115 research outputs found

    Metric Semantics and Full Abstractness for Action Refinement and Probabilistic Choice

    Get PDF
    This paper provides a case-study in the field of metric semantics for probabilistic programming. Both an operational and a denotational semantics are presented for an abstract process language L_pr, which features action refinement and probabilistic choice. The two models are constructed in the setting of complete ultrametric spaces, here based on probability measures of compact support over sequences of actions. It is shown that the standard toolkit for metric semantics works well in the probabilistic context of L_pr, e.g. in establishing the correctness of the denotational semantics with respect to the operational one. In addition, it is shown how the method of proving full abstraction --as proposed recently by the authors for a nondeterministic language with action refinement-- can be adapted to deal with the probabilistic language L_pr as well

    Formalization and Model Checking of BPMN Collaboration Diagrams with DD-LOTOS

    Get PDF
    Business Process Model and Notation (BPMN) is a standard graphical notation for modeling complex business processes. Given the importance of business processes, the modeling analysis and validation stage for BPMN is essential. In recent years, BPMN notation has become a widespread practice in business process modeling because of these intuitive diagrams. BPMN diagrams are built from basic elements. The major challenge of BPMN diagrams is the lack of formal semantics, which leads to several interpretations of the concerned diagrams. Hence, this work aims to propose an approach for checking BPMN collaboration diagrams to guarantee some properties of smooth functioning of systems modeled by BPMN notation. The verification approach used in this work is based on model checking techniques. The approach proposes as a first step a formal semantics of the collaboration diagrams in terms of the formal language DD-LOTOS, i.e., a phase of the transformation of collaboration diagrams into DD-LOTOS. This transformation is guided by applying the inference rules of the formal semantics of the DD-LOTOS formal language, and we then use the UPPAAL model checker to check the absence of deadlock, safety properties, and liveness properties

    Finitary Topos for Locally Finite, Causal and Quantal Vacuum Einstein Gravity

    Full text link
    Previous work on applications of Abstract Differential Geometry (ADG) to discrete Lorentzian quantum gravity is brought to its categorical climax by organizing the curved finitary spacetime sheaves of quantum causal sets involved therein, on which a finitary (:locally finite), singularity-free, background manifold independent and geometrically prequantized version of the gravitational vacuum Einstein field equations were seen to hold, into a topos structure. This topos is seen to be a finitary instance of both an elementary and a Grothendieck topos, generalizing in a differential geometric setting, as befits ADG, Sorkin's finitary substitutes of continuous spacetime topologies. The paper closes with a thorough discussion of four future routes we could take in order to further develop our topos-theoretic perspective on ADG-gravity along certain categorical trends in current quantum gravity research.Comment: 49 pages, latest updated version (errata corrected, references polished) Submitted to the International Journal of Theoretical Physic

    Graphical representation of covariant-contravariant modal formulae

    Get PDF
    Covariant-contravariant simulation is a combination of standard (covariant) simulation, its contravariant counterpart and bisimulation. We have previously studied its logical characterization by means of the covariant-contravariant modal logic. Moreover, we have investigated the relationships between this model and that of modal transition systems, where two kinds of transitions (the so-called may and must transitions) were combined in order to obtain a simple framework to express a notion of refinement over state-transition models. In a classic paper, Boudol and Larsen established a precise connection between the graphical approach, by means of modal transition systems, and the logical approach, based on Hennessy-Milner logic without negation, to system specification. They obtained a (graphical) representation theorem proving that a formula can be represented by a term if, and only if, it is consistent and prime. We show in this paper that the formulae from the covariant-contravariant modal logic that admit a "graphical" representation by means of processes, modulo the covariant-contravariant simulation preorder, are also the consistent and prime ones. In order to obtain the desired graphical representation result, we first restrict ourselves to the case of covariant-contravariant systems without bivariant actions. Bivariant actions can be incorporated later by means of an encoding that splits each bivariant action into its covariant and its contravariant parts.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Axioms for concurrency

    Get PDF

    Modal specification theories for component-based design

    Get PDF

    13th international workshop on expressiveness in concurrency

    Get PDF
    • ā€¦
    corecore