(2;C); PSL(3;R) and PU(2; 1)). The representations are obtained by gluing decorated tetrahedra of flags. We list complete computations (giving 0-dimensional or 1-dimensional solution sets) for the first complete hyperbolic non-compact manifolds with finite volume which are obtained gluing less than three tetrahedra with a description of the computer methods used to find them

    Joint shape and motion estimation from echo-based sensor data

    Get PDF
    2018 Fall.Includes bibliographical references.Given a set of time-series data collected from echo-based ranging sensors, we study the problem of jointly estimating the shape and motion of the target under observation when the sensor positions are also unknown. Using an approach first described by Stuff et al., we model the target as a point configuration in Euclidean space and estimate geometric invariants of the configuration. The geometric invariants allow us to estimate the target shape, from which we can estimate the motion of the target relative to the sensor position. This work will unify the various geometric- invariant based shape and motion estimation literature under a common framework, and extend that framework to include results for passive, bistatic sensor systems

    Algorithmic Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper, we consider systems of algebraic and non-linear partial differential equations and inequations. We decompose these systems into so-called simple subsystems and thereby partition the set of solutions. For algebraic systems, simplicity means triangularity, square-freeness and non-vanishing initials. Differential simplicity extends algebraic simplicity with involutivity. We build upon the constructive ideas of J. M. Thomas and develop them into a new algorithm for disjoint decomposition. The given paper is a revised version of a previous paper and includes the proofs of correctness and termination of our decomposition algorithm. In addition, we illustrate the algorithm with further instructive examples and describe its Maple implementation together with an experimental comparison to some other triangular decomposition algorithms.Comment: arXiv admin note: substantial text overlap with arXiv:1008.376

    A new approach based on quadratic forms to attack the McEliece cryptosystem

    Full text link
    We bring in here a novel algebraic approach for attacking the McEliece cryptosystem. It consists in introducing a subspace of matrices representing quadratic forms. Those are associated with quadratic relationships for the component-wise product in the dual of the code used in the cryptosystem. Depending on the characteristic of the code field, this space of matrices consists only of symmetric matrices or skew-symmetric matrices. This matrix space is shown to contain unusually low-rank matrices (rank 22 or 33 depending on the characteristic) which reveal the secret polynomial structure of the code. Finding such matrices can then be used to recover the secret key of the scheme. We devise a dedicated approach in characteristic 22 consisting in using a Gr\"obner basis modeling that a skew-symmetric matrix is of rank 22. This allows to analyze the complexity of solving the corresponding algebraic system with Gr\"obner bases techniques. This computation behaves differently when applied to the skew-symmetric matrix space associated with a random code rather than with a Goppa or an alternant code. This gives a distinguisher of the latter code family. We give a bound on its complexity which turns out to interpolate nicely between polynomial and exponential depending on the code parameters. A distinguisher for alternant/Goppa codes was already known [FGO+11]. It is of polynomial complexity but works only in a narrow parameter regime. This new distinguisher is also polynomial for the parameter regime necessary for [FGO+11] but contrarily to the previous one is able to operate for virtually all code parameters relevant to cryptography. Moreover, we use this matrix space to find a polynomial time attack of the McEliece cryptosystem provided that the Goppa code is distinguishable by the method of [FGO+11] and its degree is less than q1q-1, where qq is the alphabet size of the code.Comment: 61 page
    corecore