48,034 research outputs found

    Gamow Shell Model Description of Weakly Bound Nuclei and Unbound Nuclear States

    Get PDF
    We present the study of weakly bound, neutron-rich nuclei using the nuclear shell model employing the complex Berggren ensemble representing the bound single-particle states, unbound Gamow states, and the non-resonant continuum. In the proposed Gamow Shell Model, the Hamiltonian consists of a one-body finite depth (Woods-Saxon) potential and a residual two-body interaction. We discuss the basic ingredients of the Gamow Shell Model. The formalism is illustrated by calculations involving {\it several} valence neutrons outside the double-magic core: 6−10^{6-10}He and 18−22^{18-22}O.Comment: 19 pages, 20 encapsulated PostScript figure

    Bound states of dipolar molecules studied with the Berggren expansion method

    Full text link
    Bound states of dipole-bound negative anions are studied by using a non-adiabatic pseudopotential method and the Berggren expansion involving bound states, decaying resonant states, and non-resonant scattering continuum. The method is benchmarked by using the traditional technique of direct integration of coupled channel equations. A good agreement between the two methods has been found for well-bound states. For weakly-bound subthreshold states with binding energies comparable with rotational energies of the anion, the direct integration approach breaks down and the Berggren expansion method becomes the tool of choice.Comment: 12 pages, 10 figure

    Casimir Energy of a BEC: From Moderate Interactions to the Ideal Gas

    Full text link
    Considering the Casimir effect due to phononic excitations of a weakly interacting dilute {BEC}, we derive a re-normalized expression for the zero temperature Casimir energy Ec\mathcal{E}_c of a {BEC} confined to a parallel plate geometry with periodic boundary conditions. Our expression is formally equivalent to the free energy of a bosonic field at finite temperature, with a nontrivial density of modes that we compute analytically. As a function of the interaction strength, Ec\mathcal{E}_c smoothly describes the transition from the weakly interacting Bogoliubov regime to the non-interacting ideal {BEC}. For the weakly interacting case, Ec\mathcal{E}_c reduces to leading order to the Casimir energy due to zero-point fluctuations of massless phonon modes. In the limit of an ideal Bose gas, our result correctly describes the Casimir energy going to zero.Comment: 12 pages, 3 figures, accepted for publication in JPA. New version with corrected typos and an additional appendi

    Low induction number, ground conductivity meters : a correction procedure in the absence of magnetic effects

    Get PDF
    Ground conductivity meters, comprising a variety of coil–coil configurations, are intended to operate within the limits provided by a low induction number (LIN), electromagnetic condition. They are now routinely used across a wide range of application areas and the measured apparent conductivity data may be spatially assembled and examined/correlated alongside information obtained from many other earth science, environmental, soil and land use assessments. The theoretical behaviour of the common systems is examined in relation to both the prevailing level of subsurface conductivity and the instrument elevation. It is demonstrated that, given the inherent high level of accuracy of modern instruments, the prevailing LIN condition may require operation in environments restricted to very low (< 12 mS/m) conductivities. Beyond this limit, non-linear departures from the apparent conductivity that would be associated with a LIN condition occur and are a function of the coil configuration, the instrument height and the prevailing conductivity. Using both theory and experimental data, it is demonstrated that this has the potential to provide biased and spatially distorted measurements. A simple correction procedure that can be applied to the measured data obtained from any of the LIN instruments is developed. The correction procedure would, in the limit of a uniform subsurface, return the same (correct) conductivity, irrespective of the ground conductivity meter used, the prevailing conductivity or the measurement height

    Quantal Two-Centre Coulomb Problem treated by means of the Phase-Integral Method I. General Theory

    Get PDF
    The present paper concerns the derivation of phase-integral quantization conditions for the two-centre Coulomb problem under the assumption that the two Coulomb centres are fixed. With this restriction we treat the general two-centre Coulomb problem according to the phase-integral method, in which one uses an {\it a priori} unspecified {\it base function}. We consider base functions containing three unspecified parameters C,C~C, \tilde C and Λ\Lambda. When the absolute value of the magnetic quantum number mm is not too small, it is most appropriate to choose Λ=∣m∣≠0\Lambda=|m|\ne 0. When, on the other hand, ∣m∣|m| is sufficiently small, it is most appropriate to choose Λ=0\Lambda = 0. Arbitrary-order phase-integral quantization conditions are obtained for these choices of Λ\Lambda. The parameters CC and C~\tilde C are determined from the requirement that the results of the first and the third order of the phase-integral approximation coincide, which makes the first-order approximation as good as possible. In order to make the paper to some extent self-contained, a short review of the phase-integral method is given in the Appendix.Comment: 23 pages, RevTeX, 4 EPS figures, submitted to J. Math. Phy

    Towards a Smart World: Hazard Levels for Monitoring of Autonomous Vehicles’ Swarms

    Get PDF
    This work explores the creation of quantifiable indices to monitor the safe operations and movement of families of autonomous vehicles (AV) in restricted highway-like environments. Specifically, this work will explore the creation of ad-hoc rules for monitoring lateral and longitudinal movement of multiple AVs based on behavior that mimics swarm and flock movement (or particle swarm motion). This exploratory work is sponsored by the Emerging Leader Seed grant program of the Mineta Transportation Institute and aims at investigating feasibility of adaptation of particle swarm motion to control families of autonomous vehicles. Specifically, it explores how particle swarm approaches can be augmented by setting safety thresholds and fail-safe mechanisms to avoid collisions in off-nominal situations. This concept leverages the integration of the notion of hazard and danger levels (i.e., measures of the “closeness” to a given accident scenario, typically used in robotics) with the concept of safety distance and separation/collision avoidance for ground vehicles. A draft of implementation of four hazard level functions indicates that safety thresholds can be set up to autonomously trigger lateral and longitudinal motion control based on three main rules respectively based on speed, heading, and braking distance to steer the vehicle and maintain separation/avoid collisions in families of autonomous vehicles. The concepts here presented can be used to set up a high-level framework for developing artificial intelligence algorithms that can serve as back-up to standard machine learning approaches for control and steering of autonomous vehicles. Although there are no constraints on the concept’s implementation, it is expected that this work would be most relevant for highly-automated Level 4 and Level 5 vehicles, capable of communicating with each other and in the presence of a monitoring ground control center for the operations of the swarm

    Quantum Spectral Curve and Structure Constants in N=4 SYM: Cusps in the Ladder Limit

    Get PDF
    We find a massive simplification in the non-perturbative expression for the structure constant of Wilson lines with 3 cusps when expressed in terms of the key Quantum Spectral Curve quantities, namely Q-functions. Our calculation is done for the configuration of 3 cusps lying in the same plane with arbitrary angles in the ladders limit. This provides strong evidence that the Quantum Spectral Curve is not only a highly efficient tool for finding the anomalous dimensions but also encodes correlation functions with all wrapping corrections taken into account to all orders in the `t Hooft coupling. We also show how to study the insertions of scalars coupled to the Wilson lines and extend our results for the spectrum and the structure constants to this case. We discuss an OPE expansion of two cusps in terms of these states. Our results give additional support to the Separation of Variables strategy in solving the planar N=4 SYM theory.Comment: v1: 62 pages, lots of pictures; v2: section 9 expanded; v3: typos fixe

    Multi-Instantons and Exact Results I: Conjectures, WKB Expansions, and Instanton Interactions

    Full text link
    We consider specific quantum mechanical model problems for which perturbation theory fails to explain physical properties like the eigenvalue spectrum even qualitatively, even if the asymptotic perturbation series is augmented by resummation prescriptions to "cure" the divergence in large orders of perturbation theory. Generalizations of perturbation theory are necessary which include instanton configurations, characterized by nonanalytic factors exp(-a/g) where a is a constant and g is the coupling. In the case of one-dimensional quantum mechanical potentials with two or more degenerate minima, the energy levels may be represented as an infinite sum of terms each of which involves a certain power of a nonanalytic factor and represents itself an infinite divergent series. We attempt to provide a unified representation of related derivations previously found scattered in the literature. For the considered quantum mechanical problems, we discuss the derivation of the instanton contributions from a semi-classical calculation of the corresponding partition function in the path integral formalism. We also explain the relation with the corresponding WKB expansion of the solutions of the Schroedinger equation, or alternatively of the Fredholm determinant det(H-E) (and some explicit calculations that verify this correspondence). We finally recall how these conjectures naturally emerge from a leading-order summation of multi-instanton contributions to the path integral representation of the partition function. The same strategy could result in new conjectures for problems where our present understanding is more limited.Comment: 66 pages, LaTeX; refs. to part II preprint update

    On the Relationship between Large Order Graphs and Instantons for the Double Well Oscillator

    Get PDF
    The double well oscillator is used as a QCD-like model for studying the relationship between large order graphs and the instanton-antiinstanton solution. We derive an equation for the perturbative coefficients of the ground state energy when the number of 3 and/or 4-vertices is fixed and large. These coefficients are determined in terms of an exact``bounce'' solution. When the number of 4-vertices is analytically continued to be near the negative of half the number of 3-vertices the bounce solution approaches the instanton-antiinstanton solution and detremines leading Borel singularity.Comment: 26 pages, Latex, 6 figures, 1 tabl
    • 

    corecore