
CWI Tracts

Managing Editors

K.R. Apt (CWI, Amsterdam)

M. Hazewinkel (CWI, Amsterdam)

·· N.M. Temme (CWI, Amsterdam)

J.M. Schumacher (CWI, Amsterdam)

Executive Editor

M. Bakker (CWI Amsterdam, e-mail: Miente.Bakker@cwi.nl)

Editorial Board

W. Albers (Enschede)

P.C. Baayen (Amsterdam)

R.C. Backhouse (Eindhoven)

E.M. de Jager (Amsterdam)

M.A. Kaashoek (Amsterdam)

M.S. Keane (Amsterdam)

H. Kwakernaak (Enschede)

J. van Leeuwen (Utrecht)

P.W.H. Lemmens (Utrecht)

M. van der Put (Groningen)

M. Rem (Eindhoven)

H.J. Sips (Delft)

M.N. Spijker (Leiden)

H.C. Tijms (Amsterdam)

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Telephone + 31- 20 592 9333

Telefax+ 31- 20 592 4199

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science.

Comparative concurrency semantics
and refinement of actions

R.J. van Glabbeek

1991 Mathematics Subject Classification: 68Q55 (Semantics).
ISBN 90 6196 454 7
NUGl-code: 811

Copyright @1996, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Contents

Introduction
1. The linear time - branching time spectrum

1. Semantic equivalences on labelled transition systems
2. The semantic lattice
3. Complete axiomatizations

2. Modular specifications in process algebra - with curious queues
1. Module logic
2. Process algebra
3. Applications of the module approach in process algebra
4. Queues
5. A protocol verification
Appendix: Logics

3. Branching time and abstraction in bisimulation semantics
1. Branching and abstraction
2. Axioms
3. Branches and traces
4. Completeness proofs
5. Correspondence
6. Refinement
7. Divergence
8. Modal characterizations

4. Refinement of actions in causality based models
1. Refinement of actions in prime event structures
2. Refinement of actions in flow event structures
3. Configuration structures and refinement of actions
4. Refinement of transitions in Petri nets

5. Partial order semantics for refinement of actions - neither necessary

5
17

22
38
50

55
61
66
80
89

102
111

117
120
130
143
149
158
159
163
164

173
181
186
193
197

nor always sufficient but appropriate when used with care - 213
6. Equivalence notions for concurrent systems and refinement of actions 223

1. Interleaving semantics 225
2. Step semantics 227
3. 'Linear time' partial order semantics 230
4. 'Branching time' partial order semantics 231

7. The refinement theorem for ST-bisimulation semantics 243
1. Concurrent systems and refinement of actions 247
2. The behaviour of concurrent systems I 249
3. Equivalence notions for concurrent systems I 250
4. The behaviour of concurrent systems II 255
5. Equivalence notions for concurrent systems II 257
6. The refinement theorems 265

References 273

3

Acknowledgements

Jan Willem Klop has been an ideal supervisor for me. He was always ready to
discuss my work, but let me free to pursue my own goals in my own way. It
has been a great pleasure to have him as a supervisor.

I also like to express my gratitude to Jan Bergstra for initiating my employ
ment at CWI and organizing a very interesting scientific environment. More
over I appreciated the many discussions with him, in which he was always full
of ideas.

I benefited immensely from the collaboration with Frits Vaandrager. It is in
my opinion a rare privilege to discuss ones ideas at the time they are being
formed with someone able of grasping them in full and providing feedback.
With Frits I could discuss all my work in depth and he contributed numerous
useful ideas.

I thank Ursula Goltz for our fruitful cooperation since 1987. Our joint
work on action refinement forms an important constituent of this book. This
work was initiated by a discussion with Albert Meyer and Ernst-Rudiger
Olderog at ICALP 87 in Karlsruhe, to whom I also express my gratitude.

I am grateful to my colleagues Jos Baeten and Jan Friso Groote for our
pleasant collaboration and for their useful comments on earlier versions of
parts of this book.

Furthermore I gratefully acknowledge the discussions and correspondence
with Alex Rabinovich, Walter Vogler, Wolfgang Reisig, Vaughan Pratt, Tony
Hoare, Ilaria Castellani, Rocco De Nicola, Pierpaolo Degano, Ugo Montanari
and Gerard Boudol that contributed to the work reported in this book.

I thank the participants of the weekly Process Algebra Meetings (as far as
not mentioned already): Wiet Bouma, Jeroen Bruijning, Nicolien Drost, Henk
Goeman, Karst Koymans, Sjouke Mauw, Kees Middelburg, Hans Mulder,
Alban Ponse, Gerard Renardel de Lavalette, Piet Rodenburg, Gert V eltink, Jos
Vrancken, Fer-Jan de Vries, Peter Weijland, Freek Wiedijk and Han Zuidweg,
for numerous lively discussions and comments.

More in general, my years at the CWI Department of Software Technology,
headed by Jaco de Bakker, will remain a pleasant memory for its excellent
working conditions and friendly atmosphere.

It is a pleasure to thank Glynn Winskel for his kind willingness to referee
this book.

Finally, special thanks goes to Gertrud Jacobs for her careful preparation of
Chapters IV, V and VI of the original manuscript, and for being available
whenever she was needed.

4

Affiliations

Most of the work reported in this book was done when I was employed at the
Centre for Mathematics and Computer Science (CWI) in Amsterdam. The
manuscript was finalized during my employment at the Technical University of
Munich, Postfach 202420, D-8000 Miinchen 2. Chapter II is joint work with
Frits Vaandrager, and Chapter III with Peter Weijland, both affiliated with the
Centre for Mathematics and Computer Science. Chapters IV, V and VI are
joint work with Ursula Goltz, Gesellschaft fur Mathematik und Datenverar
beitung, Postfach 1240, D-5205 Sankt Augustin 1. My current affiliation is:
Computer Science Department, Stanford University, CA 94305, USA.

Support

The work reported in this book has been supported by ESPRIT project no.
432, An Integrated Formal Approach to Industrial Software Development
(METEOR) (Chapter II, III, V, VI), RACE project no. 1046, Specification and
Programming Environment for Communication Software (SPECS) (Chapter
II), ESPRIT Basic Research Action 3006, Theories of Concurrency:
Unification and Extension (CONCUR) (Chapter III), ESPRIT Basic Research
Action 3148, Design Methods Based on Nets (DEMON) (Introduction,
Chapter I, III, IV and VI) and Sonderforschungsbereich 342 of the TU
Miinchen (Introduction, Chapter I, III and VI). The work on this second edi
tion has been supported by ONR under grant number N00014-92-J-1974.
Chapter I was partly written in the preparation of a course Comparative Con
currency Semantics, given at the University of Amsterdam, spring 1988.

Prior Publications

The material presented in the seven chapters of this book can also be found in
[79, 92, 96, 86, 85, 87, 78] respectively. Furthermore Chapter II without Sections
4 and 5 appeared in the Ph.D. Thesis of Frits Vaandrager [171] and the first
two sections of Chapter III partly appeared in the Ph.D. Thesis of Peter Weij
land [182]. ·· Finally, Section 6 of Chapter III appeared as [95].

5

Introduction

1. Comparative concurrency semantics. This book is about comparative con
currency semantics.
. Concurrency is the study of concurrent systems. Often concurrency as area

of scientific research is located in computer science. In that case the systems
which are the subject of study are taken to be computers or computer pro
grams. However, much theory in the field of concurrency applies equally well
to other systems, like machines, elementary particles, protocols, networks of
falling dominoes or human beings. Concurrent or parallel systems - as opposed
to sequential systems - are systems capable of performing different activities at
the same time.

Semantics is the study of the meaning of words. In concurrency, one often
employs formal languages for the description of concurrent systems. These I
call system description languages. Like all formal languages, system description
languages are usually introduced to avoid the ambiguities of natural languages
and to gain accuracy of expression. Therefore their semantics tends to be
easier than the semantics of natural languages. Moreovei: the meaning of the
words in a formal language should to some extent be given by the one who
defines the language, rather than to be discovered by linguists.

Since system description languages tend to describe. abstractions of systems
rather than concrete systems, the meaning of an expression in a system
description language is in general given by an equivalence class of systems (i.e.
a class of systems which are considered to be equivalent on a chosen level of
abstraction). Thus the meaning of the entire language is determined by a par
tition of a set of systems into equivalence classes and an allocation of one such
equivalence class to each expression. For this reason it is convenient to divide
the semantics of system description languages into two subfields, namely the

6 Introduction

study of equivalence relations on sets of concurrent systems, and the study of
allocating equivalence classes to expressions in particular languages. The first
field deals with the establishment of criteria, determining when two systems are
sufficiently alike to be collected in the same equivalence class. It can be stu
died independently of a particular system description language. Therefore it
can be simply referred to as semantics of concurrent systems or concurrency
semantics for short.

In concurrency semantics a criterion, determining when two systems are
sufficiently alike to be collected in the same equivalence class, is called a
semantics, and the induced equivalence relation a semantic equivalence. In the
literature on concurrency semantics many semantics have been proposed and
most likely also a multitude of sensible semantics have never been proposed.
The classification of these semantics is called comparative concurrency semantics
and will be the primary subject of this book.

2. Design and verification. Much work in concurrency is motivated by an
interest in design problems for concurrent systems. A fruitful method to
design concurrent systems is by means of stepwise refinement. Here one starts
with a description SO of the system one has in mind. This initial description is
called a specification of the desired system. It abstracts from all the details of
the desired system that are not essential in its behaviour and leaves open many
design decisions that have to be taken later on. Then one starts refining the
specification by adding step for step the details one needs to know when the
system is going to be built. In this way one obtains a sequence

s0-s1- ··· ->Sn

of system descriptions of which the last one says exactly how the system will
look like. This final state in the design process describes the implementation of
the desired system.

Roughly one can distinguish two different kinds of refinement steps in such
a sequence of system descriptions. First of all there are steps in which infor
mation is added about what the system ought to do. These steps concern the
goal of the entire exercise and can therefore not be proven correct in terms of
this goal. Secondly there are steps that add information about how the system
is going to do it. It is one of the tasks of concurrency theory to prove the
correctness of such steps.

When considering only one step from a stepwise refinement sequence, the
left-hand side of this step is called specification and the right-hand side imple
mentation. Let S - I be a 'how' -step. The question is now to find criteria for
determining whether or not this step is correct. Here at least two situations
can be distinguished:
1. Although I describes much more activities of the desired system than S,

all these extra activities can be considered as internal actions in which the
user of the system is not interested. After abstraction from all these
details, I and S are equivalent according to some suitable semantic
equivalence.

7

2. Some choices about how the final system should behave, that were left
open in S, are resolved in I. Therefore I and S cannot be equivalent.
Here one needs a partial order between equivalence classes of concurrent
systems, specifying when one system is a correct implementation of the
other.

In order to tackle both cases one needs to define a suitable semantic
equivalence and a partial order on the equivalence classes. Together these
ingredients can be coded as a preorder, a reflexive and transitive relation, on
system descriptions.

In this book, for reasons of convenience, attention is restricted to
equivalences rather than arbitrary preorders. However, there exists a close
correspondence between semantic equivalences and preorders. Most semantic
equivalences are defined, or can be characterized, in terms of the properties
that are shared by equivalent systems. For each system p, a set of properties
O(p) is defined, such that two systems p and q are equivalent iff O(p) = O(q).
Often O (p) describes the observable behaviour of p according to some testing
scenario. Now a corresponding preorder ::S can be defined by p ::Sq iff
O(p) ~ O(q). Most preorders encountered in the literature on concurrency
are of that form. I expect that using this insight, much work on classifying
semantic equivalences can be generalized to preorders.

Above I argued that semantic equivalences (and preorders) can be relevant
for the design of concurrent systems. However, in fact they are more often
employed for verification purposes. In this case one is offered a specification
and an implementation of a certain system and is asked to determine if the
implementation is correct. In such applications the distance between the
specification and the implementation tends to be larger than in one step in a
design process. Therefore it is even more important to have solid criteria for
deciding on the correctness of the implementation.

When semantic equivalences are used in the design of concurrent systems, or
for verification purposes, they should be chosen in such a way that two system
descriptions are considered equivalent only if the described behaviours share
the properties that are essential in the context in which the system will be
embedded. It depends on this context and on the interests of a particular user
which properties are essential. Therefore it is not a task of concurrency
semantics to find the 'true' semantic equivalence, but rather to determine
which equivalence is suitable for which applications. It is the intention of this
book to carry out a bit of this task. In particular it addresses the question
which semantic equivalences are suitable for dealing with action refinement.

3. Refinement of actions. In this book concurrent systems are represented by
expressions in a system description language or by elements of some
mathematical model. The basic building blocks in the languages and models
that occur in this book are the actions which may be performed by a system.
By an action here any activity is understood which is considered as a concep
tual entity on a chosen level of abstraction. This allows design steps in which
actions are replaced by more complex system descriptions. Such a step in the

8 Introduction

design of a system is referred to as refinement of actions. This book deals with
uniform concurrency only, meaning that the actions are represented by uninter
preted symbols a,b,c, ... that are almost treated like variables. 1 In this context,
action refinement should be regarded as a design step that adds information
about what the system ought to do (a 'what'-step), at least if the refined
actions are not considered to be internal. Therefore the 'correctness' of such
refinement steps cannot be proven.2 However, the possibility of doing such
steps puts some restrictions on the kind of equivalences that can be used for
proving the correctness of 'how' -steps occurring in the same design process.

EXAMPLE: Consider the following specification of a concurrent system: 'The
actions a and b should in principle be performed independently on different
processors, but if one of the processors happens to be ready with a before the
other starts with b, b may also be executed on this processor instead of the
other one'. This system description is represented by the Petri net K below.

K L

An introduction to Petri nets and the way they model concurrent systems can
be found in REISIG [85] or PETERSON [148]

Suppose that someone comes up with an implementation in which first it is

1. In particular, the convention applies that different occurrences of the same action a are to be
refined in the same way. In other words, when the possibility exists that two activities in a
specification are going to be implemented differently, they should be given different names.
2. By no means I want to exclude the employment of action refinement as a "how'-step, admitting
correctness proofs. However, this requires the classification of the refined action as 'internal' and
falls outside the scope of this book. Doing so may also be a reason to give up the convention
adopted above. This would give rise to a completely different theory.

In RENSINK [158] a mode of action refinement is proposed that I would classify as a combined
'what'- and 'how'-step. Correctness proofs of the 'how'-component of such a refinement step are
possible, but relative to a preorder that is explicitly parametrized with the 'what'-component of the
refinement step.

9

determined whether the actions a and b will happen sequentially or indepen
dently, and subsequently one of these alternatives will take place, as
represented by the Petri net L. Although this implementation does not seem
very convincing, it will be considered 'correct' by many equivalences occurring
in the literature.

Let the next step in the design process consist of refining the action a in the
sequential composition of two actions a I and a 2 . From Lone thereby obtains
the net L' on the right.

K' L'

If L' is going to be placed in an environment where a 2 becomes causally
dependent on b - it may be the case that b is an output action, a 2 is an input
action, and the environment needs data from b in order to compute the data
that are requested by a 2 - then deadlock can occur. However, if the
refinement step splitting a in a I and a 2 is carried out on K already, the result
ing system K' is deadlock free in the environment sketched above.

Thus the possibility of refining a somehow invalidates the correctness of the
design step from K to L. □

A semantic equivalence is said to be preserved under refinement of actions if two
equivalent processes remain equivalent after replacing all occurrences of an
action a by a more complicated process r(a). The example above indicates
that for certain applications is may be fruitful to employ equivalences that are
preserved under refinement of actions. It is one of the topics of this book to
find out which equivalences have this property.

10 Introduction

4. About the contents of this book. This book consists of seven chapters which
are all based on separate papers and have their own introduction. This gen
eral introduction is only meant to give an indication of their contents and their
role in the book.

In the first chapter several semantic equivalences for concrete sequential sys
tems are presented, and motivated in terms of the observable behaviour of sys
tems, according to some testing scenario. Here concrete means that no internal
actions or internal choice are considered. These semantics are partially
ordered by the relation 'makes strictly more identifications than', thus consti
tuting a complete lattice. For ten of these semantic equivalences complete
axiomatizations are provided. As in the rest of my book, stochastic and real
time aspects of concurrent systems are completely neglected. Chapter I serves
partly to give an overview of the literature on semantic equivalences for con
crete sequential processes. The various notions that can be found elsewhere
can easily be compared, since they are all presented in the same style, and
using the same formalism. In order for the semantics of this chapter to be
applicable for design and verification purposes, they have to be generalized to
a setting with internal moves, and with parallelism. This can be done in many
ways. In the last two chapters the two extreme points on the semantic lattice,
trace semantics and bisimulation semantics, are generalized to a setting with
parallelism and in Chapter III, bisimulation semantics is generalized to a set
ting with internal moves.

In the second chapter it is shown how semantic notions can be used in pro
tocol verification and other applications. This chapter is entirely algebraic in
style and employs axiom systems of which only classes of models are con
sidered, rather than a particular model. It is based on the Algebra of Com
municating Processes of BERGSTRA & KLoP [25,28]. In order to combine
axiom systems representing semantic notions that are difficult to combine a
new notion of 'proof' is developed.

The third chapter is devoted to the generalization of bisimulation
equivalence to a setting with silent moves. It is argued that the solution of
MILNER [134] (observation equivalence) does not respect the branching struc
ture of processes and hence lacks an important feature of bisimulation seman
tics without internal moves. A finer equivalence is proposed which indeed
respects branching structure. This new branching bisimulation equivalence turns
out to have some practical advantages as well. In particular, we show that in a
setting without parallelism it is preserved under refinement of actions, whereas
observation equivalence is not.

In the fourth chapter an operator for refinement of actions is defined on
four causality based models for concurrent systems, namely on three kinds of
event structures and on Petri nets, and in the remaining three chapters it is
investigated which of the 'linear time' and 'branching time' semantic
equivalences proposed in the literature are preserved under refinement of
actions and which are not. Chapter V can be regarded as an informal sum
mary of the Chapters VI and VII. It uses Petri nets rather than event struc
tures and contains no technicalities like definitions and proofs. Instead more

11

attention has been paid to the examples.
All chapters in this book can be read independently, although for motiva

tion it may be helpful to read the introduction to Chapter IV before Chapters
V-VII, and depending on the taste of the reader it may be fruitful to consult
Chapter V before or simultaneously with the last two chapters. Furthermore
Chapter VI depends on Section 1 or 2 of Chapter IV. Conceptually Chapter
VII follows Chapter VI, and it recalls its results.

5. Results. The main new results contributed by this book and its constituent
papers are the following:
1. A short non-categorical proof showing that two processes are bisimulation

equivalent if and only if they have the same representation in Aczel's
universe of non-well-founded sets (Proposition 1.9 in Chapter I). This
result follows immediately from the categorical considerations in ACZEL
[7], but it is difficult to point out a precise spot in Aczel's text were this
result is obtained.

2. Basically all semantics for concrete sequential processes found in the
literature that can be defined uniformly in terms of action relations are
presented in a uniform framework and motivated in terms of testing
scenarios (Chapter I, Section 1).

3. These semantics are partially ordered with respect to their distinguishing
power. (Theorems 2.1 and 2.9 for finitely branching processes; Theorems
2.2 and 2.10 for infinitely branching processes.)

4. A complete axiomatization of completed trace equivalence on finite closed
process expressions (Theorem 3.1 in Chapter I).

5. Complete axiomatizations of simulation equivalence and ready simulation
equivalence on finite process expressions (Theorems 3.1 and 3.2).

6. The introduction of an algebraic specification technique with homomor
phism and subalgebra operators (Chapter II, Section 1).

7. A new logic with a new concept of proof for statements involving these
specifications (Chapter II, Section 1.8).

8. A concise overview of equational, conditional and first order logic
(Appendix to Chapter II).

9. A new formulation of the Recursive Specification Principle in ACP
(Theorem 2.8.2 in Chapter II) and more in general a concise presentation
of the module ACP# (Chapter II, Section 2).

10. The inconsistency of the law T4 ('r(Tx+y)=Tx+y) in combination with
ACP (Proposition 3.1.2.2). Equivalences in which this law is valid fail to
be congruences for the left-merge operator FOO of ACP.

11. The application of our module logic to combine the left-merge and T4 in
ACP verifications (Section 3.1 in Chapter II).

12. The application of our specification technique to express an associative
chaining operator in ACP# (Section 3.2 in Chapter II).

13. The specification of several types of (faulty) queues and bags using the
chaining operator, and the verification of their basic properties (Chapter
II, Section 4). Thanks to the parametrized nature of our specifications,

12 Introduction

many properties that we verified for the normal queue, can be inferred to
hold for the various faulty queues as well.

14. An example of a plausible identity concerning faulty queues that does not
hold in weak bisimulation semantics (Theorem 4.5.1). This identity can
be proved when the axiom T4 above is added to the axioms of weak
bisimulation semantics (Theorem 4.5.2).

15. A verification of the Concurrent Alternating Bit Protocol in no more than
5 pages (Chapter II, Section 5).

16. The observation that observation equivalence (weak bisimulation) does
not respect branching time (Introduction to Chapter III).

17. The introduction of branching bisimulation equivalence as an alternative
(Chapter III, Section 1).

18. The stuttering lemma (1.1) saying that all intermediate states on a -r-path
between two equivalent states are also equivalent with those states. This
lemma allows a simpler presentation of a branching bisimulation.

19. The classification of 11-bisimulation and delay bisimulation as two incom
parable notions between weak and branching bisimulation (Section 1).

20. The characterization of rooted weak bisimulation equivalence as the coar
sest congruence for + finer than weak bisimulation equivalence, provided
that there is at least one action different from -r (Theorem 2.4 in Chapter
III). The proof does not use the Fresh Atom Principle and is valid
independent of possible cardinality restrictions imposed on the space of
processes to which it applies. The same proof also applies to (rooted)
branching bisimulation, 11-bisimulation and delay bisimulation.

21. The introduction of coloured traces and consistent colourings, which show
how branching bisimulation equivalence preserves the branching structure
of processes (Section 3); the characterization of (rooted) branching
bisimulation equivalence as (rooted) coloured trace equivalence (Th. 3.2).

22. The characterization of branching bisimulation equivalence as hypertrace
equivalence (Theorem 3.3).

23. The definition of a unique normal form in every branching bisimulation
congruence class, which constitutes a minimal representation of branching
congruent processes (Section 3, end).

24. An explanation of the way in which deadlock and termination are treated
in Basic Process Algebra (BPA), the Calculus of Communicating Systems
(CCS) and the Algebra of Communicating Processes (ACP) (Section 2).

25. A complete axiomatization of branching bisimulation congruence on finite
closed process expressions. This is done for (essential parts of) BPA, CCS
as well as ACP (Sections 2 and 4).

26. Alternative completeness proofs for the known axiomatizations of weak,
11- and delay bisimulation congruence, based on a saturation technique
that reduces these congruences to branching congruence (Section 4, end).

'TX~ rb'TJ
27. A simple proof-rule ---- that converts a complete axiomatization of

x~bY
rooted branching bisimulation into one of unrooted branching

13

bisimulation equivalence (Theorem 2.15) .. Such a rule was known already
for weak bisimulation and also holds for delay and 11-bisimulation.

28. The discovery that for a large class of processes weak and branching
bisimulation coincide, and that, as far as we know, all protocols that have
been verified in weak bisimulation semantics are also valid in branching
bisimulation semantics (Section 5).

29. The observation that (rooted) weak bisimulation equivalence is not
preserved under refinement of actions, even if only sequential processes
without interleaving operators are considered (Section 6).

30. The result that for sequential processes branching bisimulation is
preserved under action refinement (Theorem 6.1).

31. A method for obtaining a refinement theorem (like the one mentioned
above) directly from the complete axiomatization of an equivalence.

32. The definition of branching bisimulation preorders and equivalences tak
ing divergence into account, analogous to the existing preorders and
equivalences for weak bisimulation; and similarly for 11- and delay bisimu
lation (Section 7).

33. A sketch of a testing scenario for branching bisimulation equivalence (Sec
tion 8, were also an overview of the work on modal characterizations for
branching bisimulation can be found). This result was added in this
second edition of my book.

34. A list of 11 arguments for choosing branching bisimulation semantics in
verifications and other applications of concurrency theory:
1. Verifications in branching bisimulation semantics are sound indepen

dent of your notion of observable behaviour.
2. No coarser semantics (like weak bisimulation) has this property.
3. In abstract interleaving semantics no finer notion of bisimulation is

suitable.
4. There is a reasonable operator for which branching bisimulation is a

congruence and weak bisimulation or coarser notions are not. On the
other hand no examples testifying for the opposite are known.

5. Branching bisimulation equivalence is the only known equivalence in
the linear time - branching time spectrum that supports an 'eventu
ally' operator as part of a temporal logic on transition systems. It
even supports all the operators of CTL • and corresponds with
stuttering equivalence of kripke structures. .

6. There are practical applications in which weak bisimulation poses a
problem that can be solved by moving to branching bisimulation.
No applications have been found in which the reverse holds.

7. Branching bisimulation equivalence has a lower complexity than any
other abstract semantic equivalence used in concurrency theory.

8. Branching bisimulation is preserved under action refinement, whereas
weak bisimulation is not.

9. Branching congruence has a very appealing complete axiomatization
10. and better term rewriting properties than other (abstract) bisimulations.
11. And it has a nice characterization as buck-and-forth bisimulation.

14 Introduction

(Conclusion to Chapter III; arguments 2, 3, 4 and 6b were added in the
second edition; arguments Sb, 7, 11 and part of 4 depend on work by oth
ers).

35. An illustration of how action refinement can be used in the top-down
design of concurrent systems (Introduction to Chapter IV).

36. An argument against the use of forgetful refinements (refining an action
by the empty process, implemented by erasure) for this purpose (ibidem).

37. The definition of an operator on prime event structures for refinement of
actions by non-empty, finite, conflict-free processes (Section 1). It is esta
blished that this operator is well-defined up to isomorphism (Prop. 1.5)
and compositional w.r.t. configuration semantics (Proposition 1.7).

38. The observation that prime event structures are less suitable for
refinement by conflicting or infinite behaviours (Section I).

39. The modelling of deadlock behaviour and sequential composition of flow
event structures (Section 2).

40. The definition of an operator for general action refinement on flow event
structures, generalizing the one we had on prime event structures (Section
2). It is established that this operator is well-defined up to isomorphism
(Prop. 2.7) and compositional w.r.t. configuration semantics (Prop. 2.8).

41. The introduction of configuration structures as a model for concurrency
(Section 3). They are essentially just Winskel's families of configurations
of general event structures. The new name merely reflects our opinion that
they form a pleasant model of concurrency even without considering event
structures.

42. The observation that the infinite configurations in configuration structures
(or families of configurations) are redundant, and can better be left out.

43. The definition of an operator for action refinement on configuration struc
tures (Section 3). It is established that this operator is well-defined up to
isomorphism (Proposition 3.7) and for deadlock-free refinements agrees
with the one on flow event structures (Theorem 3.8).

44. A construction for refinement of transitions in Petri nets, generalizing
similar constructions proposed earlier (Section 4). For occurrence nets we
establish that the construction is consistent with our operator for action
refinement on prime event structures (Theorem 4.18).

45. We show that several prospective generalizations of our approach do not
work.

46. The comparison of our notion of transition refinement with the notions of
(vicinity respecting) net morphism and quotient (Section 4).

47. An example showing that preservation of semantic equivalence of
processes under action refinement can be a useful property in applications
(this introduction).

48. Counterexamples showing that, besides the interleaving equivalences, also
none of the known step equivalences is preserved under action refinement
(Chapter V and Section 2 of Chapter VI).

49. A formal proof that linear time partial order semantics is preserved under
action refinement (Section 3 of Chapter VI).

15

50. Counterexamples showing that pomset bisimulation equivalence, general
ized pomset bisimulation equivalence, NMS partial ordering equivalence,
and a combination of those, are not preserved under refinement of actions
(Chapter V and Section 4 of Chapter VI).

51. The discovery that NMS partial ordering equivalence is incomparable
with pomset bisimulation equivalence, and the proposal of a modification
of this equivalence, which we call history preserving bisimulation
equivalence, that is finer then both, and still satisfies the absorption laws
(Section 4.2 of Chapter VI). This notion was earlier proposed in a
different model as behavior structure equivalence. We argue that it is the
coarsest equivalence that models the interplay of causality and branching
in full detail (Conclusion to Chapter VI).

52. The result that history preserving bisimulation is preserved under action
refinement (Section 4.2 of Chapter VI).

53. The result that for systems without autoconcurrency history preserving
bisimulation and NMS partial ordering equivalence coincide (ibidem).

54. An example strongly suggesting that history preserving bisimulation is not
the coarsest equivalence refining pomset bisimulation and being preserved
under action refinement (Conclusion to Chapter VI).

55. An overview of equivalence notions for concurrent systems (Chapters V,
VI and especially VII).

56. The introduction of ST-configurations to model the global state of an
event structure, just as ST-markings modal the global state of a Petri net.
I argue that when actions are allowed to have duration, they do so better
than ordinary markings or configurations (Chapter VII, Section 4).

57. Several characterizations of ST-trace and ST-bisimulation equivalence on
event structures (Section 5). ST-bisimulation had already been defined on
Petri nets, and ST-trace equivalence is obtained as its linear time variant.

58. The results that ST-trace and ST-bisimulation equivalence are preserved
under refinement of actions (Section 6). It follows that partial order
semantics is not needed for dealing with action refinement (Chapters V
and VII).

59. An example showing that ST-bisimulation is not preserved under forgetful
refinement (Conclusion to Chapter VII).

60. The conjecture that ST-bisimulation is the coarsest equivalence contained
in bisimulation equivalence, and similarly ST-trace the coarsest in trace
equivalence, that is preserved under action refinement. Also the main idea
for the proof is provided (ibidem).

6. Introduction to the second edition. This second edition contains the same
material as the first edition. In addition a large amount of follow-up work is
discussed and referenced.

16

Chapter I

The Linear Time - Branching Time Spectrum

Rob van Glabbeek

In this chapter various semantics in the linear time - branching time spectrum
are presented in a uniform, model-independent way. Restricted to the domain
of finitely branching, concrete, sequential processes, only twelve of them turn
out to be different, and most semantics found in the literature that can be
defined uniformly in terms of action relations coincide with one of these twelve.
Several testing scenarios, motivating these semantics, are presented, phrased
in terms of 'button pushing experiments' on generative and reactive machines.
Finally ten of these semantics are applied to a simple language for finite, con
crete, sequential, nondeterministic processes, and for each of them a complete
axiomatization is provided.

TABLE OF CONTENTS

Introduction
1. Semantic equivalences on labelled transition systems
2. The semantic lattice
3. Complete axiomatizations
Concluding remarks

INTRODUCTION

17

17
22
38
50
52

Process theory. A process is the behaviour of a system. The system can be a
machine, an elementary particle, a communication protocol, a network of fal
ling dominoes, a chess player, or any other system. Proce~s theory is the study
of processes. Two main activities of process theory are modelling and
verification. Modelling is the activity of representing processes, mostly as ele
ments of a mathematical domain or as expressions in a system description
language. Verification is the activity of proving statements about processes, for
instance that the actual behaviour of a system is equal to its intended
behaviour. Of course, this is only possible if a criterion has been defined,
determining whether or not two processes are equal, i.e. two systems behave
similarly. Such a criterion constitutes the semantics of a process theory. (To
be precise, it constitutes the semantics of the equality concept employed in a
process theory.) Which aspects of the behaviour of a system are of importance

18 I. The linear time - branching time spectrum

to a certain user depends on the environment in which the system will be run
ning, and on the interests of the particular user. Therefore it is not a task of
process theory to find the 'true' semantics of processes, but rather to determine
which process semantics is suitable for which applications.

Comparative concurrency semantics. This book aims at the classification of pro
cess semantics. 1 The set of possible process semantics can be partially ordered
by the relation 'makes strictly more identifications on processes than', thereby
becoming a complete lattice2 . Now the classification of some useful process
semantics can be facilitated by drawing parts of this lattice and locating the
positions of some interesting process semantics, found in the literature. Furth
ermore the ideas involved in the construction of these semantics can be unrav
eled and combined in new compositions, thereby creating an abundance of
new process semantics. These semantics will, by their intermediate positions in
the semantic lattice, shed light on the differences and similarities of the esta
blished ones. Sometimes they also turn out to be interesting in their own
right. Finally the semantic lattice serves as a map on which it can be indicated
which semantics satisfy certain desirable properties, and are suited for a partic
ular class of applications.

Most semantic notions encountered in contemporary process theory can be
classified along four different lines, corresponding with four different kinds of
identifications. First there is the dichotomy of linear time versus branching
time: to what extent should one identify processes differing only in the branch
ing structure of their execution paths? Secondly there is the dichotomy of
interleaving semantics versus partial order semantics: to what extent should
one identify processes differing only in the causal dependencies between their
actions (while agreeing on the possible orders of execution)? Thirdly one
encounters different treatments of abstraction from internal actions in a pro
cess: to what extent should one identify processes differing only in their inter
nal or silent actions? And fourthly there are different approaches to infinity:
to what extent should one identify processes differing only in their infinite
behaviour? These considerations give rise to a four dimensional representation
of the proposed semantic lattice.

However, at least three more dimensions can be distinguished. In this book,
stochastic and real-time aspects of processes are completely neglected. Furth
ermore it deals with uniform concurrency3 only. This means that processes are
studied, performing actions4 a,b,c, ... which are not subject to further investiga
tions. So it remains unspecified if these actions are in fact assignments to vari
ables or the falling of dominoes or other actions. If also the options are con
sidered of modelling (to a certain degree) the stochastic and real-time aspects
of processes and the operational behaviour of the elementary actions, three
more parameters in the classification emerge.

1. This field of research is called comparative concurrency semantics, a terminology first used by
MEYER in [132).
2. The supremum of a set of process semantics is the semantics identifying two processes whenev-

Introduction 19

Process domains. In order to be able to reason about processes in a mathemat
ical way, it is common practice to represent processes as elements of a
mathematical domain. Such a domain is called a process domain. The relation
between the domain and the world of real processes is mostly stated infor
mally. The semantics of a process theory can be modelled as an equivalence
on a process domain, called a semantic equivalence. In the literature one finds
among others:

graph domains, in which a process is represented as a process graph, or
state transition diagram,
net domains, in which a process is represented as a (labelled) Petri net,
event structure domains, in which a process is represented as a (labelled)
event structure,
explicit domains, in which a process is represented as a mathematically
coded set of its properties,
projective limit domains, which are obtained as projective limits of series of
finite term domains,
and term domains, in which a process is represented as a term in a system
description language.

Action relations. Write p ~ q if the process p can evolve into the process q,
while performing the action a. The binary predicates ~ are called action
relations. The semantic equivalences which are treated in this chapter will be
defined entirely in terms of action relations. Hence these definitions apply to
any process domain on which action relations are defined. Furthermore they
will be defined uniformly in terms of action relations, meaning that all actions
are treated in the same way. For reasons of convenience, even the usual dis
tinction between internal and external actions is dropped in this chapter.

Finitely branching, concrete, sequential processes. Being a first step, this chapter
limits itself to a very simple class of processes. First of all only sequential
processes are investigated: processes capable of performing at most one action
at a time. Moreover the main interest is in finitely branching processes:
processes having in each state only finitely many possible ways to proceed.
Finally, instead of dropping the usual distinction between internal and external
actions, one can equivalently maintain to study concrete processes in which no
internal actions occur (and also no internal choices as in CSP [116)). For this
simple class of processes, when considering only semantic equivalences that
can be defined uniformly in terms of action relations, the announced semantic
lattice collapses in six out of seven dimensions and covers only the linear time
- branching time spectrum.

Literature. In the literature on uniform concurrency 11 semantics can be
found, which are uniformly definable in terms of action relations and different
on the domain of finitely branching, sequential processes (see Figure 1). The
coarsest one (i.e. the semantics making the most identifications) is trace seman
tics, as presented in HOARE [115]. In trace semantics only partial traces are

er they are identified by every semantics in this set.
3. The term uniform concurrency is employed by DE BAKKER et al [19).

20 I. The linear time - branching time spectrum

bisimulation semantics

j
2-nested simulation semantics

j
ready simulation semantics

po,,;b/c-fatures semanhcs j
ready trace semantics

/~
readiness semantics failure trace semantics

~ / ,;ma/ot;on semonhc,

failure semantics

j
completed trace semantics

j
trace semantics

FIGURE I. The linear time - branching time spectrum

employed. The finest one (making less identifications than any of the others)
is bisimulation semantics, as presented in MILNER [136]. Bisimulation seman
tics is the standard semantics for the system description language CCS
(MILNER [134]). The notion of bisimulation was introduced in PARK [145].
Bisimulation equivalence is a refinement of observational equivalence, as

4. Strictly speaking processes do not perform actions, but systems do. However, for reasons of
convenience, this book sometimes uses the word process, when actually referring to a system of

Introduction 21

introduced by HENNESSY & MILNER in [111]. On the domain of finitely
branching, concrete, sequential processes, both equivalences coincide. Also the
semantics of DE BAKKER & ZUCKER, presented in [20], coincides with bisimu
lation semantics on this domain. Then there are nine semantics in between.
First of all a variant of trace semantics can be obtained by using complete
traces besides (or instead of) partial ones. In this chapter it is called completed
trace semantics. Failure semantics is introduced in BROOKES, HOARE & RoscoE
[42], and used in the construction of a model for the system description
language CSP (HOARE [114, 116]). It is finer than completed trace semantics.
The semantics based on testing equivalences, as developed in DE NICOLA &
HENNESSY [64], coincides with failure semantics on the domain of finitely
branching, concrete, sequential processes, as do the semantics of KENNA w A Y
[121] and DARONDEAU [52]. This has been established in DE NICOLA [63]. In
OLDEROG & HOARE [144] readiness semantics is presented, which is slightly
finer than failure semantics. Between readiness and bisimulation semantics
one finds ready trace semantics, as introduced independently in PNUELI [152]
(there called barbed semantics), BAETEN, BERGSTRA & KLOP [14] and POMELLO
[153] (under the name exhibited behaviour semantics). The natural completion
of the square, suggested by failure, readiness and ready trace semantics yields
failure trace semantics. For finitely branching processes this is the same as
refusal semantics, introduced in PHILLIPS [150]. Simulation equivalence, based
on the classical notion of simulation (see e.g. PARK [145]), is independent of the
last five semantics. Ready simulation semantics was introduced in BLOOM,
IsTRAIL & MEYER [35] under the name GSOS trace congruence. It is finer than
ready trace as well as simulation equivalence. In LARSEN & SKOV [128] a more
operational characterization of this equivalence was given under the name ½
bisimulation equivalence. This characterization resembles the one used in this
chapter. Finally 2-nested simulation equivalence, introduced in GROOTE &
V AANDRAGER [l 07], is located between ready simulation and bisimulation
equivalence, and possiblejutures semantics, as proposed in ROUNDS & BROOKES
[159], can be positioned between 2-nested simulation and readiness semantics.
Among the semantics which are not definable in terms of action relations and
thus fall outside the scope of this chapter, one finds semantics that take sto
chastic properties of processes into account, as in VAN GLABBEEK, SMOLKA,
STEFFEN & TOFTS [90] and semantics that make almost no identifications and
are hardly used for system verification.

About the contents. In the first section of this chapter all semantics are defined,
and motivated by several testing scenarios, which are phrased in terms of but
ton pushing experiments. In Section 2 the semantics are partially ordered by
the relation 'makes at least as many identifications as'. This yields the
infinitary linear time - branching time spectrum. Counterexamples are pro
vided, showing that on a graph domain this ordering cannot be further
expanded. However, for deterministic processes the spectrum collapses, as was
first observed by PARK [145]. Finally, in Section 3, ten of these semantics are
applied to a simple language for finite, concrete, sequential, nondeterministic

which the process is the behaviour.

22 I. The linear time - branching time spectrum

processes, and for each of them a complete axiomatization is provided.

1. SEMANTIC EQUIVALENCES ON LABELLED TRANSITION SYSTEMS

I.I. Labelled transition systems. In this book processes will be investigated,
that are capable of performing actions from a given set Act. By an action any
activity is understood that is considered as a conceptual entity on a chosen
level of abstraction. Actions may be instantaneous or durational and are not
required to terminate, but in a finite time only finitely many actions can be
carried out. Any activity of an investigated process should be part of some
action a EAct performed by the process. Different activities that are indistin
guishable on the chosen level of abstraction are interpreted as occurrences of
the same action a EAct.

A process is sequential if it can perform at most one action at the same time.
In this chapter only sequential processes will be considered. A domain of
sequential processes can often be conveniently represented as a labelled transi
tion system. This is a domain A on which infix written binary predicates

~ are defined for each action a EA ct. The elements of A represent

processes, and p ~ q means that p can start performing the action a and
after completion of this action reach a state where q is its remaining behaviour.

In a labelled transition system it may happen that p ~ q and p ~ r for
different actions a and b or different processes p and q. This phenomena is
called branching. It need not be specified how the choice between the alterna
tives is made, or whether a probability distribution can be attached to it.

NOTATION: For any alphabet L, let L• be the set of strings over L. Write E for
the empty string, ap for the concatenation of a and pEL*, and a for the string,
consisting of the single symbol a EL.

DEFINITION: A labelled transition system is a pair (A,-) with A a class and

- t:;;; A XAct X A, such that for p EA and a EA ct the class { q EA Jp ➔ q} is
a set.

Let for the remainder of this section (A,-) be a labelled transition system,

ranged over by p,q,r, Write p ~ q for (p,a,q)E-. The binary predicates

~ are called action relations.

DEFINITIONS (Remark that the following concepts are defined in terms of
action relations only):

The generalized action relations ➔ for aEAct* are defined inductively
by:

1. Semantic equivalences on labelled transition systems 23

1. p ➔ p, for any process p.

2. (p,a,q)E- with aEAct impliesp ~ q with aEAct*.

3. p ➔ q 4 r implies p !!4 r.

In words: the generalized action relations ➔ are the reflexive and tran

sitive closure of the ordinary action relations ~ . p ➔ q means that p
can evolve into q, while performing the sequence a of actions. Remark

that the overloading of the notion p ~ q is quite harmless.
The set of initial actions of a process p is defined by:

I(p)={a EAct \ 3q: p ~ q}.

A process p EA is finitely branching if for each q EA with p ➔ q for

someaEAct*, the set {(a,r)\q ~ r, aEAct, rEA} is finite.

In the following, several semantic equivalences on A will be defined in terms
of action relations. Most of these equivalences can be motivated by the
observable behaviour of processes, according to some testing scenario. (Two
processes are equivalent if they allow the same set of possible observations,
possibly in response on certain experiments.) I will try to capture these
motivations in terms of button pushing experiments (cf. MILNER [134], pp. 10-
12).

1.2. Trace semantics. aEAct* is a trace of a process p, if there is a process q,
(J

such that p ➔ q. Let T(p) denote the set of traces of p. Two processes p
and q are trace equivalent if T(p)=T(q). In trace semantics two processes are
identified iff they are trace equivalent.

Trace semantics is based on the idea that two processes are to be identified
if they allow the same set of observations, where an observation simply con
sists of a sequence of actions performed by the process in succession.

1.3. Completed trace semantics. aEAct* is a complete trace of a process p, if

there is a process q, such thatp ➔ q and I(q)= 0. Let CT(p) denote the set
of complete traces of p. Two processes p and q are completed trace equivalent if
T(p)=T(q) and CT(p)=CT(q). In completed trace semantics two processes
are identified iff they are completed trace equivalent.

Completed trace semantics can be explained with the following (rather
trivial) completed trace machine. The process is modelled as a black box that
contains as its interface to the outside world a display on which the name of
the action is shown that is currently carried out by the process. The process
autonomously choses an execution path that is consistent with its position in
the labelled transition system (A,-). During this execution always an action
name is visible on the display. As soon as no further action can be carried
out, the process reaches a state of deadlock and the display becomes empty.
Now the existence of an observer is assumed that watches the display and

24 I. The linear time - branching time spectrum

FIGURE 2. The completed trace machine

records the sequence of actions displayed during a run of the process, possibly
followed by deadlock. It is assumed that an observation takes only a finite
amount of time and may be terminated before the process stagnates. Two
processes are identified if they allow the same set of observations in this sense.

The trace machine can be regarded as a simpler version of the completed
trace machine, were the last action name remains visible in the display if
deadlock occurs (unless deadlock occurs in the beginning already). On this
machine traces can be recorded, but stagnation can not be detected, since in
case of deadlock the observer may think that the last action is still continuing.

1.4. Failure semantics. The failure machine contains as its interface to the out
side world not only the display of the completed trace machine, but also a
switch for each action a EAct (as in Figure 3).

a b z

FIGURE 3. The failure trace machine

By means of these switches the observer may determine which actions are free
and which are blocked. This situation may be changed any time during a run
of the process. As before, the process autonomously choses an execution path
that fits with its position in (A, ➔), but this time the process may only start
the execution of free actions. If the process reaches a state where all initial
actions of its remaining behaviour are blocked, it can not proceed and the

1. Semantic equivalences on labelled transition systems 25

machine stagnates, which can be recognized from the empty display. In this
case the observer may record that after a certain sequence of actions a, the set
X of free actions is refused by the process. X is therefore called a refusal set
and <a,X> a failure pair. The set of all failure pairs of a process is called its
failure set, and constitutes its observable behaviour.

DEFINITION: <a,X > EA ct• X '8'(Act) is a failure pair of a process p, if there is

a process q, such that p ~ q and / (q) n X = 0 . Let F (p) denote the set of
failure pairs of p. Two processes p and q are failure equivalent if F (p) = F (q).
In failure semantics two processes are identified iff they are failure equivalent.

This version of failure semantics is taken from HOARE [116). In BROOKES,
HOARE & RoscoE [42), where failure semantics was introduced, the refusal sets
are required to be finite. It is not difficult to see that for finitely branching
processes the two versions yield the same failure equivalence. In fact this fol
lows immediately from the following proposition, that says that, for finitely
branching processes, the failure pairs with infinite refusal set are completely
determined by the ones with finite refusal set.

PROPOSITION 1.1: Let p EAandaET(p). Put Cont(a)= {a EAct I aa ET(p)}.
i. Then, for Xc;Act, <a,X>EF(p) ~ <a,XnCont(a)>EF(p).
ii. If pis finitely branching then Cont(a) is finite.
PROOF: Straightforward. □

In DE NICOLA [63) several equivalences, that were proposed in KENNAWAY
[121), DARONDEAU [52) and DE NICOLA & HENNESSY [64), are shown to coin
cide with failure semantics on the domain of finitely branching transition sys
tems without internal moves. For this purpose he uses the following alterna
tive characterization of failure equivalence.

DEFINITION: Write p after a MUST X if for each q EA with p ~ q there is

an rEA and a EX such that q 4 r. Putpc:=q if for all aEAct* and Xc;Act:
p after a MUST X ~ q after a MUST X.

PROPOSITION 1.2: Let p,qEA. Then pc:=q ~ F(p)=F(q).
PROOF: p after a MUST X ~ (a,X)!l.F(p) [63). □

In HENNESSY [108), a model for nondeterministic behaviours is proposed in
which a process is represented as an acceptance tree. An acceptance tree of a
finitely branching process p without internal moves or internal nondeterminism
can be represented as the set of all pairs <a,X>EAct*X'8'(Act) for which

there is a process q, such that p ~ q and Xc;I(q). It follows that for such
processes acceptance tree equivalence coincides with failure equivalence.

26 I. The linear time - branching time spectrum

1.5. Failure trace semantics. The failure trace machine has the same layout as
the failure machine, but is does not stagnate permanently if the process cannot
proceed due to the circumstance that all actions it is prepared to continue with
are blocked by the observer. Instead it idles - recognizable from the empty
display - until the observer changes its mind and allows one of the actions the
process is ready to perform. What can be observed are traces with idle periods
in between, and for each such period the set of actions that are not blocked by
the observer. Such observations can be coded as sequences of members and
subsets of Act.

EXAMPLE: The sequence {a,b}cdb{b,c}{b,c,d}a(Act) is the account of the
following observation: At the beginning of the execution of the process p, only
the actions a and b were allowed by the observer. Apparently, these actions
were not on the menu of p, for p started with an idle period. Suddenly the
observer canceled its veto on c, and this resulted in the execution of c, fol
lowed by d and b. Then again an idle period occurred, this time when b and c

were the actions not being blocked by the observer. After a while the observer
decided to allow d as well, but the process ignored this gesture and remained
idle. Only when the observer gave the green light for the action a, it happened
immediately. Finally, the process became idle once more, but this time not
even one action was blocked. This made the observer realize that a state of
eternal stagnation had been reached, and disappointed he terminated the
observation.

A set X <_:Act, occurring in such a sequence, can be regarded as an offer
from the environment, that is refused by the process. Therefore such a set is
called a refusal set. The occurrence of a refusal set may be interpreted as a
'failure' of the environment to create a situation in which the process can
proceed without being disturbed. Hence a sequence over Act U <:P(Act), result
ing from an observation of a process p may be called a failure trace of p. The
observable behaviour of a process, according to this testing scenario, is given
by the set of its failure traces, its failure trace set. The semantics in which
processes are identified iff their failure trace sets coincide, is called failure trace
semantics.

DEFINITIONS:

The refusal relations 4 for X<_:Act are defined by: p 4 q iff p =q
and I (p) n X = 0 .

p 4 q means that p can evolve into q, while being idle during a period
in which Xis the set of actions allowed by the environment.

The failure trace relations ➔ for aE(Act U<:P(Act))* are defined as the
reflexive and transitive closure of both the action and the refusal relations.
Again the overloading of notation is harmless.
aE(Act U<:P(Act))* is a failure trace of a process p, if there is a process q,

such that p ➔ q. Let FT(p) denote the set of failure traces of p. Two
processes p and q are failure trace equivalent if FT (p) = FT (q).

1. Semantic equivalences on labelled transition systems 27

EXERCISES:

I. Explain why a { a, b }a can never be a failure trace of a process p EA.
2. Can { a }b and { b }a be two failure traces of such a process? And a { a }b

and a{b }a?
3. {a,b}cc, {a}c{b}c, {b}c{a}c, c{a,b}c, c{a}{b}c and care failure traces

of a process p EA. Which selections from this series provide the same
information about p?

1.6. Ready trace semantics. The Ready trace machine is a variant of the failure
trace machine that is equipped with a lamp for each action a EAct.

' I / ' I / ' I /

-0- -0- -0-
/ I ' / I ' , I '

Q-7 ~ ~ ~

a b z

FIGURE 4. The ready trace machine

Each time the process idles, the lamps of all actions the process is ready to
engage in are lit. Of course all these actions are blocked by the observer, oth
erwise the process wouldn't idle. Now the observer can see which actions
could be released in order to let the process proceed. During the execution of
an action no lamps are lit. An observation now consists of a sequence of
members and subsets of Act, the actions representing information obtained
from the display, and the sets of actions representing information obtained
from the lights. Such a sequence is called a ready trace of the process, and the
subsets occurring in a ready trace are referred to as menus. The information
about the free and blocked actions is now redundant. The set of all ready
traces of a process is called its ready trace set, and constitutes its observable
behaviour.

DEFINITIONS:

The ready trace relations ~ for aE(Act U 01(Act))* are defined by:
(

1. p tt p, for any process p.

2. p ~ q implies p ~ q.

3. p h qwithX~Actwheneverp=qandl(p)=X.

4. p ~ q ~ r implies p ~ r.

28 I. The linear time - branching time spectrum

The special arrow B had to be used, since further overloading of ~
would cause confusion with the failure trace relations.
aE(Act U <:P(Act))* is a ready trace of a process p, if there is a process q,

such that p B q. Let RT(p) denote the set of ready traces of p. Two
processes p and q are ready trace equivalent if RT(p)=RT(q). In ready
trace semantics two processes are identified iff they are ready trace
equivalent.

In BAETEN, BERGSTRA & KLor [14], PNUELI [152] and POMELLO [153] ready
trace semantics was defined slightly differently. By the proposition below,
their definition yields the same equivalence as mine.

DEFINITION: X 0a 1X 1a 2 · · • a11 X 11 E<:P(Act)X(ActX<:P(Act))* is a normal ready
trace of a process p, if there are processes p 1, • • • ,p,, such that

a I 02 an
p ~P1 ~ · · · ::.:~Pn and I(p;)=X; for i = 1, · · · ,n. Let RTN(p) denote
the set of normal ready traces of p. Two processes p and q are ready trace
equivalent in the sense of [14,152,153] if RTN(p)=RTN(q).

PROPOSITION 1.3: Letp,qEA. Then RTN(p)=RTN(q) ~ RT(p)=RT(q).
PROOF: The normal ready traces of a process are just the ready traces which
are an alternating sequence of sets and actions, and vice versa the set of all
ready traces can be constructed form the set of normal ready traces by means
of doubling and leaving out menus. □

I. 7. Readiness semantics. The readiness machine has the same layout as the
ready trace machine, but, like the failure machine, can not recover from an
idle period. By means of the lights the menu of initial actions of the remain
ing behaviour of an idle process can be recorded, but this happens at most
once during an observation of a process, namely at the end. An observation
either results in a trace of the process, or in a pair of a trace and a menu of
actions by which the observation could have been extended if the observer
wouldn't have blocked them. Such a pair is called a ready pair of the process,
and the set of all ready pairs of a process is its ready set.

DEFINITION: <a,X> EAct* X<:P(Act) is a ready pair of a process p, if there is a

process q, such that p ~ q and I(q)=X. Let R(p) denote the set of ready
pairs of p. Two processes p and q are ready equivalent if R(p)=R(q). In
readiness semantics two processes are identified iff they are ready equivalent.

Two preliminary versions of readiness semantics were proposed in ROUNDS &

1. Semantic equivalences on labelled transition systems 29

BROOKES [159]. In possiblefutures semantics the menu consists of the entire
trace set of remaining behaviour of an idle process, instead of only the set of
its initial actions; in acceptance-refusal semantics a menu may be any finite
subset of initial actions, while also the finite refusal sets of Subsection 1.4 are
observable.

DEFINITION: <a,X> EAct* X'!I'(Act*) is a possiblefuture of a process p, if

there is a process q, such thatp ➔ q and T(q)=X. Let PF(p) denote the set
of possible futures of p. Two processes p and q are possiblefutures equivalent if
PF(p)=PF(q).

DEFINITION: <a,X, Y > EA ct* X 0'(Act) X 0'(Act) is a acceptance-refusal triple of

a process p, if X and Y are finite and there is a process q, such that p ➔ q,
Xr;;;,_J(q) and Ynl(q)= 0. Let AR(p) denote the set of acceptance-refusal tri
ples of p. Two processes p and q are acceptance-refusal equivalent if
AR(p)=AR(q).

It is not difficult to see that for finitely branching processes acceptance-refusal
equivalence coincides with readiness equivalence: <a,X> is a ready pair of a
process p iff p has an acceptance-refusal triple <a,X, Y> with
XU Y=Cont(a) (as defined in the proof of Proposition 1.1).

1.8. Infinite observations. All testing scenarios up till now assumed that an
observation takes only a finite amount of time. However, they can be easily
adapted in order to take infinite behaviours into account.

DEFINITION:

For any alphabet L, let Lw be the set of infinite sequences over L.
a 1a 2 • • • EActw is an infinite trace of a process pEA, if there are

a1 a2
processes p 1 ,p 2 , · • · such that p ➔ p 1 ➔ · · · . Let Tw (p) denote the
set of infinite traces of p.
Two processes p and q are infinitary trace equivalent if T (p) = T (q) and
Tw(p)= Tw(q).
p and q are infinitary completed trace equivalent if CT (p) = CT (q) and
Tw(p)=Tw(q). Note that in this case also T(p)=T(q).
p and q are infinitary failure equivalent if F (p) = F (q) and Tw (p) = Tw (q).
p and q are infinitary ready equivalent if R (p) = R (q) and Tw (p) = Tw (q).
Infinitary failure traces and infinitary ready traces aE(Act U 0'(Act)t and
the corresponding sets FTw(p) and RTw(p) are defined in the obvious
way. Two processes p and q are infinitary failure trace equivalent if
FTw(p)=FTw(q), and likewise for infinitary ready trace equivalence.

With Konigs lemma one easily proves that for finitely branching processes all
infinitary equivalences coincide with the corresponding finitary ones.

30 /. The linear time - branching time spectrum

1.9. Simulation semantics. The testing scenario for finitary simulation seman
tics resembles that for trace semantics, but in addition the observer is, at any
time during a run of the investigated process, capable of making arbitrary (but
finitely) many copies of the process in its present state and observe them
independently. Thus an observation yields a tree rather than a sequence of
actions. Such a tree can be coded as an expression in a simple modal
language.

DEFINITIONS:
The set fs of simulation formulas over Act is defined inductively by:
I. TEf8 .

2. If </>,ipEfs then <J>/\it,Ef8 .

3. If </>Efs and a EAct then a</>Efs.
The satisfaction relation I= c;;; AX fs is defined inductively by:
1. p I= T for all p EA.
2. p l=</>/\ip if p I=</> and p l=ip.

3. p1=a<J>ifforsomeqEA:p ~ qandql=</>.
Let S • (p) denote the set of all simulation formula that are satisfied by the
process p:
s*(p)={</>Efs IP I=</>}. Two processes p and q are finitary simulation
equivalent if s*(p)=S*(q).

The following concept of simulation, occurs frequently in the literature (see e.g.
PARK [145]). The derived notion of simulation equivalence coincides with
finitary simulation equivalence for finitely branching processes.

DEFINITION: A simulation is a binary relation R on processes, satisfying, for
a EA ct:

ifpRq andp ~ p', then 3q': q ~ q' andp'Rq'.
Process p can be simulated by q, notation s St, if there is a simulation R with
pRq.
p and q are similar, notation p ~q, if p Sq and q SP·

PROPOSITION 1.4: Similarity is an equivalence on the domain of processes.
PROOF: It has to be checked that p SP, and p Sq & q Sr ~ p Sq.

The identity relation is a simulation with pRp.
If R is a simulation with pRq and S is a simulation with qSr, then the
relation R 0 S, defined by x (R 0 S)z iff 3y : xRy & ySz, is a simulation with
p~~~ □

Hence the relation will be called simulation equivalence.

PROPOSITION 1.5: Let p,q EA be finitely branching processes. Then
p~q ~ S*(p)=S*(q).
PROOF: See HENNESSY & MILNER [112]. □

1. Semantic equivalences on labelled transition systems 31

The testing scenario for simulation semantics differs from that for finitary
simulation semantics, in that both the duration of observations and the
amount of copies that can be made each time are not required to be finite.

I.JO. Ready simulation semantics. Of course one can also combine the copying
facility with any of the other testing scenarios. The observer can then plan
experiments on one of the generative machines from the Subsections 1.3 to 1.7
together with a duplicator, an ingenious device by which one can duplicate the
machine whenever and as often as one wants. In order to represent observa
tions, the modal language from the previous subsection needs to be slightly
extended.

DEFINITIONS:

The completed simulation formulas and the corresponding satisfaction rela
tion are defined by means of the extra clauses:
4. OEtcs-
4. pFO if J(p)= 0.
For the failure simulation formulas one needs:
4. If X CAct then X Etps-
4. p F X if I (p) n X = 0 .
For the ready simulation formulas:
4. If X CAct then X EtRs-
4. pFXif l(p)=X.
For the failure trace simulation formulas:
4. If cpEtFTs and X CAct then XcpEtFTs-
4. p F X cp if I (p) n X = 0 and p F cp.
And for the ready trace simulation formulas:
4. If cpEtRTs and X CAct then XcpEtRTS·
4. p F X cp if I (p) = X and p F cp.

Note that traces, complete traces, failure pairs, etc. can be obtained as the
corresponding kind of simulation formulas without the operator /\.

By means of the formulas defined above one can define the finitary versions of
completed simulation equivalence, ready simulation equivalence, etc. It is obvious
that failure trace simulation equivalence coincides with failure simulation
equivalence and ready trace simulation equivalence with ready simulation
equivalence (p F X cp ~ p F X /\cp). Also it is not difficult to see that for finitely
branching processes1 failure simulation equivalence and ready simulation
equivalence coincide. So for finitely branching processes two different
equivalences remain, the finitary versions of which coincide with the following
infinitary versions.

I. My thanks to PH. ScHNOEBELEN [163] for pointing out that this cannot be said for infinitely
branching processes, as mistakenly done in the original version of this book.

32 I. The linear time - branching time spectrum

DEFINITION: A complete simulation is a binary relation R on processes, satisfy
ing, for a EAct:

ifpRq andp ~ p', then 3q': q ~ q' andp'Rq';
ifpRq then l(p)= 0 ~ I(q)= 0.

Two processes p and q are completed simulation equivalent if there exists a com
plete simulation R with pRq and a complete simulation S with qSp.

DEFINITION: A ready simulation is a binary relation R on processes, satisfying,
for aEAct:

ifpRq andp ~ p', then 3q': q ~ q' andp'Rq';
if pRq then I(p)=I(q).

Two processes p and q are ready simulation equivalent if there exists a ready
simulation R with pRq and a ready simulation S with qSp.

Failure simulation equivalence can be defined analogously, and, unlike its
finitary version, is easily seen to coincide with ready simulation equivalence.

An alternative and maybe more natural testing scenario for finitary ready
simulation semantics (or simulation semantics) can be obtained by exchanging
the duplicator for an undo-button on the (ready) trace machine (Figure 5).

' I , ' I , ' I ,

-0- -0- -0-
, I ' / I ' / I '

□ ~ ~ ~ @

a b z undo

FIGURE 5. The ready simulation machine

It is assumed that all intermediate states that are past through during a run of
a process are stored in a memory inside the black box. Now pressing the
undo-button causes the machine to shift one state backwards. In case the but
ton is pressed during the execution of an action, this execution will be inter
rupted and the process assumes the state just before this action began. In the
initial state pressing the button has no effect. An observation now consists of
a (ready) trace, enriched with undo-actions. Such observations can easily be
translated in (ready) simulation formulas.

1. Semantic equivalences on labelled transition systems 33

1.11. Refusal (simulation) semantics. In the testing scenarios presented so far, a
process is considered to perform actions and make choices autonomously. The
investigated behaviours can therefore be classified as generative processes. The
observer merely restricts the spontaneous behaviour of the generative machine
by cutting off some possible courses of action. An alternative view of the
investigated processes can be obtained by considering them to react on stimuli
from the environment and be passive otherwise. Reactive machines can be
obtained out of the generative machines presented so far by replacing the
switches by buttons and the display by a green light.

' I / ' I , ' I /

-0- -0- -0-
/ I ' / I ' / I '

'
I /

@) @) @) -0- @)
/

I '
a b z undo

FIGURE 6. The reactive ready simulation machine

Initially the process waits patiently until the observer tries to press one of the
buttons. If the observer tries to press an a-button, the machine can react in
two different ways: if the process can not start with an a-action the button will
not go down and the observer may try another one; if the process can start
with an a-action it will do so and the button goes down. Furthermore the
green light switches on. During the execution of a no buttons can be pressed.
As soon as the execution of a is completed the light switches off, so that the
observer knows that the process is ready for a new trial. Reactive machines as
described above originate from MILNER [134, 135].

Next I will discuss the equivalences that originate from the various reactive
machines. First consider the reactive machine that resembles the failure trace
machine, thus without menu-lights and undo-button. An observation on such
a machine consists of a sequence of accepted and refused actions. Such a
sequence can be modelled as a failure trace where all refusal sets are single
tons. For finitely branching processes the resulting equivalence is exactly the
equivalence that originates from PHILLIPS notion of refusal testing [150]. There
it is called refusal equivalence. The following proposition shows that for
finitely branching processes refusal equivalence coincides with failure
equivalence.

34 I. The linear time - branching time spectrum

PROPOSITION 1.6: Let p EA\, aEFT(p) and Cont(a)= { a EAct I aa EFT(p)}.
1. Then, for X~Act, aXpEFT(p) ~ a(XnCont(a))pEFT(p).
ii. If pis finitely branching then Cont(a) is finite.
111. a(XU Y)pEFT(p) ~ aXYpEFT(p).
PROOF: Straightforward. □

If the menu-lights are added to the reactive failure trace machine considered
above one can observe ready trace sets, and the green light is redundant. If
the green light (as well as the menu-lights) are removed one can only test trace
equivalence, since any refusal may be caused by the last action not being ready
yet. Reactive machines seem to be unsuited for testing completed trace and
failure equivalence. If the menu-lights and the undo-button are added to the
reactive failure trace machine one gets ready simulation again and if only the
undo-button is added one obtains an equivalence that may be called refusal
simulation equivalence and coincides with ready simulation equivalence on the
domain of finitely branching processes. The following refusal simulation formu
las originate from BLOOM, ISTRAIL & MEYER [35].

DEFINITION: The refusal simulation formulas and the corresponding satisfaction
relation are defined by adding to the definitions of Subsection 1.9 the follow
ing extra clauses:
4. If a EAct then -,a Efcs-
4. p t=-,a if a <ii (p).

An alternative family of testing scenarios with reactive machines can be
obtained by allowing the observer to try to depress more than one button at a
time. In order to influence a particular choice, the observer could already start
exercising pressure on buttons during the execution of the preceding action
(when no button can go down). When this preceding action is finished, at
most one of the buttons will go down. These testing scenarios are equipotent
with the generative ones: putting pressure on a button is equivalent to setting
the corresponding switch on 'free'.

1.12. 2-nested simulation semantics. 2-nested simulation equivalence popped up
naturally in GROOTE & VAANDRAGER [107] as the coarsest congruence with
respect to a large and general class of operators that is finer than completed
trace equivalence. In order to obtain a testing scenario for this equivalence
one has to introduce the rather unnatural notion of a lookahead [107]: The 2-
nested simulation machine is a variant of the ready trace machine with duplica
tor, where in an idle state the machine not only tells which actions are on the
menu, but even which simulation formulas are satisfied in the current state.

DEFINITION: A 2-nested simulation is a simulation contained in simulation
equivalence (~). p and q are 2-nested simulation equivalent if there exists a 2-
nested simulation R with pRq and a 2-nested simulation S with qSp.

1. Semantic equivalences on labelled transition systems 35

1.13. Bisimulation semantics. The testing scenario for bisimulation semantics,
as presented in MILNER [134] is the oldest and most powerful testing scenario,
from which most others have been derived by omitting some of its features. It
was based on a reactive failure trace machine with duplicator, but additionally
the observer is equipped with the capacity of global testing. Global testing is
described in ABRAMSKY [l] as: "the ability to enumerate all (of finitely many)
possible 'operating environments' at each stage of the test, so as to guarantee
that all nondeterministic branches will be pursued by various copies of the
subject process". MILNER [134] implemented global testing by assuming that
(i) It is the weather which determines in each state which a-move will occur

in response of pressing the a-button (if the process under investigation is
capable of doing an a-move at all);

(ii) The weather has only finitely many states - at least as far as choice-
resolution is concerned;

(iii) We can control the weather.
Now it can be ensured that all possible moves a process can perform in reac
tion on an a-experiment will be investigated by simply performing the experi
ment in all possible weather conditions. Unfortunately, as remarked in
MILNER [135], the second assumption implies that the amount of different a
moves an investigated process can perform is bounded by the number of possi
ble weather conditions; so for general application this condition has to be
relaxed.

A different implementation of global testing is given in LARSEN & SKou
[128]. They assumed that every transition in a transition system has a certain
probability of being taken. Therefore an observer can with an arbitrary high
degree of confidence assume that all transitions have been examined, simply by
repeating an experiment many times.

As argued among others in BLOOM, ISTRAIL & MEYER [35], global testing in
the above sense is a rather unrealistic testing ability. Once you assume that
the observer is really as powerful as in the described scenarios, in fact more
can be tested then only bisimulation equivalence: in the testing scenario of
Milner also the correlation between weather conditions and transitions being
taken by the investigated process can be recovered, and in that of Larsen &
Skou one can determine the relative probabilities of the various transitions.

An observation in the global testing scenario can be represented as a for
mula in Hennessy-Milner logic [111] (HML). An HML formula is a simulation
formula in which it is possible to indicate that certain branches are not
present.

DEFINITION: The HMLjormulas and the corresponding satisfaction relation
are defined by adding to the definitions in Subsection 1.9 the clauses:
4. If </>Ee then --,<j>Ee.
4. p 1= --,<j> if p 'F </>.
Let HML(p) denote the set of all HML-formula that are satisfied by the pro
cess p: HML(p)={</>Eelpi=</>}. Two processesp and q are HML-equivalent if
HML(p)=HML(q).

36 I. The linear time - branching time spectrum

For finitely branching processes HENNESSY & MILNER [111] provided the fol
lowing characterization of this equivalence.

DEFINITION: Let p,q EA be finitely branching processes. Then:
p ~o q is always true.
p ~n+I q if for all aEAct:

p ~ p' implies 3q': q ~ q' and p' ~n q';

q ~ q' implies 3p': p ~ p' and p' ~n q'.
p and q are observational equivalent, notation p ~ q, if p~nq for every
nE~.

PROPOSITION 1.7: Let p,q EA be finitely branching processes. Then
p ~ q ~ HML(p)=HML(q).
PROOF: In HENNESSY & MILNER [112]. □

As observed by PARK [145], for finitely branching processes observation
equivalence can be reformulated as bisimulation equivalence.

DEFINITION: A bisimulation is a binary relation R on processes, satisfying, for
aEAct:

ifpRq andp ~ p', then 3q': q ~ q' andp'Rq';

if pRq and q ~ q', then 3p': p ~ p' and p'Rq'.
Two processes p and q are bisimilar, notation p ':::i' q, if there exists a bisimula
tion R with pRq.

The relation ':::i' is again a bisimulation. As for similarity, one easily checks
that bisimilarity is an equivalence on A. Hence the relation will be called
bisimulation equivalence. Finally note that the concept of bisimulation does

a
not change if in the definition above the action relations ~ were replaced

by generalized action relations ~ .

PROPOSITION 1.8: Let p,qEA be finitely branching processes. Then
p':::i'q ~ p~q.
PROOF: "~": Straightforward with induction. "<==" follows from Theorem 5.6
in MILNER [134]. □

For infinitely branching processes is coarser then ':::i' and will be called
finitary bisimulation equivalence.

Another characterization of bisimulation semantics can be given by means
of AczEL's universe 'Y of non-well-founded sets [7]. This universe is an exten
sion of the Von Neumann universe of well-founded sets, where the axiom of
foundation (every chain x O 3 x 1 3 · · · terminates) is replaced by an anti
foundation axiom.

1. Semantic equivalences on labelled transition systems 3 7

DEFINITION: Let B denote the unique function 0?>:A-'V" satisfying

'iB(p)= { <a, 'J?>(q)> IP ~ q} for all p EA. Two processes p and q are
branching equivalent if B (p) = B (q).

It follows from Aczel's anti-foundation axiom that such a solution exists. In
fact the axiom amounts to saying that systems of equations like the one above
have unique solutions. In [7] there is also a section on communicating sys
tems. There two processes are identified iff they are branching equivalent.

A similar idea underlies the semantics of DE BAKKER & ZUCKER [20], but
there the domain of processes is a complete metric space and the definition of
B above only works for finitely branching processes, and only if = is inter
preted as isometry, rather then equality, in order to stay in well-founded set
theory. For finitely branching processes the semantics of De Bakker and
Zucker coincides with the one of Aczel and also with bisimulation semantics.
This is observed in VAN GLABBEEK & RUTTEN [89], where also a proof can be
found of the next proposition, saying that bisimulation equivalence coincides
with branching equivalence.

PROPOSITION 1.9: Let p,qEA. Then p ~q ¢c} B(p)=B(q).
PROOF: "<=". Let B be the relation, defined by pBq iff B(p)=B(q), then it

suffices to prove that B is a bisimulation. Suppose pBq and p ~ p'. Then
<a,B(p')>EB(p)=B(q). So by the definition of B(q) there must be a pro-

cess q' with B(p')=B(q') and q ~ q'. Hence p'Bq', which had to be proved.
The second requirement for B being a bisimulation follows by symmetry.
"~"- Lets• denote the unique solution of

<iB'(p)={<a, 'J?>*(r')>j3r: r~p & r ~ r'}.

As for Bit follows from the anti-foundation axiom that such a unique solution
exists. From the symmetry and transitivity of ~ it follows that

(*)

Hence it remains to be proven that B* =B. This can be done by showing that

B* satisfies the equations 'iB(p)={<a, 'J?>(q)>lp ~ q}, which have Bas
unique solution. So it has to be established that

B*(p)={ <a, B'(q)> IP~ q}. The direction "-:2" follows directly from the
reflexivity of ~- For "<;;_", suppose <a,X>EB*(p). Then 3r: r~p,

r ~ r' and X=B*(r'). Since~ is a bisimulation, 3p':p ~ p' and r'~p'.
Now from (*) it follows that X = B • (r') = B • (p'). Therefore

<a,X> E{ <a, B'(q)> IP ~ q}, which had to be established. □

38 I. The linear time - branching time spectrum

2. THE SEMANTIC LATTICE

2.1. Ordering the equivalences for finitely branching processes. In Section 1
twelve semantics were defined that are different for finitely branching
processes. These will be abbreviated by T, CT, F, R, FT, RT, S, CS, RS, PF,
2S and B. Write~ ~ '5" if semantics~ makes at least as much identifications
as semantics '5". This is the case if the equivalence corresponding with gj is
equal to or coarser than the one corresponding with '5".

THEOREM 2.1: T ~CT~ F ~ R ~ RT, F ~FT~ RT~ RS~ 2S ~ B,
T ~ S ~CS~ RS, CT~ CS and R ~PF~ 2S.

PRooF: The first statement is trivial. For the next five statements it suffices to
show that CT(p) can be expressed in terms of F(p), F(p) in terms of R(p),
R(p) in terms of RT(p), F(p) in terms of FT(p) and FT(p) in terms of RT(p).

CT(p)={uEAct* I <u,Act>EF(p)}.
<u,X>EF(p) # 3Y~Act: <u,Y>ER(p)& XnY=0.
<u,X>ER(p) # uXERT(p).
<u,X>EF(p) # uXEFT(p).
u=CJ1CJ2 • • • CJnEFT(p) (u;EActU'?P(Act)) #

3p=p1p2 ···pnERT(p)(p;EActU'?P(Act)) such that for i=l, ... ,n either
u;=p;EAct or CJ;,P;~Act and u;np;= 0.

The remaining statements are (also) trivial. □

Theorem 2.1 is illustrated in Figure 1. There, however, completed simulation
semantics is missing, since it did not occur in the literature.

2.2. Ordering the equivalences for infinitely branching processes. When the res
triction to finitely branching processes is dropped, there exists a finitary and
an infinitary variant of each of these semantics, depending on whether or not
infinite observations are taken into account. These versions will be notation
ally distinguished by means of superscripts '*' and 'w' respectively; the unsub
scripted abbreviation will, for historical reasons, refer to the infinitary versions
in case of 'simulation' -like semantics and to the finitary versions otherwise.
For the semantics that are based on refusal sets, there exists even a third ver
sion, namely when also the refusal sets are required to be finite. These will be
denoted by means of a superscript'-'. So F- denotes failure semantics as
defined in [42] (see Subsection 1.4), R - denotes acceptance-refusal semantics
[159] (Subsection 1.7), FT- denotes refusal semantics (Subsection 1.11), RS_
denotes refusal simulation semantics (also Subsection 1. 11) and B - denotes
HML-semantics (Subsection 1. 13). Finally, finitary failure simulation seman
tics (FS*) can be distinguished from finitary ready simulation semantics (RS*),
although FS and RS, as well as FS- and RS-, coincide. Now the ~-relation
is represented by arrows in Figure 7.

2. The semantic lattice 39

FIGURE 7. The infinitary linear time - branching time spectrum

THEOREM 2.2: Let S,'5 be any two of the semantics mentioned above. Then S,e,('5
whenever this is indicated in Figure 7.

Again the proof is straightforward. If the labelled trans1t10n system A on
which these semantic equivalences are defined is large enough, then they are all
different and S ,< '5 holds only if this follows from Theorem 2.2 (and the fact
that ,< is a partial order), as will be shown in Subsection 2.8. However, for
certain labelled transition systems much more identifications can be made. Is
has been remarked already that for finitely branching processes all semantics
that are connected by dashed arrows in Figure 7 coincide. This result will be
slightly strengthened in the next subsection. In the subsequent subsection a
class of processes will be defined on which all the semantics coincide.

2.3. Image finite processes.

DEFINITION: A process p EA 1s image finite if for each aEAct* the set

{qEA \p ➔ q} is finite.

40 I. The linear time - branching time spectrum

Note that finitely branching processes are image finite, but the reverse does not
hold.

THEOREM 2.3: On a domain of image finite processes, semantics that are con
nected with a dashed arrow in Figure 7 coincide.

PROOF: For the upper two arrows, connecting HML-semantics with finitary
bisimulation semantics and finitary bisimulation semantics with bisimulation
semantics, the proof has been given in HENNESSY & MILNER [112]. For the
other simulation-like semantics the proof goes likewise. For the trace-like
semantics the correspondence between the finitary and infinitary versions (the
arrows on the right) follows directly from Konig's lemma. Here I only prove
the correspondence between F- and F; the remaining cases can be proved
likewise.

It has to be established that, for image finite processes p and q EA,
F-(p)=F-(q) ⇒ F(p)=F(q), where F-(p) denotes the set of failure pairs
<a,X> of p with finite refusal set X. The reverse implication is trivial. For
finitely branching processes F(p) is completely determined by F-(p) (Proposi
tion 1.1), from which the implication follows. For arbitrary image finite
processes this is no longer the case, but the implication still holds.

Let p and q EA be two image finite processes with F(p }=/=F(q). Say there is
a failure pair <a,X> EF(p)-F(q). By image finiteness of q there are only

finitely many processes r; with q ➔ r;, and for each of those there is an
action a;El(r;)nX (otherwise <a,X> would be a failure pair of q). Let Y be
the set of all those a;'s. then Yis a finite subset of X, so <a,Y>EF-(p).
On the other hand a; El (r;) n Y for all r;, so <a, Y > f/:.F-(q). □

2.4. Deterministic processes.

DEFINITION: A process pis deterministic if p ➔ q & p ➔ r ⇒ q =r.

REMARK: If p is deterministic and p ➔ p' then also p' is deterministic. Hence
any domain of processes on which action relations are defined, has a sub
domain of deterministic processes with the inherited action relations. (A simi
lar remark can be made for image finite processes.)

p p ~ ~ PROOF: Suppose p' ~ q and p' ~ r. Then p ~ q and p ~ r, so q =r.

THEOREM 2.4 (PARK [145]): On a domain of deterministic processes all semantics
on the infinitary linear time - branching time spectrum coincide.

PROOF: Because of Theorem 2.2 it suffices to show that BS~ T. This is the
case if T(p)= T(q) ⇒ p <:::± q for any two deterministic processes p and q. Let
R be the relation, defined by pRq iff T(p)=T(q), then it suffices to prove that

2. The semantic lattice 41

R is a bisimulation. Suppose pRq and p 4 p'. Then aET(p)=T(q). So

there is a process q' with q 4 q'. Now let pET(p'). Then 3r:p' ~ r.

Hence p ~ r and apET(p)=T(q). So there must be a process s with

q ~ s. By the definition of the generalized action relations

3t: q 4 t ~ s, and since q is deterministic, t =q'. Thus pET(q'), and from
this it follows that T(p') ~ T(q'). Since also p is deterministic the converse can
be established in the same way, and together this yields T(p')= T(q'), or p' Rq'.
This finishes the proof. D

2.5. Process graphs. In process theory it is common practice to represent
processes as elements in a mathematical domain. The semantics of a process
theory can then be modelled as an equivalence on such a domain. In Section
1 several semantic equivalences were defined on any domain of sequential
processes which is provided with action relations. Such a domain was called a
labelled transition system. In Section 3 a term domain IJJ> with action relations
will be presented for which these definitions apply. The present subsection
introduces one of the most popular labelled transition systems: the domain G
of process graphs or state transition diagrams.

DEFINITION: A process graph over a given alphabet Act is a rooted, directed
graph whose edges are labelled by elements of Act. Formally, a process graph
g is a triple (NODES (g),EDGES (g),ROOT (g)), where

NODES (g) is a set, whose elements are called the nodes or states of g,
ROOT (g)ENODES (g) is a special node: the root or initial state of g,
and EDGES (g) ~NODES (g) XAct X NODES (g) is a set of triples (s,a,t) with
s,t ENODES (g) and a EA ct: the edges or transitions of g.

If e =(s,a,t)EEDGES (g), one says that e goes from s tot. A (finite) path '1T in a
process graph is an alternating sequence of nodes and edges, starting and end
ing with a node, such that each edge goes from the node before it to the node
after it. If 1T=so(so,a1,s1)s 1(s 1,a 2,s2) · · · (sn-l,amsn)sn, also denoted as

a 1 a2 a
'!T: so ➔s 1 ➔ · · · 4sn, one says that '1T goes from s 0 to sn; it starts in s 0

and ends in end(7T)=sn. Let PATHS (g) be the set of paths in g starting from
the root. If s and t are nodes in a process graph then t ca1J be reached from s if
there is a path going from s to t. A process graph is said to be connected if all
its nodes can be reached from the root; it is a tree if each node can be reached
from the root by exactly one path. Let G be the domain of connected process
graphs over a given alphabet Act.

DEFINITION: For g E G and s E NODES (g), let gs be the process graph defined
by

NODES (gs)= { t E NODES (g) I there is a path going from s to t},

ROOT (gs)=s ENODES (gs),

and (t,a,u)EEDGES (gs) iff t,u ENODES (gs) and (t,a,u)EEDGES (g).

42 /. The linear time - branching time spectrum

Of course gs EG. Remark that gRooT(g) = g. Now on G action relations ➔

for aEAct are defined by g ➔ h iff (ROOT(g),a,s)EEDGES(g) and h =gs.
This makes G into a labelled transition system. Hence all semantic
equivalences of Section 1 are well-defined on G. Below the sets of observa
tions O(g) for OE{T, CT, R, F, RT, FT} and gEG, are characterized in terms
of the paths of g, rather than the generalized action relations between graphs.

a1 a2 an
DEFINITION: Let gEG and let w: s0 ➔s 1 ➔ · · · ➔s11 EPATHS(g). Con-
sider the following notions:

the trace associated tow: T(w)=a 1a 2 · • • a11 EAct*;
the menu of a nodes ENODES (g): /(s)= { a EAct j 3t: (s,a,t)EEDGES (g)};
the ready pair associated tow: R(w)= <T(w),I(s11)>;
the failure set of w: F(w)= { <T(w),X> j /(s,,)nX = 0 };
the ready trace set of w: RT(w) is the smallest subset of (ActU1:P(Act))*
satisfying

l(so)a1l(s1)a 2 • • • a11 l(s11)ERT(w),
aXpERT(w) ⇒ apERT(w),
aXpERT(w) ⇒ aXXpERT(w);

and the failure trace set of w: FT(w) is the smallest subset of
(Act U 1:P(Act))* satisfying

(A -/(so))a1(A -/(si))a2 · · · a11 (A -/(s11))EFT(w),
aXpEFT(w) ⇒ apEFT(w),
aXpEFT(w) ⇒ aXXpEFT(w),
aXpEFT(w)/\ Yc;:;;X ⇒ aYpEFT(w).

PROPOSITION 2.5:

T(g)= {T(w) j wEPATHS (g)}

CT(g)= {T(w) j wEPATHS (g)/\J(end(w))= 0}

R(g)= {R(w) j wEPATHS (g)}

F(g)= LJ F(w)
,rEPATHS (g)

RT(g)= LJ RT(w)
,rEPATHS (g)

FT(g)= LJ FT(w)
,rEPATHS (g)

PROOF: Straightforward. □

Analogously, the simulation-like equivalences can be characterized by means of
simulation relations between the nodes of two process graphs, rather than
between process graphs themselves. Below this is done for bisimulation
equivalence.

2. The semantic lattice 43

DEFINITION: Let g,h EG. A bisimulation between g and h is a binary relation
R ~ NODES (g) X NODES (h), satisfying:
1. ROOT (g)RROOT (h).
2. If sRt and (s,a,s')EEDGES (g), then there is an edge (t,a,t')EEDGES (h)

such that s'Rt'.
3. If sRt and (t,a,t')EEDGES (h), then there is an edge (s,a,s')EEDGES (g)

such thats' Rt'.

This definition is illustrated in Figure 8. Now it follows easily that two graphs
g and h are bisirnilar iff there exists a bisimulation between them.

a a 1

---- ------------ ____ j

a' t ______ --------
a

FIGURE 8. A bisimulation

Proposition 2.5 yields a technique for deciding that two process graphs are
ready trace equivalent, c.q. failure trace equivalent, without calculating their
entire ready trace or failure trace set.

a1 a2 an
Let g,hEG, 7T: s0 ➔s 1 ➔ · · · ➔snEPATHS(g) and

7T1 : t O ➔ t 1 ➔ · · · ~ tm E PATHS (h). Path 7T1 is a failure trace augmentation
of 7T, notation 7T,;;;;pr7T', if FT(7T)~FT(7T'). This is the case exactly when n =m
and I (t;) ~I (s;) for i = 1, ... ,n. Write 7T= pr7T' for 7r,;;;;,_ pr7T' /\7r',;;;; FT7T. It follows
that 7r= FT7T' ~ FT(7T)=FT(7T') ~ RT(7T)=RT(7T'). From this the follow
ing can be concluded.

COROLLARY 2.5: Two process graphs g,h EG are ready trace equivalent iff
for any path 7TEPATHS (g) in g there is a 7T1 EPATHS (h) such that 7T= FT7T'
and for any path 7TEPATHS (g) in h there is a 7T1 EPATHS (g) such that
7r= FT7T'.

They are failure trace equivalent iff
for any path 7TEPATHS (g) in g there is a 7T1 EPATHS (h) such that 7T,;;;;FT7T'
and for any path 7TEPATHS (g) in h there is a 7T1 EPATHS (g) such that
7r,;;;;,_ FT7T'.

44 I. The linear time - branching time spectrum

If g and h are moreover without infinite paths, then it suffices to check the
requirements above for maximal paths.

2. 6. Drawing process graphs.

DEFINITION: Let g,h EG. A graph isomorphism between g and h is a bijective
function f :NODES (g)-NODES (h) satisfying

f(ROOT(g))=ROOT(g) and
(s,a,t)EEDGES (g) ~ (f (s),a,f (t))EEDGES (h).

Graphs g and h are isomorphic, notation g~h, if there exists a graph isomor
phism between them.

In this case g and h differ only in the identity of their nodes. Remark that
graph isomorphism is an equivalence on G.

PROPOSITION 2.6: For g,h di, g~h iff there exists a bisimulation R between g
and h, satisfying
4. If sRt and uRv then s =u ~ t =v.

PROOF: Suppose g~h. Let f :NODES (g)-NODES (h) be a graph isomorphism.
Define R(:NODES(g)XNODES(h) by sRt iff f(s)=t. Then it is routine to
check that R satisfies clauses 1, 2, 3 and 4. Now suppose R is a bisimulation
between g and h, satisfying 4. Definef:NODES(g)-NODES(h) by f(s)=t iff
sRt. Since g is connected it follows from the definition of a bisimulation that
for each s such a t can be found. Furthermore direction "~" of clause 4
implies that f (s) is uniquely determined. Hence f is well-defined. Now direc
tion "¢=." of clause 4 implies that f is injective. From the connectedness of h if
follows that f is also surjective, and hence a bijection. Finally clauses I, 2 and
3 imply that f is a graph isomorphism. □

COROLLARY: If g~h then g and h are equivalent according to all semantic
equivalences of Section 1.

Finitely branching connected process graphs can be pictured by using open
dots (0) to denote nodes, and labelled arrows to denote edges, as can be seen
in Subsection 2.8. There is no need to mark the root of such a process graph
if it can be recognized as the unique node without incoming edges, as is the
case in all my examples. These pictures determine process graphs only up to
graph isomorphism, but usually this suffices since it is virtually never needed to
distinguish between isomorphic graphs.

2. The semantic lattice 45

2. 7. Embedding labelled transition systems in G. Let A be an arbitrary labelled
transition system and let pEA. The canonical graph G(p) of pis defined as
follows:

NODES (G(p))= { q EA I 3oEA •: p ~ q },
ROOT (G(p))=p ENODES (G(p)),
and (q,a,r)EEDGES(G(p)) iff q,rENODES(G(p)) and q ~ r.

Of course G(p)EG. This means G is a function from A to G.

PROPOSITION 2.7: G :A-G is an injective function, satisfying, for a EAct:

G(p) ~ G(q) # p ~ q.
PROOF: Trivial. 0
COROLLARY: For p EA and OE{T, CT, F, R, FT, RT, S, CS, RS, PF, 2S, B},
O(G(p))=O(p).

Proposition 2.7 says that G is an embedding of A in G. It implies that any
labelled transition system over Act can be represented as a subclass
G(A)={G(p)EGlpEA} ofG.

Since G is also a labelled transition system, G can be applied to G itself.
The following proposition says that the function G :G-G leaves its arguments
intact up to graph isomorphism.

PROPOSITION 2.8: For gEG, G(g)~g.
PROOF: Remark that NODES(G(g))={gs lsENODES(g)}. Now the function
f :NODES (G(g))-NODES (g) defined by f (gs)=s is a graph isomorphism. D

2.8. Counterexamples. In this subsection a number of examples will be
presented, showing that on G all semantic notions mentioned in Theorem 2.2
are different and ~ ~ 5 holds only if this follows from that theorem. More
over, apart from the examples needed to show the difference between seman
tics that are connected by a dashed arrow in Figure 7, all examples will use
finite processes only. Thus it follows that neither the ordering of Theorem 2.1
nor the ordering of Theorem 2.2 can be further expanded. Let H be the set of
finite connected process graphs. Here a process graph g is finite if PATHS (g) is
finite. Finite graphs are acyclic and have only finitely many nodes and edges.
They represent finite processes.

THEOREM 2.9: Let ~ and 5 be semantics on H from the series T, CT, F, R, FT,
RT, S, CS, RS, PF, 2S, B. Then ~~5 only if this follows from Theorem 2.1.
(and the fact that ~ is a partial order).

PROOF: The following counterexamples provide for any statement ~~5, not
following from Theorem 2.1 and the fact that ~ is a partial order, two finite
connected process graphs that are identified in 5, but distinguished in ~-

46 I. The linear time - branching time spectrum

:j
ab+a ab

FIGURE 9

1. T~CT. For the graphs of Figure 9, T(left)=T(right)={f., a, ab}, whereas
CT(left)*CT(right) (since a E CT(left)- CT(right)). Hence they are identified
in trace semantics but distinguished in completed trace semantics. Further
more the two graphs are simulation equivalent (the construction of the two
simulations is left to the reader). Since ~ is a partial order, the same example
shows that ~~5 for ~E{CT, CS, F, R, FT, RT, RS, PF, 2S, B} and
5E{T, S}.

a -er

A *F
b C

-cs

ab +a(b +c) a(b +c)

FIGURE 10

2. CT~ F. For the graphs of Figure 10, CT(left)= CT(right)= { ab, ac },
whereas F(left)*F(right) (since <a, { b} > EF(/eft)- F(right)). Hence they
are identified in completed trace semantics but distinguished in failure seman
tics. Furthermore the two graphs are completed simulation equivalent (the
construction of the two completed simulations is again left to the reader).
Since ~ is a partial order, the same example shows that ~~5 for
~E{F, R, FT, RT, RS, PF, 2S, B} and 5E{CT, CS}.

2. The semantic lattice

A
b I IC

ab +ac

FIGURE 11

~
b~c

ab +a(b +c)+ac

47

3. FT':JrR. For the graphs of Figure 11, FT(left)=FT(right), whereas
R (left}=l=-R (right). The first statement follows from Corollary 2.5, since the
new maximal paths at the right-hand side are both failure trace augmented by
the two maximal paths both sides have in common. The second one follows
since <a, { b,c} > ER (right)- R (left). Hence these processes are identified in
failure trace semantics but distinguished in readiness semantics. Since ,<'. is a
partial order, the same example shows that S':);;5 for any S,<'.FT and ~R, so
in particular F':Jr Rand FT':Jr RT.

a a a

f
-F

C i=FT b

-R
d e i=RT e d

a(b +cd)+a(J +ce) a(b +ce)+a(J +cd)

FIGURE 12

4. R':JrFT. For the graphs of Figure 12, R(left)=R(right), whereas
FT(left)-j=FT(right). The first statement follows since in the second graph
only 4 ready pairs swopped places. The second one follows since
a{b }ce EFT(lejt)- FT(right). Hence these processes are identified in readiness
semantics but distinguished in failure trace semantics. Since ,<'. is a partial
order, the same example shows that S':);;5 for any S,<'.R and ~FT, so in par
ticular F':JrFT and R';J;;RT. Since PF(left)i=PF(right) this example does not
show that P F':Jr FT. It it left as an exercise to the reader to adapt the example
so that also that is established.

48 I. The linear time - branching time spectrum

a a a

b b b b

=l=s
C d C d

abc +abd a(bc +bd)

FIGURE 13

5. RT"k=S. For the graphs of Figure 13, RT(/eft)=RT(right), whereas
S (left)=l=S (right). The first statement follows immediately from Corollary 2.5.
The second one follows since a(bcT /\bdT)ES(right)-S(/eft). Hence these
processes are identified in ready trace semantics but distinguished in simula
tion semantics. Since ~ is a partial order, the same example shows that ~"k=5"
for any ~~RT and ~S, so in particular T"k=S, CT"k=CS and RT"k=RS.

a a

b b b

C C d C d

abc +a(bc +bd) a(bc +bd)

FIGURE 14

6. RS "k= 2S. The graphs of Figure 14 are ready simulation equivalent, but not
2-nested simulation equivalent. There exists exactly one simulation from right
by left, namely the one mapping right on the right-hand side of left, and this
simulation is a ready simulation as well as a 2-nested simulation. There also
exists exactly one simulation from left by right, which maps the black node on
the left on the black node on the right. This simulation is a ready simulation
(related nodes have the same menu of initial actions) but not a 2-nested simu
lation (the two subgraphs originating from the two black nodes are not

2. The semantic lattice 49

simulation equivalent). Hence RS~2S. Furthermore PF(left)-=fo-PF(right),
since <a, {t:, b, be}> EPF(lejt)- PF(right). Hence~~ PF for any ~~RS.

a a

b

C C C

abc +a(bc +b) a(bc +b)

FIGURE 15

7. 2S ~ B. The graphs of Figure 15 are 2-nested simulation equivalent, but
not bisimulation equivalent. There now exists 2-nested simulations in both
directions since the two subgraphs originating from the two black nodes are
simulation equivalent. However, a-,b-,cTEHML(lejt)- HML(right). □

THEOREM 2.10: Let ~ and 5 be semantics on G mentioned in Subsection 2.2.
Then ~~5 only if this follows from Theorem 2.2. (and the fact that ~ is a partial
order).

PROOF: The following counterexamples, together with the ones used in the pre
vious proof, provide for any statement ~~5, not following from Theorem 2.2
and the fact that ~ is a partial order, two connected process graphs that are
identified in 5, but distinguished in ~-

8. B • ~ Tw. The graphs of Figure 4 in Chapter III are finitary bisimulation
equivalent (as follows straightforward with induction) but not infinitary trace
equivalent (since only the graph at the right has an infinite trace). Since ~ is
a partial order it follows that ~~5for ~~B• and 6.J':;::=Tw . .

9. B- ~CT. For the graphs of Figure 16, HML(left)=HML(right), whereas
CT(left)-=fo-CT(right). The first statement follows since by means of HML
formulas one can only say that a finite set of actions can not take place in a
certain state. The second one follows since a E CT(lejt)- CT(right). Since ~
is a partial order it follows that ~~5for ~~B- and 6.J':;::=CT.

10. FS*~R. The counterexample showing FS*~R and hence FS*~Rs* is
a bit complicated to draw, but can be easily described in terms of the previous

50 I. The linear time - branching time spectrum

FIGURE 16

example. It consists of two trees, not containing paths with more then two
edges, the upper parts of which are the same as the upper parts of the two
trees in Figure 16. But any node with an incoming a-edge, has an outgoing
edge labeled b; for any i;;;,, I, except for the i for which it had an outgoing b;
edge in Figure 16. Now FS*(left)=FS*(right), but <a,{b 1,b2, • • • }>E
R (left)- R (right). □

One could say that a semantics~ respects deadlock behaviour iff ~► CT. Exam
ple 9 above then shows that none of the semantics on the left in Figure 7
respects deadlock behaviour; only the left-hand process of Figure 16 can
deadlock after an a-move.

3. COMPLETE AXIOMATIZATIONS

3.1. A language for finite, concrete, sequential processes. Consider the following
basic CCS- and CSP-like language BCCSP for finite, concrete, sequential
processes over a given alphabet Act:

inaction: 0 (called nil or stop) is a constant, representing a process that refuses
to do any action.

action : a is a unary operator for any action a EAct. The expression ap
represents a process, starting with an a-action and proceeding with p.

choice: + is a binary operator. p + q represents a process, first being
involved in a choice between its summands p and q, and then
proceeding as the chosen process.

The set IP> of (closed) process expressions or terms over this language is defined
as usual:

OEIP>,
ap E IP> for any a EA ct and p E IP>,
p +qEIP> for any p,qEIP>.

Subterms a O may be abbreviated by a.

On IP> action relations ~ for a EA ct are defined as the predicates on IP> gen-

3. Complete axiomatizations 51

erated by the action rules of Table 1. Here a ranges over Act and p and q over
OJ>.

a
ap ➔ p

a
p ➔ p'

a
q ➔ q'

a
p+q ➔ p' p +q .!!..;► q'

TABLE 1

Now all semantic equivalences of Section 1 are well-defined on OJ>, and for each
of the semantics it is determined when two process expressions denote the
same process.

3.2. Axioms. In Table 2, complete axiomatizations can be found for ten of the
twelve semantics of this chapter that differ on BCCSP. Axioms for 2-nested
simulation and possible-futures semantics are more cumbersome, and the
corresponding testing notions are less plausible. Therefore they have been
omitted. In order to formulate the axioms, variables have to be added to the
language as usual. In the axioms they are supposed to be universally
quantified. Most of the axioms are axiom schemes, in the sense that there is
one axiom for each substitution of actions from Act for the parameters a,b,c.
Some of the axioms are conditional equations, using an auxiliary operator I.
Thus provability is defined according to the standards of either first-order logic
with equality or conditional equational logic. I is a unary operator that calcu
lates the set of initial actions of a process expression, coded as a process
expression again.

THEOREM 3.1: For each of the semantics OE{T, S, CT, CS, F, R, FT, RT, RS,
B} two process expressions p, q E OJ> are O-equivalent ifJ they can be proved equal
from the axioms marked with '+' in the column for O in Table 2. The axioms
marked with 'v' or 'w' are valid in O-semantics but not needed for the proof

PROOF: For F, R and B the proof is given in BERGSTRA, KLoP & OLDEROG
[30] by means of graph transformations. A similar proof for RT can be found
in BAETEN, BERGSTRA & KLOP [14]. For the remaining semantics a proof can
be given along the same lines. □

THEOREM 3.2: Suppose Act is infinite. For each of the semantics OE { T, S, CT,
F, R, FT, RT, RS, B} two BCCSP expressions with variables are O-equivalent ifJ
they can be proved equal from the axioms marked with '+' or 'w' in the column
for O in Table 2. It follows that the axioms marked with 'v' are derivable.

PROOF: For O E { T, CT, F, R, FT, RT, B} this has been established by JAN

52 I. The linear time - branching time spectrum

B"J<5 RI 'FI RF r~ ~-u C1 ST

ix+y=y+x ++ + + ++ + + + +
x +y)+z = x +(y +z) ++ + + ++ + + + +

IX +x = x ++ + + ++ + + + +
~+Q = X ++ + + ++ + + + +

~(x) = I(y) ~ ax +a(x +y) = a(x +y) + V V V V V V V V

II(x) = /(y) ~ ax +ay = a(x +y) + + V V V V

k:lx +ay = ax +ay +a(x +y) + V V V

~(bx +u)+a(by +v) = a(bx +by +u)+a(bx +by +v ++ V V

k:lx +a(y +z) = ax +a(x +y)+a(y +z) + w V

~(bx +u +y) = a(bx +u)+a(bx +u +y) + V V V

k:l(bx +u)+a(cy +v) = a(bx +cy +u +v) + V

~x +a(x +y) = a(x +y) +v
11x +ay = a(x +y) +

II(0) = 0 ++ + + ++ + + ++
~(ax) = aO ++ + + ++ + + ++
II(x + y) = I (x)+ I(y) ++ + + ++ + + ++

TABLE 2

FRISO GROOTE [104]. His proof for F, R, FT and RT can be applied to Sand
RS as well. □

GROOTE also showed that if Act is finite, Theorem 3.2 does not hold for F, R,
FT and RT. But for B and CT it suffices to assume that Act is nonempty, and
for T it suffices to assume that Act has at least two elements. I don't know
which cardinality restriction on Act is needed in the cases of S and RS. A
complete axiomatization for open terms for completed simulation semantics
has so far not been provided.

CONCLUDING REMARKS

In this chapter various semantic equivalences for concrete· sequential processes
are defined, motivated, compared and axiomatized. Of course many more
equivalences can be given then the ones presented here. The reason for select
ing just these, is that they can be motivated rather nicely and/ or play a role in
the literature on semantic equivalences. In ABRAMSKY & VICKERS [2] the
observations which underly many of the semantics in this chapter are placed in
a uniform algebraic framework, and some general completeness criteria are
stated and proved. They also introduce acceptance semantics, which can be
obtained from acceptance-refusal semantics (Section 1.7) by dropping the
refusals, and analogously acceptance trace semantics. I'm not aware of any

Concluding remarks 53

reasonable testing scenario for these notions.
In Section 1.10 I remarked that a testing scenario for simulation and ready

simulation semantics can be obtained by adding an undo-button to the
scenario's for trace and ready trace semantics. Likewise ScHNOEBELEN [163]
investigates the addition of an undo-button to the testing scenarios for com
pleted trace, readiness, failure and failure trace semantics, thereby obtaining 3
new equivalences CT#, R# and F #. Undo-failure trace equivalence coincides
with finitary failure simulation equivalence, just like undo-trace and undo-ready
trace equivalence coincide with finitary simulation and finitary ready simula
tion equivalence, and for image finite processes R# coincides with F #. Furth
ermore R:,(,R#:,(,RS*, F:,(,F#:,(,FS*, CT:,(,CT#-<,cs• and
s*-<,cT # :,(,F # :,(,R#.

It is left for a future occasion to give (and apply) criteria for selecting
between these equivalences for particular applications (such as the complexity
of deciding if two finite-state processes are equivalent, or the range of useful
operators for which they are congruences). The work in this direction reported
so far includes [35] and [107]. More research in this direction will be reported
in [83].

An interesting topic is the generalization of this work to a setting with silent
moves and/ or with parallelism. In Chapter III the generalization of bisimula
tion semantics to a setting with silent steps is considered; in Chapters IV-VII
bisimulation and trace semantics will be considered in a setting with parallel
ism. In both cases there turn out to be many interesting variations. The gen
eralization of the rest of the spectrum to a setting with invisible actions will be
tackled in [81]. Generalizing the entire spectrum to a setting with parallelism
remains as of yet to be done. However, in many papers parts of a
classification can be found already (see for instance [153]).

A generalization to preorders, instead of equivalences, can be obtained by
replacing conditions like O(p)=O(q) by O(p)C.O(q). Since preorders are
often useful for verification purposes, it seems to be worthwhile to classify
them as well. Also this will be done in [81].

Furthermore it would be interesting to give explicit representations of the
equivalences, by representing processes as sets of observations instead of
equivalence classes of process graphs, and defining operators like action
prefixing and choice directly on these representations, as has been done for
failure semantics in [42] and for readiness semantics in [144].

54

Chapter II

Modular Specifications in Process Algebra
With Curious Queues

Rob van Glabbeek & Frits Vaandrager

In recent years a wide variety of process algebras has been proposed in the
literature. Often these process algebras are closely related: they can be viewed
as homomorphic images, submodels or restrictions of each other. The aim of
this chapter is to show how the semantical reality, consisting of a large number
of closely related process algebras, can be reflected, and even used, on the
level of algebraic specifications and in process verifications. This is done by
means of the notion of a module. The simplest modules are building blocks of
operators and axioms, each block describing a feature of concurrency in a cer
tain semantical setting. These modules can then be combined by means of a
union operator + , an export operator □ , allowing to forget some operators in
a module, an operator H, changing semantics by taking homomorphic images,
and an operator S which takes subalgebras. These operators enable us to
combine modules in a subtle way, when the direct combination would be
inconsistent. We show how auxiliary process algebra operators can be hidden
when this is needed. Moreover it is demonstrated how new process combina
tors can be defined in terms of the more elementary ones in a clean way. As
an illustration of our approach, a methodology is presented that can be used to
specify FIFO-queues, and that facilitates verification of concurrent systems con
taining these queues.

TABLE OF CONTENTS

Introduction
1. Module Logic
2. Process Algebra
3. Applications of the Module Approach in Process Algebra
4. Queues
5. A Protocol Verification
Conclusions and Open Problems
Appendix: Logics

55

56
61
66
80
89

102
109
111

56 II. Modular specifications in process algebra - with curious queues

INTRODUCTION
During the last decade, a lot of research has been done on process algebra: the
branch of theoretical computer science concerned with the modelling of con
current systems as elements of an algebra. Besides the Calculus of Communi
cating Systems (CCS) of MILNER [134, 137], several related formalisms have
been developed, such as the theory of Communicating Sequential Processes
(CSP) of HOARE [116], the MEIJE calculus of AUSTRY & BOUDOL [10] and the
Algebra of Communicating Processes (ACP) of BERGSTRA & KLOP [25, 26, 28].

When work on process algebra started, many people hoped that it would be
possible to come up, eventually, with the 'ultimate' process algebra, leading to
a 'Church thesis' for concurrent computation. This process algebra, one ima
gined, should contain only a few fundamental operators and it should be
suited to model all concurrent computational processes. Moreover there should
be a calculus for this model making it possible to prove the identity of
processes algebraically, thus proving correctness of implementations with
respect to specifications. As far as we know, the ultimate process algebra has
not yet been found, but we will not exclude that it will be discovered in the
near future.

Two things however, have become clear in the meantime: (1) it is doubtful
whether algebraic system verification, as envisaged in [134], will be possible in
this model, and (2) even if the ultimate process algebra exists, this certainly
does not mean that all other process algebras are no longer interesting. We ela
borate on this below.

A central idea in process algebra is that two processes which cannot be dis
tinguished by observation should preferably be identified: the process seman
tics should be fully abstract with respect to some notion of testing (see
[64, 134] and the first chapter of this thesis). This means that the choice of a
suitable process algebra may depend on the tools an environment has to dis
tinguish between certain processes. In different applications the tools of the
environment may be different, and therefore different applications may require
different process algebras. A large number of process semantics are not fully
abstract with respect to any (reasonable) notion of testing (bisimulation seman
tics and partial order semantics, for instance). Still these semantics can be very
interesting because they have simple definitions or correspond to some strong
operational intuition. Our hypothetical ultimate process algebra will make
very few identifications, because it should be resistant against all forms of test
ing. Therefore not many algebraic laws will be valid in this model and alge
braic system verification will presumably not be possible (specification and
implementation correspond to different processes in the model).

Another factor which plays a role has to do with the operators of process
algebras. For theoretical purposes it is in general desirable to work with a sin
gle, small set of fundamental operators. We doubt however that a unique
optimal and minimal collection exists. What is optimal depends on the type of
results one likes to prove. This becomes even more clear if we look towards
practical applications. Some operators in process algebra can be used for a
wide range of applications, but we agree with JIFENG & HOARE [118] that we

Introduction 57

may have to accept that each application will require derivation of specialised
laws (and operators) to control its complexity.

Many people are embarrassed by the multitude of process algebras occurring
in the literature. They should be aware of the fact that there are close rela
tionships between the various process algebras: often one process algebra can
be viewed as a homomorphic image, subalgebra or restriction of another one.
The aim of this chapter is to show how the semantical reality, consisting of a
large number of closely related process algebras, can be reflected, and even
used, on the level of algebraic specifications and in process verifications.

This chapter is about process algebras, their mutual relationships, and stra
tegies to prove that a formula is valid in a process algebra. Still, we do not
present any particular process algebra here. In the other chapters of this thesis
several process algebras are discussed. However we neither define all the opera
tions we use in this chapter nor all the semantical notions that will be con
sidered here. In this chapter we only define classes of models of process
modules. One reason for doing this is that a detailed description of all partic
ular process algebras we use would make this thesis too long. Another reason
is that there is often no clear argument for selecting a particular process alge
bra. In such situations we are interested in assertions saying that a formula is
valid in all algebras satisfying a certain theory. A number of times we need
results stating that some formulas cannot be proven from a certain module. A
standard way to prove this is to give a model of the module where the formu
las are not true. For this reason we will often refer to particular process alge
bras which have been described elsewhere in the literature.

The discussion of this chapter takes place in the setting of ACP. We think
however that the results can be carried over to CCS, CSP, MEuE, or any other
process algebra formalism.

Modularisation.
The creation of an algebraic framework suitable to deal with realistic applica
tions, gives rise to the construction of building blocks, or modules, of operators
and axioms, each block describing a feature of concurrency in a certain
semantical setting. These modules can then be combined by means of a
module combinator +. We give some examples:
i) A kernel module, that expresses some basic features of concurrent

processes, is the module ACP. For a lot of applications however, ACP
does not provide enough operators. Often the use of renaming operators
makes specifications shorter and more comprehensible. These renaming
operators can be defined in a separate module RN. Now the module
ACP+ RN combines the specification and verification power of modules
ACPandRN.

ii) The axioms of module ACP correspond to the semantical notion of
bisimulation. For some applications bisimulation semantics does not
make enough identifications. In these cases one would like to deal with
processes on the level of, for example, failure semantics. Now one can
define a module F, corresponding to the identifications made in failure

58 II. Modular specifications in process algebra - with curious queues

semantics on top of the identifications of bisimulation semantics. The
module ACP+ F then corresponds to the failure model.

Once a number of modules have been defined, they can be combined in a lot
of ways. Some combinations are interesting (for example the module
ACP+ RN+ F), for other combinations no interesting applications exist (the
module RN+ F). Didactical aspects aside, a major advantage of the modular
approach is that results which have been proved from a module M, can also be
proved from a module M + N. This means that process verifications become
reusable.

It turns out that certain pairs of modules are incompatible in a very strong
sense: with the combination of two modules strange and counter-intuitive
identities can be derived. In BAETEN, BERGSTRA & KLOP [14], for example, it is
shown that the combination of failure semantics and the priority operator is
inconsistent in the sense that an identity can be derived which says that a par
ticular process that can do a b-action after it has done an a-action, equals a
process that cannot do this. Another example can be found in BERGSTRA,
KLoP & OLDER0G [29], where it is pointed out that the combination of failure
semantics and Koomen's Fair Abstraction Rule (KFAR) is inconsistent.

In the first section of this chapter we present, besides the combinator +,
some other operators on modules. We discuss an export operator □, allowing
to forget some operators in a module, an operator H, changing semantics by
taking homomorphic images, and an operator S which takes subalgebras.
These operators enable us to combine modules in a subtle way, when the
direct combination would be inconsistent. In Section 2 we describe a large
number of process modules which play a role in the ACP framework. Section
3 contains two examples of applications of the new module operators in pro
cess algebra:
1. The axiom system ACP contains auxiliary operators IL and I (left-merge

and communication-merge) which drastically simplify computations and
have some desirable 'metamathematical' consequences (finite axiomatisa
bility1; greater suitability for term rewriting analysis). These auxiliary
operators can be defined in a large class of process algebras. However, it
turns out that in a setting with the silent step r the left-merge cannot be
added consistently to all algebras (for instance not to the usual variants of
failure semantics). Now one may think that this result means that some
one who is doing failure semantics with r's cannot profit from the nice
properties of the left-merge. However, we will show in this chapter that
use of the module approach makes it possible to do failure semantics with
r's but still benefit from the left-merge in verifications. The idea is that
verifications take place on two levels: the level of bisimulation semantics
where the left-merge can be used, and a level of for instance failure
semantics, where no left-merge is present. The failure model can be

I. Recently, FARON Mou.ER [139] from Edinburgh showed that in bisimulation semantics the
merge operator cannot be finitely axiornatised without auxiliary operators.

Introduction 59

obtained from the bisimulation model by removing the auxiliary operators
and talcing a homomorphic image. Now we use the observation that cer
tain formulas (the 'positive' ones without auxiliary operators) are
preserved under this procedure. A consequence of this application is that
even if bisimulation semantics is not considered to be an appropriate pro
cess semantics (since it is not fully abstract with respect to any reasonable
notion of testing), it still can be useful as an expedient for proving formu
las in failure semantics.

2. As already pointed out above, one would like to have, from a theoretical
point of view, as few operators or combinators as possible. On the other
hand, when dealing with applications, it is often very rewarding to intro
duce new operators. This paradox can be resolved if the new operators
are definable in terms of the more elementary ones. In that case the new
operators can be considered as notations which are useful, but do not
complicate the underlying theory. A problem with defining operators in
terms of other operators is that often auxiliary atomic actions are needed
in the definition. These auxiliary actions can then not be used in any
other place, because that would disturb the intended semantics of the
operator. In the laws that can be derived for the defined operator, the
auxiliary actions occur prominently. These 'side effects' are often quite
unpleasant. One may think that side effects are unavoidable and that
someone who really does not like them should define new operators
directly in the algebras (even though this is in conflict with the desire to
have as few operators as possible). However, we will show that the
module approach can be used to solve also this problem: with the restric
tion operator we remove the auxiliary actions from the signature and then
we apply the subalgebra operator in order to 'move' to algebras where the
auxiliary actions are not present at all.

The concept of hiding auxiliary operators in a module in some formal way is
quite familiar in the literature (see BERGSTRA, HEERING & KLINT [23] for
example), but the use of module operators H and S, and their application in
combining modules that would be incompatible otherwise, is, as far as we
know, new. The Hand S operations are in spirit related to the abstract opera
tion of SANNELLA & WIRSING [162] and SANNELLA & TARLECKI [161], which
also extends the model class of a module.

In previous papers on ACP, the underlying logic used in process
verifications was not made explicit. The reason for this was that a long
definition of the logic would distract the reader's attention from the more
essential parts of the paper. It was felt that filling in the details of the logic
would not be too difficult and that moreover different options were equivalent.
In this chapter we generalise the classical notion of a formal proof of a for
mula from a theory to the notion of a formal proof of a formula from a
module. The definition of this last notion is parametrised by the underlying
logic. What is provable from a module really depends on the logic that is used,
and this makes it necessary to consider in more detail the issue of logics. In
an appendix we present three alternatives: (1) Equational logic. This logic is

60 II. Modular specifications in process algebra - with curious queues

suited for dealing with finite processes, but not strong enough for handling
infinite processes; (2) Infinitary conditional equational logic. This is the logic
used in most process verifications in the ACP framework until now; (3) First
order logic with equality.

Our investigations into the precise nature of the calculi used in process alge
bra, led us to alternative formulations of some of the proof principles in ACP
which fit better in our formal setup. We present a reformulation of the Recur
sive Specification Principle (RSP) and also an alphabet operator which returns
a process instead of a set of actions.

Queues.
As an illustration of the techniques developed in Sections I to 3, we present in
Section 4 an algebraic treatment of FIFO-queues. FIFO-queues play an
important role in the description of languages with asynchronous message
passing, the modelling of communication channels occurring in computer net
works and the implementation of languages with synchronous communication.
We show how the chaining operator can be used to give short specifications of
various (faulty) queues and simple proofs of numerous identities, for example
of the fact that the chaining of a queue with unbounded capacity and a one
datum buffer is again a queue.

We give an example of an identity that holds intuitively (there is no experi
ment that distinguishes between the two processes) but is not valid in bisimu
lation semantics. We use the machinery developed in Section 1-3 to extend the
axiom system in a neat way (avoiding inconsistencies) so that we can prove the
processes identical.

A protocol verification.
The usefulness of the proof technique for queues is illustrated in Section 5,
where a modular verification is presented of a concurrent alternating bit proto
col. This verification takes 4 pages (or 5 if the proof of the standard facts
about the queues is included) and is thereby considerably shorter than the
proof of similar protocols in papers by KOYMANS & MULDER [123] and LAR

SEN & MILNER [127] (15 and 11 pages respectively). The verification shows
that the protocol is correct if the channels behave as faulty FIFO-queues with
unbounded capacity. However, a minor change in the proof is enough to show
that the protocol also works if the channels behave as _ n-buffers, faulty n
buffers, etc. In our view the basic merit of our way of dealing with queues is
that it becomes possible to use inductive arguments when dealing with the
length of queues in protocol systems.

1. Module logic 61

1. MODULE LOGIC

In this chapter, as in many other papers about process algebra, we use formal
calculi to prove statements about concurrent systems. In this section we answer
the following questions:

Which kind of calculi do we use?
What do we understand by a proof?

In the next sections we will apply this general setup to the setting of con
current systems.

I.I. Statements about concurrent systems. In many theories of concurrency it is
common practice to represent processes - the behaviours of concurrent systems
- as elements in an algebra. This is a mathematical domain, on which some
operators and predicates are defined. Algebras, which are suitable for the
representation of processes are called process algebras. Thus a statement about
the behaviour of concurrent systems can be regarded as a statement about the
elements of a certain process algebra. Such a statement can be represented by
a formula in a suitable language which is interpreted in this process algebra.
Sometimes we consider several process algebras at the same time and want to
formulate a statement about concurrent processes without choosing one of
these algebras. In this case we represent the statement by a formula in a suit
able language which has an interpretation in all these process algebras. Hence
we are interested in assertions of the form: 'Formula q, holds in the process
algebra if', notation cP. 1= q,, or 'Formula q, holds in the class of process algebras
e, notation e 1= q,. Now we can formulate the goal that is pursued in the
present section: to propose a method for proving assertions cP. 1= q,, or e 1= q,.

1.2. Proving formulas from theories. Classical logic gave us the notion of a for
mal proof of a formula q, from a theory T. Here a theory is a set of formulas.
We write T t- q, if such a proof exists. The use of this notion is revealed by the
following soundness theorem: If T I- q, then q, holds in all algebras satisfying T.
Here an algebra cP. satisfies T, notation cP. I= T, if all formulas of T hold in this
algebra. Thus if we want to prove cP. 1= q, it suffices to prove T 1- q, and cP. 1= T for
a suitable theory T. Likewise, if we want to prove e 1= q,, with e a class of alge
bras, it suffices to prove T 1- q, and e 1= T.

At first sight the method of proving cP. 1= q, by means of a formal proof of q,
out of T seems very inefficient. Instead of verifying cP. 1= q,, one has to verify
cP. I= i/J for all i/J ET, and moreover the formal proof has to be constructed. How
ever, there are two circumstances in which this method is efficient, and in most
applications both of them apply. First of all it may be the case that q, is more
complicated than the formulas of T and that a direct verification of cP. 1= q, is
much more work than the formal proof and all verifications cP. I= i/J together.
Secondly, it may occur that a single theory T with cP. 1= Tis used to prove many
formulas q,, so that many verifications cP. 1= q, are balanced against many formal
proofs of q, out of T and a single set of verifications cP. 1= i/J. Especially when
constructing formal proofs is considered easier then making verifications cP. 1= q,,
this reusability argument is very powerful. It also indicates that for a given

62 II. Modular specifications in process algebra - with curious queues

algebra cf we want to find a theory T from which most interesting formulas q,
with a 1= q, can be proved.

Often there are reasons for representing processes in an algebra that satisfies
a particular theory T, but there is no clear argument for selecting one of these
algebras. In this situation we are interested in assertions e 1= q, with e the class
of all algebras satisfying T. Of course assertions of this type can be con
veniently proved by means of a formal proof of q, from T.

1.3. Proving formulas from modules. In process algebra we often want to
modify the process algebra currently used to represent processes. Such a
modification might be as simple as the addition of another operator, needed
for the proper modelling of yet another feature of concurrency, but it can also
be a more involved modification, such as factoring out a congruence, in order
to identify processes that should not be distinguished in a certain application.
It is our explicit concern to organise proofs of statements about concurrent
systems in such a way that, whenever possible, our results carry over to
modifications of the process algebra for which they were proved.

Now suppose a is a process algebra satisfying the theory T and a statement
cf 1= q, has been proved by means of a formal proof of q, out of T. Furthermore
suppose that 'ffi is obtained from cP. by factoring out a congruence relation on cf
(so 'ffi is a homomorphic image of er) and for a certain application 'ffi is con
sidered to be a more suitable model of concurrency than cP.. Then in general
'ffi I= q, cannot be concluded, but if q, belongs to a certain class of formulas (the
positive ones) it can. So if q, is positive we can use the following theorem: 'If
6£. 1= T, T 1- q,, q, is positive, and 'ffi is a homomorphic image of ~ then 'ffi I= q,'.
This saves us the trouble of finding another theory U, verifying that 'ffi I= U and
proving U 1- q, for many formulas q, that have been proved from T already.
Another way of formulating the same idea is to introduce a module H(T). We
postulate that one may derive 'H(T) I- q,' from 'TI- q,' and 'q, is positive', and
H (T) I- q, implies that q, holds in all homomorphic images of algebras satisfy
ing T.

Thus we propose a generalisation of the notion of a formal proof. Instead of
theories we use the more general notion of modules. Like a theory a module
characterises a class e of algebras, but besides the class of all algebras satisfy
ing a given set of formulas, e can for instance also be the class of
homomorphic images or subalgebras of a class of algebras specified earlier.
Now a proof in the framework of module algebra is a sequence or tree of
assertions M 1- q, such that in each step either the formula q, is manipulated, as
in classical proofs, or the module M is manipulated. Of course we will estab
lish a soundness theorem as before, and then an assertion cf 1= q, can be proved
by means of a module M with cf I= M and a formal proof of q, out of M. We
will now turn to the formal definitions.

1. Module logic 63

1.4. Signatures. Let NAMES be a given set of names.
A sort declaration is an expression §:S with SE NAMES.
A function declaration is an expression F:f :S 1 X · · · XSn➔S withf,S1,•••,Sn,
SE NAMES.

A predicate declaration is an expression Iii :p c;s 1 X · · · X Sn with p,S 1, ... ,Sn E
NAMES.

A signature <1 is a set of sort, function and predicate declarations, satisfying:

(F:f :S1 X · · · XSn➔S)E<1 ~ (§:S;)E<1 (i = I, ... ,n) I\ (§:S)E<1

(IR:pCS1X · · · XSn)E<1 ~ (§:S;)E<1(i=l, ... ,n)

A function declaration F:j:➔S of arity O is sometimes called a constant
declaration and written as F:f ES.

1.5. <1-Algebras. Let <1 be a signature. A <1-algebra <t is a function on <1 that
maps

(§ :S) E<J to a set s1:t,

(F:f :S 1 X · · · XSn➔S)E<1 to a functiontf,x ... xs.__,,s:Sf X · · · XS~➔S",

(Iii :p (";S 1 X · · · XSn)E<1 to a predicate p~, x ... xs, (";Sf X · · · XS~.

Let tr and 03 be <1-algebras. 03 is a subalgebra of <t ifs<£ c;S" for all (§:S)E<1,
if moreover ff, x ... xs.-s restricted to sf X · · · X s? ➔s<£ is just
fl x ... xs.__,,s for all F:f :S 1 X · · · XSn➔S in <1, and if p~, x ... xs, restricted
to sf X ·. · xs? is justplx ... XS, for all lR:p CS1 X · · · xsn in <1.

A homomorphism h :lt➔03 consists of mappings hs:S"➔Sffi for all §:S in <1,
such that

hs<f{x • .. xs,__,,s(X1, ... ,xn)) = flx . .. xs,__,,s(hs,(x1), ... ,hs.(xn))

for all (F:f :S 1 X · · · XSn➔S)E<1 and all X; ES1(i = l, ... ,n)

Ptx • •· xs,(X1,••·,Xn) ~ Plx ... xs,(hs,(x1), ... ,hs,(xn))

for all (IR:p c;S 1 X · · · XSn)E<1 and all X;ESf(i = I, ... ,n)

03 is a homomorphic image of <t if there exists a surjective homomorphism
h :lt➔03.

Let G; be a <1-algebra. The restriction p □ <t of cP, to the signature p is the p n <1-
algebra 03, defined by

s<£ = S" for all (§:S)Epn<1

flx---xs.-s =tf,x••·XS,-+Sforall(F:f:S1X ··· XSn➔S)Epn<1

Plx ... XS, = Ptx ... XS, for all (IR:p(";S1 X .. " XSn)Epn<1

64 II. Modular specifications in process algebra - with curious queues

1.6. Logics. A logic e is a complex of prescriptions, defining for any signature
a

a set ru of formulas over a such that ru n¥p =runp,
a binary relation 1=~ on a-algebras X ru such that for all p-algebras c:e and
cf>Erunp: a□ i:e l=~np cf> # c:e "1/

- and a set I~ of inference rules~ with Hera and cf>eru.

If c:e 1=~ cf> we say that the a-algebra c:e satisfies the formula cf>, or that cf> holds in
<£,. A theory over a is a set of formulas over a. If Tis a theory over a and
i:e I=~ cf> for all cf>ET we say that c:e satisfies T, notation c:e I=~ T. We also say that
i:e is a model of T.

A logic e is sound if H e~ implies c:e 1=~ H =9 c:e 1=~ cf> for any a-algebra <£,.
cf>

A formula cperu is preserved under subalgebras if c:e 1=~ cf> implies ~ 1=~ cf>, for any
subalgebra ~ of <£,.
A formula cf>E~ is preserved under homomorphisms if c:e I=~ cf> implies ~ 1=~ cf>, for
any homomorphic image ~ of «.
Without doubt, the definition of a 'logic' as presented above is too general for
most applications. However, it is suited for our purposes and anyone can sub
stitute his/her favourite (and more restricted) definition whenever he/she likes.

In the process algebra verifications of this chapter we will use infinitary con
ditional equational logic. The definition of this logic can be found in the
appendix. For comparison, the definitions of equational logic and first order
logic with equality are included too.

I. 7. Classical logic.
DERIVABILITY. A a-proof of a formula c[>E~ from a theory TCF! using the
logic l; is a well-founded, upwardly branching tree of which the nodes are
labelled by a-formulas, such that

the root is labelled by cf>
and if 'I/! is the label of a node q and H is the set of labels of the nodes
directly above q then

either l/!ET and H= 0,
H

or~e~. .
If a a-proof of cf> from T using e exists, we say that cf> is a-provable from T by
means of l; notation T 1- ~ cf>.

TRUTH. Let e be a class of a-algebras and cperu. Then cf> is said to be true in
~ notation e I=~ cf>, if cf> holds in all a-algebras i:eee. Let Alg(a, 1) be the class
of all a-algebras satisfying T.

SOUNDNESS THEOREM. qe is sound then TI-~ cf> implies Alg(a, 1) I=~ cf>.
PROOF. Straightforward with induction. □

1. Module logic 65

If no confusion is likely to result, the sub- and superscripts of I= and I- may be
dropped without further warning.

1.8. Module logic. The set~ of modules is defined inductively as follows:
If o is a signature and Ta theory over o, then (o, T)E~
If M and NE~ then M + N E'VlL,
If o is a signature and ME~ then a□M E'VlL,
If ME~ then H (M)E~
If ME~ then S (M) E~.

Here + is the composition operator, allowing to organise specifications in a
modular way, and □ is the export operator, restricting the visible signature of
a module, thereby hiding auxiliary items. These operators occur in some form
or other frequently in the literature on software engineering. Our notation is
taken from BERGSTRA, HEERING & KLINT [23] in which also additional refer
ences can be found. The homomorphism operator H and the subalgebra opera
tor S are, as far as we know, new in the context of algebraic specifications. Of
course they are well known in model theory, see for instance MONK [140].

The visible signature ~(M) of a module M is defined inductively by:
~(a,T) = a,
~(M + N) = ~(M) U ~(N),
~(a□M) = an~(M),
~(H (M)) = ~(M),
~(S (M)) = ~(M).

TRUTH. The class Alg(M) of models of a module Mis defined inductively by:
cl; is a model of (a, T) if it is a a-algebra, satisfying T;
cl; is a model of M + N if it is a ~(M + N)-algebra, such that ~(M)Di:t is a
model of Mand ~(N)□ ce is a model of N;
cl; is a model of a□M if it is the restriction of a model 'ffi of M to the sig
nature a;
cl; is a model of H (M) if it is a homomorphic image of a model 'ffi of M;
cl; is a model of S (M) if it is a subalgebra of a model 'IB of M.

Note that Alg(M) is a generalisation of Alg(a, T) as defined earlier. All the ele
ments of Alg(M) are ~(M)-algebras. A ~(M)-algebra ci;EAlg(M) is said to
satisfy M. A formula <pEF~(M) is satisfied by a module M, notation M l=e <f,, if
Alg(M) l=~(M) q,, thus if <f, holds in all ~(M)-algebras satisfying M.

DERIVABILITY. A proof of a formula q,EF~(M) from a module M using the
logic I; is a well-founded, upwardly branching tree of which the nodes are
labelled by assertions N 1- if;, such that

the root is labelled by M 1- <f,
if N 1- if; is the label of a node q and H is the set of labels of the nodes

directly above q then N ~ i/; is one of the inference rules of Table I.

66 II. Modular specifications in process algebra - with curious queues

(a,T)rq, if q,ET

Mr q,j (jEJ) 4'· (j EJ) e
whenever 1 EII(M)

Mr ff, q,

Mr p_ N r ff,
M+Nrq, M+Nrq,

Mr'[,
if q,EF~

a□M r ff,

Mr'[,
if ff, is positive

H(M) r ff,

Mr p_ if ff, is tmiversal
S(M) r ff,

TABLE 1

Here positive and universal are syntactic criteria, to be defined for each logic e
separately, ensuring that a formula is preserved under homomorphisms and

subalgebras respectively. We write N r 1t' for - 0-, and omit braces in the
N ri/-'

conditions of inference rules. If a proof of ff, from M using e exists, we say
that ff, is provable from M by means of e, notation M re ff,.

LEMMA. If M re ff, then q,EF~(M)·
PROOF. With induction. The only nontrivial cases are the rules for +
These follow from~ s~up and F~ nF~ sF~np respectively.

SOUNDNESS THEOREM. If e is sound then M re ff, implies M l=e q,.

and □.

□

PROOF. With induction. Again the only nontrivial cases are the rules for +
and □. These follow since for all p-algebras lt and q,EF~np: a□ lt I= ff, ~
lt I= ff, and a□ lt I= ff, ~ lt I= ff, respectively. □

2. PROCESS ALGEBRA

This thesis does not contain an introductory chapter on process algebra. We
only give a listing of some important process modules. For an introduction to
the ACP formalism we refer the reader to [25, 26, 28] and [17].

2. Process algebra 67

2.1. ACP.,.. In this chapter a central role will be played by the module ACP.,.,
the Algebra of Communicating Processes with abstraction. A first parameter of
ACP.,. is a finite set A of actions. For each action a EA there is a constant a in
the language, representing the process, starting with an a-action and terminat
ing (successfully) after some time.

The first two composition operations we consider are ·, denoting sequential
composition, and + for alternative composition. If x and y are two processes,
then x y is the process that starts execution of y after successful completion of
x, and x +y is the process that either behaves like x or like y. We do not
specify whether the choice between x and y is made by the process itsself, or
by the environment.

We have a special constant 8, denoting deadlock, inaction, a process that
cannot do anything at all. In particular 8 does not terminate succesfully. We
writeA 6 =A U{8}.

Next we have a parallel composition operator 11. x I [y denotes the process
corresponding to the parallel execution of x and y. Execution of x l[y either
starts with a step from x, or with a step from y, or with a synchronisation of an
action from x and an action from y. Synchronisation of actions is described
by the second parameter of ACP.,., which is is a binary communication func
tion y:A 8 XA 6➔A 6 that is commutative, associative and has 8 as zero ele
ment:

y(a,b) = y(b,a) y(a,y(b,c)) = y(y(a,b),c) y(a,8) = 8

If y(a, b) = c-=f=8 this means that actions a and b can synchronise. The synchro
nous performance of a and b is then regarded as a performance of the com
munication action c. Formally we should add the parameters to the name of a
module: ACP.,.(A, y). However, in order to keep notation simple, we will always
omit the parameters if this can be done without causing confusion. In order to
axiomatise the II-operator we use two auxiliary operators IL (left-merge) and I
(communication merge). xlLy is xl[y, but with the restriction that the first step
comes from x, and x ly is xl[y but with a synchronisation action as the first
step.

Next we have for each HCA an encapsulation operator aJ-I. The operator
all blocks actions from H. The operator is used to encapsulate a process, i.e. to
block synchronisation with the environment.

When describing concurrent systems and reasoning about their behaviour, it
is often useful to have a distinguished action that cannot synchronise with any
other action. Such an action is denoted by the constant 'T~A 8 • The fact that 'T
cannot synchronise makes that in some sense this action is not observable.
Therefore it is often called the silent action. For each I CA the language con
tains an abstraction or hiding operator 'T1 . This operator hides actions in I by
renaming them into 'T, thus expressing that certain actions in a system
behaviour cannot be observed.

In Table 2 we summarize the signature of module ACP.,..

68 II. Modular specifications in process algebra - with curious queues

§ (sort): p the set of processes
f (functions): +: PXP➔P alternative composition (sum)

PXP➔P sequential composition (product)
II: PXP➔P parallel composition (merge)
lL: PXP➔P left-merge
I: PXP➔P communication-merge
all: P➔P encapsulation, for any H c;;A
7): P➔P abstraction, for any I c;;A
a EP for any atomic action a EA
5 EP inaction, deadlock
'f EP silent action

TABLE 2

Table 3 contains the theory of the module ACP". In this chapter we present
ACP" as a monolithic module. In [28] however, it is shown that ACP" can be
viewed as the sum of a large number of sub-modules which are interesting in
their own right. The module consisting of axioms Al-5 only is called BPA
(from Basic Process Algebra). If we add axioms A6-7 we obtain BPA8, and
BPAa plus axioms Tl-3 gives BPA"8• The module ACP consists of the axioms
Al-7, CF, CMI-9 and Dl-4, i.e. the left column of Table 3. All axioms in
Table 3 are in fact axiom schemes in a, b, H and /. Here a and b range over
A8 (unless further restrictions are made in the table) and H,I c;;A. In a product
x y we will often omit the ·. We take · to be more binding than other opera
tions and + to be less binding than other operations. In case we are dealing
with an associative operator, we also leave out parentheses.

2.1.1. Note. Let n>O. Let D = {d1, ... ,dn} be a finite set. Let td,, ... ,td. be
process expressions. We use the notation ~ td for the sum td, + · · · + td,.

dED
~ td = 5 by definition.

dE0

2.1.2. Summand inclusion. In process verifications the summand inclusion
predicate C turns out to be a useful notation. It is defined by: x c;;y ~
x+y=y. From the ACP"-axioms Al, A2 and A3 respectively it follows that
C is antisymmetrical, transitive and reflexive, and hence a partial order.

2.1.3. PROPOSITION. ACP" 1- Txl[y = T(xl[)').
PROOF. Txl[y ~ Tx[Ly = T(xl[y) = TX[Ly = nxll__y = T(Txl[y) ~ TXl[y.
Now use the fact that C is a partial order. □

2. Process algebra 69

x+y=y+x Al X'T' = X Tl
x +(y +z) = (x +y)+z A2 'T'X+X = 'T'X T2
x+x = x A3 a(Tx +y) = a(Tx +y)+ax T3
(x +y)z = xz +yz A4
(xy)z = x(yz) A5
x+8 = X A6
8x = 8 A7

a lb = y(a,b) CF

xllY = xlLy +ylLx +x ly CMI
alLx = ax CM2 'T'ILX = 'T'X TMI
(ax)ILy = a(xl[y) CM3 (Tx)ILy = T(xl[y) TM2
(x +y)ILz = xlLz +ylLz CM4 TIX= 8 TCI
(ax)lb = (a lb)x CM5 xl'T' = 8 TC2
a l(bx) = (a lb)x CM6 (Tx)ly = x ly TC3
(ax)l(by) = (alb)(xl[y) CM7 xl(ry)=xly TC4
(x +y)lz = x lz +y lz CM8
X I (y + z) = X ly + X I z CM9

aH('T') = 'T' DT
'T'i('T') = 'T' Tll

aH(a) = a if af/:H DI T1(a) = a if af!;l TI2
aH(a) = 8 if a EH D2 Ti(a) = 'T' if aEJ TI3
aH(X +y) = aH(x)+aH(y) D3 'T'1(X +y) = 'T'i(X)+T1(y) TI4
aH(xy) = aH(x)•aH(y) D4 Ti(xy) = 'T'i(X)·T1(y) TI5

TABLE 3

2.1.4. Monotony. Most of the operators of ACPT are monotonous with respect
to the summand inclusion ordering. Using essentially the distributivity of the
operators over +, one can show that if x Cy, ACPT proves:

x+zcy+z,
x·zcy·z,
xlLz CylLz,
xlzCylz,
aH(X)CaH(y),
Ti(x) CT1(y).

Due to branching time, in general z·x i z:y, xllz i yllz and zlLx i zlLy.
However, we do have monotony of the merge for the case were x is of the
form TX'. If TX' Cy, then ACPT 1- Tx'llz Cy llz:

2.1.3

TX'llz = T(x'llz) = Tx'ILz CylLz Cyllz.

70 II. Modular specifications in process algebra - with curious queues

2.2. Standard Concurrency. Often one adds to ACP7 the following module SC
of Standard Concurrency (aEA 8), which is parametrised by A. A proof that
these axioms hold for all closed recursion-free terms can be found in [26].

SC (xlly)llz = xll(Yllz) SCI
(x lay)llz = x l(ayllz) SC2
xly = ylx SC3
xl[y = yllx SC4
xl(Ylz)=(xly)lz SC5
xll(Yllz) = (xl[y)llz SC6

TABLE 4

2.3. Renamings. LetA 78 = A 8 U{T}. For every functionf:A 7,5➔A 7,5 with the
property that f (8)=8 and j(T)=T, we introduce an operator Pf: P➔P.

Axioms for PJ are given in Table 5 (Here aEA 78 and id is the identity).
Module RN is parametrised by A.

RN pfa) = f (a) RNI

pfx +y) = pfx)+pfy) RN2

Pfxy) = pfx) ·pfy) RN3

Pid(x) = X RN4

Pj'Pg(x) = PJog(x) RN5

TABLE 5

For t EA m and H <;:A we define mappings r1,n : A 70➔A 70 as follows:

{
t if a EH

ri,n(a) = a otherwise

In the following we will implicitly identify the operators aH and Pr , and also
'·"

the operators T1 and Pr •. ,: encapsulation is just renaming of actions into 8, and
abstraction is renaming of actions into the silent step T.

2.4. Chaining operators. A basic situation we will encounter is one in which
processes input and output values in a domain D. Often we want to 'chain'
two processes in such a way that the output of the first one becomes the input
of the second. In order to describe this, we define chaining operators >>> and
». In the process x>~y the output of process x serves as input of process y.
Operator » is identical to operator >>>, but hides in addition the communi
cations that take place at the internal communication port. The reason for
introducing two operators is a technical one: the operator » (in which we are

2. Process algebra 71

interested most) often leads to the possibility of an infinite sequence of internal
actions corresponding to hidden synchronisations between the two arguments
of the operator (a form of unguarded recursion, cf. Sections 2.8.1 and 2.12.1).
In order to deal with such behaviours, it is useful to view » as the composi
tion of two operators: the >>> operator and an abstraction operator that hides
the communications of >>>. We will define the chaining operators in terms of
the operators of ACPT + RN. In this way we obtain a simple, finite axiomati
sation of the operators. The operator » occurs (in a different notation)
already in HOARE [115] and MILNER [134].

Let for d ED, ,!.d be the action of reading d, and jd be the action of sending
d. Furthermore let ch (D) be the following set:

ch(D) = {jd,,!.d,s(d),r(d),c(d)ldED}.

Here r (d), s (d) and c (d) (d ED) are auxiliary actions which play a role in the
definition of the chaining operators. The module for the chaining operators is
parametrised by an action alphabet A satisfying ch (D) c;;;;A. The module should
occur in a context with a module ACPiA, y) where

range(y)n{,!.d,jd,s(d),r(d)ldED} = 0

and communication on ch (D) is defined by

y(s(d),r(d)) = c(d)

(all other communications give S). The renaming functions js and ,!.r are
defined by

js(jd) = s(d) and ,!.r(,!.d) = r(d) (dED)

and js(a) = ,!.r (a)= a for every .other a EAT8 · Now the 'concrete' chaining of
processes x and y, notation x >>>y, is defined by means of the axiom
(H = {s(d),r(d)ldED}):

I x>>>y = oH(Pts(x)IIP,1.,(y)) CHI I
The 'abstract' chaining of processes x and y, notation x»y, is defined by
means of the axiom (J = {c(d)ldED}):

I x»y = r1(x>>>y) CH2 I
The module CH+ consists of axioms CHI and CH2, and is parametrised by
A. The'+' in CH+ refers to the auxiliary actions in the module, which will
be removed in Section 3.

2.4.1. ExAMPLE. Let D = {O, 1 }. Process AND reads two bits and then outputs
1 if both are I, and O otherwise:

AND = ,!.O·(,!.O·jO + ,!.l·jO) + ,!.l·(,!.O·jO + ,!.l·jl)

Process OR reads two bits, outputs O if both are 0, and I otherwise:

72 II. Modular specifications in process algebra - with curious queues

OR = J,O·(l,O·jO + J,l·jl) + J,l·(J,O·jl + J,l·jl)

Process NEG reads a bit b and outputs 1-b:

NEG = J,O·jl + J,l·jO

These processes can be composed using chaining operators. It is not too hard
to prove:

(NEG·NEG»AND)»NEG = OR

Note however that we do not have

(NEG·NEG>>>AND)>>>NEG = OR

since in the LHS process internal computation steps are still visible.

2. 5. Recursion. A recursive specification E is a set of equations { x = t x Ix E VE}
with VE a set of variables and tx a process expression for x EVE. Only the
variables of VE may appear in tx. A solution of E is an interpretation of the
variables of VE as processes (in a certain domain), such that the equations of
E are satisfied. Recursive specifications are used to define (or specify) infinite
processes.

For each recursive specification E and x EVE, the module REC introduces a
constant <x IE>, denoting the x-component of a solution of E.

In most applications the variables XE VE in a recursive specification E will
be chosen fresh, so that there is no need to repeat E in each occurrence of
<XIE>. Therefore the convention will be adopted that once a recursive
specification has been declared, <XIE> can be abbreviated by X. If this is
done, X is called a formal variable. Formal variables are denoted by capital
letters. So after the declaration X = aX, a statement X = aaX should be inter
preted as an abbreviation of <XIX= aX> = aa <XIX= aX>.

Let E = { x = t x I x E VE} be a recursive specification, and t a process expres
sion. Then <t IE> denotes the term t in which each free occurrence of
x EVE is replaced by <x IE>. In a recursive language we have for each E as
above and x E VE an axiom

I <xlE> = <txlE> REC I
If the above convention is used, these formulas seem to be just the equations
of E. The module REC is parametrised by the signature in which the recursive
equations are written. In the presence of module REC each system of recur
sion equations over this signature has a solution.

2.6. Projection. The operator 7Tn: P➔P (n ElN) stops processes after they have
performed n atomic actions, with the understanding that T-steps are tran
sparent. The axioms for 7Tn are given in Table 6. Module PR is parametrised
by A.

2. Process algebra 73

PR '1Tn('T) = 'T PRI

'1To(ax) = I> PR2

'1Tn+1(ax) = a·?Tn(x) PR3

'1Tn('TX) = 'T"'1Tn(X) PR4

'1Tn(X +y) = '1Tn(x)+'1Tn(y) PR5

TABLE 6

In this chapter, as in other papers on process algebra, we have an infinite col
lection of unary projection operators. Another option, which we do not pur
sue here, but which might be more fruitful if one is interested in finitary pro
cess algebra proofs, is to introduce a single binary projection operator
IF: 'IT: lNXP➔P.

2. 7. Boundedness. The predicate Bn <:;;_P (n ElN) states that the nondeterminism
displayed by a process before its n th atomic steps is bounded. If for all n ElN:
Bn(x), we say xis bounded. Axioms for Bn are in Table 7 (a EA 6). Module B
is parametrised by A.

B Bo(x)

Bn('T)

Bn(x)

Bn('TX)

Bn(X)

Bn+1(ax)

Bn(x), Bn(y)

Bn(X +y)

TABLE 7

Boundedness predicates were introduced in [77].

Bl

B2

B3

B4

B5

2.8. Approximation Induction Principle. AIP- is a proof rule which is vital if
we want to prove things about infinite processes. The rule expresses the idea
that if two processes are equal to any depth, and one of them is bounded then
they are equal.

'fin ElN '1Tn(x) = '1Tn(y), Bn(x)

X =y

The'-' in AIP-, distinguishes the rule from a variant without predicates Bn.

74 II. Modular specifications in process algebra - with curious queues

2.8.1. DEFINITION. Let t be an open ACPT-tenn without abstraction opera
tors. An occurrence of a variable X in t is guarded if t has a subtenn of the
form a ·M, with a EA 6, and this X occurs in M. Otherwise, the occurrence is
unguarded.

Let E = { x = t x Ix EVE} be a recursive specification in which all t x are
ACPT-tenns without abstraction operators. For X, YE VE we define:

X ~ Y # Y occurs unguarded in tx.

We call E guarded if relation ~ is well-founded (i.e. there is no infinite
u u u

sequenceX ➔Y ➔Z ➔ · · ·).

2.8.2. THEOREM (Recursive Specification Principle (RSP)).
ACPT + REC + PR + B + AIP- I-

I (RSP) E I E guarded I
x = <x E>

In plain English the RSP rule says that every guarded recursive specification
has at most one solution.

2.8.3. ExAMPLE. Let E = {X=(a +b)·X} and F = {Y=a·(a +b)-Y +b· Y}
be two recursive specifications. Since

<XIE>= (a+b)·<XIE> = a-<XIE>+b·<XIE> =

=a·(a +b)·<XIE>+b·<XIE>,

the constant <XIE> satisfies the equation of F. Because the specification F
is guarded, RSP now gives that <XIE> = <YI F >.

2.9. Koomen's Fair Abstraction Rule (KFAR). In the verification of communi
cation protocols one often uses the following rule, called Koomen's Fair
Abstraction Rule (I (:A). Module KFAR is parametrised by A.

x=ix+y (iEl)
TJ{x)=T·Ti()')

(KFAR)

Fair abstraction here means that 1"i(x) will eventually exit the hidden i-cycle.
Below we will formulate a generalisation of KFAR, the Cluster Fair Abstrac
tion Rule (CF AR), which can be derived from KF AR.

2.9.1. DEFINITION. Let E = {X=tx I XEVE} be a recursive specification,
and let I (:A. A subset C of VE is called a cluster (of I) in E iff for all X EC:

m n

Ix= ~ ik-Xk + ~ Y1
k=l /=1

(For m;..o, i1,••·,imEJU{T}, X1, ... ,XmEC, n;..O and Y1, ... ,YnEVE-C).

2. Process algebra 75

Variables X EC are called cluster variables. For X EC and YE VE we say that

x,..,.,.y #Y occurs in tx.

We define

e(C) = {YEVE-Cl3XEC:X,..,.,.Y}

Variables in e(C) are called exits. ,._,.,.* is the transitive and reflexive closure of
,..,.,._ Cluster C is conservative iff every exit can be reached from every cluster
variable via a path in the cluster:

'f!X EC 'f/Y Ee(C): X,._,.,.* Y.

2.9.2. Ex.AMPLE. The transition diagram of Figure I represents a cluster in a
recursive specffication. The nodes represent variables in the recursive
specffication, labelled edges represent summands, and the triangles denote
exits. The sets {1,2,3}, {4,5,6, 7}, {8} and {1,2,3,4,5,6, 7,8} are examples of
conservative clusters. Cluster {1,2,3,4,5,6,7} is not conservative since exit Z
cannot be reached from cluster variables 4, 5, 6 and 7.

FIGURE 1

2.9.3. DEFINITION. The Cluster Fair Abstraction Rule (CFAR) reads as follows:

(CFAR) Let Ebe a guarded recursive specffication; let I~A with
III ;;;..2; let C be a finite conservative cluster of I in E; and
let X,X' EC with x,..,.,.x'. Then: TJ(X) = T • ~ T1(Y)

Yee(C)

76 II. Modular specifications in process algebra - with curious queues

2.9.4. THEOREM. ACP.,. + RN + REC + RSP + KFAR 1- CFAR.
PROOF. See [167]. □

2.10. Alphabets. Intuitively the alphabet of a process is the set of atomic
actions which it can perform. This idea is formalised in [12], where an operator
a:P➔iA is introduced, with axioms such as:

a(8) = 0

a(ax) = {a}Ua{x)

a(x +y) = a(x)Ua(y)

In this approach the question arises what axioms should be adopted for the
set-operators u, n, etc. One option, which is implicitly adopted in previous
papers on process algebra, is to take the equalities which are true in set theory.
This collection is unstructured and too large for our purposes. Therefore we
propose a different, more algebraic solution. We view the alphabet of a process
as a process; the alphabet operator a goes from sort P to sort P. Process a(x)
is the alternative composition of the actions which can be performed by x. In
this way we represent a set of actions by a process. A set B of actions is
represented by the process expression B= def~ b. So the empty set is

bEB

represented by 8, a singleton-set {a} by the expression a, and a set { a,b} by
expression a + b. Set union corresponds to alternative composition. The pro
cess algebra axioms Al-3 and A6 correspond to similar axioms for the set
union operator. The notation C for summand inclusion between processes
(Section 2.1.2), fits with the notation for the subset predicate on sets.

The following axioms in Table 8 define the alphabet of finite processes
(a EA). Module AB is parametrised by A.

AB a(8) = 8 ABI
a(ax) = a+a(x) AB2
a(x+y) = a(x)+a(y) AB3
a(T) = 8 AB4
a(Tx) = a(x) AB5

TABLE 8

In order to compute the alphabet of infinite processes, we introduce an addi
tional module AA which is parametrised by A. It is not hard to see that the
axioms of AA hold for all closed recursion-free terms.

2.10.1. ExAMPLE. {from [12]). Letp=<Xl{X=aX}>, and define q=T{a)(p),
r=q·b (with b=/=a). What is the alphabet of r? We derive:

a(r) = a(qb) = a(T{a)(p)·b) = a(T{a)(p)-r{a)(b)) =
AA3 RN5

= a(T(a)(pb)) C T(a) 0 a(a) 0 a(pb) = a(a) 0 a(pb).

2. Process algebra

AA a(x)kA

a(xl[y)=a(x)+a(Y)+a(x)I a(Y)

a0 pj(x) kP/'aH0 a(x)
(where H= {aeA 1/(a)=T})

'vneN a('ll'n(x))QI

a(x)Q!

TABLE 9

Since
AB2

a(pb) = a(apb) = a+a(pb),

AAI

AA2

AA3

AA4

we have that a k a(pb). On the other hand we derive for n EN:

a('ll'n(pb)) = a(an·B)ka

and therefore, by application of axiom AA4, a(pb) ka.
Consequently a(pb) = a and

a(r) = a{a} 0 a(pb) = a{a}(a) = B.

77

Information about alphabets must be available if we want to apply the follow
ing rules. These rules, which are a generalisation of the conditional axioms of
[12], occur in a slightly different form also in [168]. Rules like these are an
important tool in system verifications based on process algebra. Module RR is
parametrised by A and y.

a(x)CB 'vbeB :f(b)=b
pj(x)=x

RRI

a(x)CB, a(y)CC _ 2 _
p.,(xl[y)=pj(xllpJ(Y)) 'vceC./ (c)-f (c)/\('vbeB.fo-y(b,c)-fo-y(b,f (c))) RR2

TABLE 10

Observe that axioms AAI and RRI together imply axiom RN4 of Table 5.
Axiom RR2, which describes the interaction between renaming and parallel
composition, looks complicated, but that is only because it is so general. The
axioms RR are derivable for closed recursion-free terms.

78 II. Modular specifications in process algebra - with curious queues

2.10.2. LEMMA: (Conditional Axioms (CA)): Let CA be the theory consisting of
the conditional axioms in Table 11. Then: ACP.,. + RN + AB + RR I- CA.

a(x}l(a(v}nH)cH CAI
a(x}l(a{!'.}nJ)= 0 CA2

an(X l[y)=an(xllan(y)) TJ(x l[y)=TJ(xllT1(y))

a(x}nH= 0 CA3
a(x}nJ= 0 CA4

an(x)=x TJ(x)=x

H=H1UH2
CA5

1=11 U/i
CA6

an(x)=an, 0 an2 (X) TJ(x)=T1, OT1Jx)

Hn/=0
CA7

TJoaH(x)=anoTJ(X)

TABLE 11

PROOF: We prove three of the rules. The others can be dealt with similarly.
CA3: Choose aEa(x). Then af/.H. This means that r6,n(a) = a. Because a

was chosen arbitrarily, we can aply rule RRI, which gives
Pr~H(x) = an(x) = x.

CA5: Follows immediately from the observation

and application of axiom RN5 of Table 5.
CAI: Choose cEa(y). We have:

rB,n(c) = rs,n°rs,n(c)

Choose hEa(x). If cf/.H then r8,n(c) = c and the condition of rule
RR2 is fulfilled. If c EH then either y(b,c) equals 8 (so that we have
rs,noY(b,c) = 8), or y(b,c)EH, so that again r 8,noY(b,c) = 8. But in
case c EH we also have

rs,n°Y(h,rs,H(c)) = r6,n°"Y(b,8) = 8

This means that we can apply rule RR2. □

2.10.3. REMARK. In most of the situations where we want to apply axiom
CAI, H does not contain results of communications: (A IA)nH= 0. Further
actions from a(x) will not communicate with actions from H. In these cases
the following weakened version of axiom CA 1 is already strong enough:

a(x}IH = 0 CAI*
an(xl[y) = an(xllan(y))

2. Process algebra 79

2.11. ACPr The combination of all modules presented thus far, except for
KFAR, will be called ACP~ (the system ACP~ as presented here slightly
differs from a system with the same name occurring in [28]). The module is
defined by:

ACP~ = ACP.,.+SC+RN+CH++REC+PR+B+AIP~ +AB+AA+RR

Bisimulation semantics, as described in for instance [13], gives a model for the
module ACP~ + KFAR. Work of BERGSTRA, KLoP & OLDER0G [29] showed
that in a large number of interesting models KF AR is not valid. Therefore we
have chosen not to include KFAR in the 'standard' module ACP*-

2.12. Generalised Recursive Specification Principle. For many applications the
RSP is too restrictive. Therefore we will present below a more general version
of this rule, called RSP+ .

2.12.1. DEFINITION. Let <!fl be the set of closed expressions in the signature of
ACP~. A process expression p E<!P is called guardedly specifiable if there exists
a guarded recursive specification F with YE VF such that

ACP~ 1-p=<YIF>.

We have the following theorem:

2.12.2. THEOREM (Generalised Recursive Specification Principle (RSP+)J.
ACP~1-

E ----- <x IE> guardedly specifiable
x - <xlE>

2.12.3. Remarks. In the definition of the notion 'guardedly specifiable', it is
essential that the identity p = <YI F> is provable. If we would only require
that p = <YI F >, then the corresponding version of RSP+ would not be
provable from Acn, since this rule would then not be valid in the action rela
tion model of [77]. In this model we have the identity <Xl{X=X}>=8. 1

Hence <Xl{X=X}>=<Yl{Y=8}>=8. Since the specification {Y=8} is
guarded, this would mean that expression <XI { X = X} > is guardedly
specifiable. But then RSP+ gives that for arbitrary x: x = <XI {X = X} > = 8.
This is clearly false.

1. Strictly speaking, this is not correct. In [77], a recursion construct <XIE > is viewed as a
kind of variable which ranges over the X-components of the solutions of E. Since any process X
satisfies X=X, the identity <XI (X=X}>=8 does not hold under this interpretation. However,
if one interprets the construct <XIE> as a constant in the model of [77], then the most natural
choice is to relate to <XIE> the bisimulation equivalence class of the term <XIE>. Under
this interpretation <XI { X = X} > = 8.

80 II. Modular specifications in process algebra - with curious queues

We conjecture that an expression p is guardedly specifiable iff it is provably
bounded, i.e. for all n EN: ACPf 1- Bn(x).

3. APPLICATIONS OF THE MODULE APPROACH IN PROCESS ALGEBRA

3.1. The auxiliary status of the left-merge.

3.1.1. Semantics. Sometimes it happens that our 'customers' complain that
they do not succeed in proving the identity of two processes in ACPf, whose
behaviour is considered 'intuitively the same'. Often, this is because there are
many intuitions possible, and ACPf happens not to represent the particular
intuitions of these customers. Therefore we have defined some auxiliary
modules that should bridge the gaps between intuitions.

In general a user of process algebra wants that his system proves p = q (here
p and q are closed process expressions in the signature of ACPf), whenever p
and q have the same interesting properties. So it depends on what properties
are interesting for a particular user, whether his system should be designed to
prove the equality of p and q or not. For this reason the semantical branch of
process algebra research generated a variety of process algebras in which
different identification strategies were pursued. In bisimulation semantics we
find algebras that distinguish between any two processes that differ in the pre
cise timing of internal choices; in trace semantics only processes are dis
tinguished which can perform different sequences of actions; and, somewhere
in between, the algebras of failure semantics identify processes if they have the
same traces (can perform the same sequences of actions) and have the same
deadlock behaviour in any context. A lot of these process algebras can be
organised as homomorphic images of each other, as indicated in Figure 2. For
concrete process algebra (without T-moves) these process algebras have been
defined in Chapter I. If two process expressions p and q represent the same
process in bisimulation semantics with explicit divergence, they have many
properties in common; if they only represent the same process in trace seman
tics, this only guarantees that they share some of these properties; and, des
cending from bisimulation semantics with explicit divergence to trace seman
tics, less and less distinctions are made. Now a user should state exactly in
which properties of processes (s)he is interested. Suppose (s)he is only
interested in traces and deadlock behaviour, then we can tell that for this pur
pose failure semantics suffices. This means that if processes p and q are proven
equal in failure semantics, this guarantees that they have the same relevant
properties. If they are only identified in trace semantics (somewhere in the lat
tice below failure semantics) such a conclusion cannot be drawn, but if they
are identified in a semantics finer than failure semantics (such as bisimulation
semantics with explicit divergence), then they certainly have the same interest
ing properties, and probably some uninteresting ones as well. Hence a proof in
bisimulation semantics with explicit divergence is just as good as one in failure
semantics (or even better).

3. Applications of the module approach in process algebra 81

bisimulation semantics with explicit divergence [29]

l~
ready trace semantics [14] bisimulation semantics

/ ~ wUh fafr alutractfon [13]

readiness semantics [144] failure trace semantics [150]

~/
failure semantics [29, 42, 64, 116]

l
trace semantics [115]

FIGURE 2. The linear time - branching time spectrum

This is the reason that we do our proofs mostly in bisimulation semantics:
the entire module ACPf is sound with respect to bisimulation semantics with
explicit divergence. However, if two processes are different in bisimulation
semantics, we will never succeed in proving them equal from Acn. In such a
case we might add some axioms to the system, that represent the extra
identifications made in a less discriminating semantics. If we find a proof from
this enriched module, it can be used by anyone satisfied with the properties of
this coarser semantics.

It is in the light of the above considerations that one should judge the
appearance of the following module T4:

T 4 I T('rx + y) = TX + y I
The law of this module does not hold in bisimulation semantics, but it does
hold in all other semantics of Figure 2. Thus any identity derived from ACPf
+ T4 holds in ready trace semantics and hence also in the courser ones like
failure and trace semantics, or so it seems

82 II. Modular specifications in process algebra - with curious queues

3.1.2. An inconsistency.

3.1.2.1. DEFINITION. Let M be a process module with ~(M):;;2 ~(BPA-ro)- We
call M consistent if for all closed expressions x and y in the signature of BPAT8
with

M1-x=y,

the sets of complete traces agree:

trace (x) = trace (y).

A complete trace is a finite sequence of actions, ending with a symbol y or 8
indicating successful resp. unsuccessful termination. A formal definition of the
set trace (x) is given in [29]. Here we only give some examples, which should
make the notion sufficiently clear:

trace(abc +ad8+a(Tbc+d)) = {abcy, ad8, ady}

trace(T) = { y} =j= {8, y} = trace(T+T8)

A model ct of M is consistent if for all closed expressions x and y in the signa
ture of BPAT8 with

ct I= X =y,

the sets of complete traces agree. The module ACP~ + KFAR is consistent
because bisimulation semantics with fair abstraction, as described in [13], gives
a consistent model for this module. However, KF AR is not valid in any of the
other semantics of Figure 2.

3.1.2.2. PROPOSITION.

ACPT+T4 I- T(ac +ca)+bc = T(T(ac +ca)+bc +c(w+b)).
PROOF.

T(w+b)llc = (m+b)llc = T(allc)+bc = T(ac+ca)+bc

T(Ta+b)ll__c = T((m+b)llc) = T(T(ac+ca)+bc+c(m+b)) □

Proposition 3.1.2.2 shows that module ACPT+T4 is not consistent. This sud
den inconsistency must be the result of a serious misunderstanding. And
indeed, what's wrong is the use of ACPT in the less discriminating models (say
in failure semantics). It happens that, in a setting with T, failure equivalence
(or ready trace equivalence for that matter) is not a congruence for the left
merge lL, and this causes all the trouble.

3.1.3. Solution. In applications we do not use the operators lL and I directly.
In specifications we use the merge operator II, and lL and I are only auxiliary
operators, needed to give a complete axiomatisation of the merge.

Let sacpT be the signature obtained from ~(ACPT) by stripping the left
merge and communication-merge:

3. Applications of the module approach in process algebra 83

sacpT = .I(ACPT) - {f: lL: P XP➔P, IF: I : P XP➔P}

Failure equivalence as in [29], etc. are congruences for the operators of sacpT.
However, the operators lL and I in ACPT are needed to axiomatise the 11-
operator, and without them even the most elementary equations cannot be
derived. Our solution to this problem is based on the following idea. Suppose
we want to prove an equation p = q in the signature sacpT that holds in ready
trace semantics (and hence in failure semantics) but not in bisimulation seman
tics. Then we first prove an intermediate result from ACPT: one or more equa
tions holding in bisimulation semantics (with explicit divergence) and in which
no lL and I appear. This intermediate result is preserved after mapping the
bisimulation model homomorphically on the ready trace or failure model, and
can be combined consistently with the axiom T4. Thus the proof of p = q can
be completed. In our language of modules we can describe this as follows. The
module

SACPT = H(sacpT□(ACPT+SC))

does not contain the operators lL and I in its visible signature and since
failure semantics can be obtained as a homomorphic image of bisimulation
semantics, considering that ACPT + SC is sound w.r.t. bisimulation semantics
and that the operators of sacpT carry over to failure semantics, we conclude
that this module is sound w.r.t. failure semantics. Hence it can be combined
consistently with T4, and SACPT is a suitable framework for proving state
ments in failure semantics.

We would like to stress that the use of the H-operator is essential here. The
H-operator makes that from module SACPT only positive formulas are prov
able. The following example shows what goes wrong if we also allow non
positive formulas. From the proof of Proposition 3.1.2.2 it follows that:

sa T □ (ACPT+SC) I- T(Ta+b)=Ta+b
cp c(Ta+b)CT(ac+ca)+bc

Consequently we can prove an inconsistency if we add law T4:

sacpT□(ACPT+SC)+ <T(Tx+y)=,-x+y> I- c(Ta+b)CT(ac+ca)+bc

So although the formulas provable from module sacpTO(ACPT+SC) contain
no left-merge, some of them (which are non-positive) cannot be combined con
sistently with the laws of ready trace semantics and failure semantics.

3.2. Associativity of the chaining operator. ACPT is a universal specification for
malism in the sense that in bisimulation semantics every finitely branching,
effectively presented process can be specified in ACPT by a finite system of
recursion equations (see [13]). Still it often turns out that adding new opera
tors to the theory facilitates specification and verification of concurrent sys
tems. In general, adding new operators and laws can have far reaching conse
quences for the underlying mathematical theory. Often however, new opera
tors are definable in terms of others operators and the axioms are derivable

84 II. Modular specifications in process algebra - with curious queues

from the other axioms. In that case the new operators can be considered as
notations which are useful, but do not complicate the underlying theory in any
way. Examples of definable operators are the projection operators and the
process creation operator of [22].

Just like the left-merge and the communication-merge are needed in order to
axiomatise the parallel composition operator, new atomic actions are often
needed if we want to define a new operator in terms of more elementary
operators. As an example we mention the actions s(d) and r(d) which we
need in the definition of the chaining operators. These auxiliary atoms will
never be used in process specifications. Unfortunately they have the
unpleasant property that they occur in some important algebraic laws for the
new operators. One of the properties of the chaining operators we use most is
that they are 'associative'. However, due to the auxiliary actions, the chaining
operators are not associative in general. We do not have general associativity
in the model of bisimulation semantics. Counterexample:

(r(d)>~(s(d)+s(e)))>>>r(e) = c(d)·<>

r(d)>>>((s(d)+s(e))~>r(e)) = c(e)·<>

However, we do have associativity under some very weak assumptions. In the
model of bisimulation semantics, the following law is valid (here
H= {s(d),r(d) Id ED}):

aH(x)=x, aH(y)=y, aH(z)=z CC
(x ~>y)>>>z = x>>>(y >~z)

It would be much nicer if we somehow could 'hide' the auxiliary atoms, and,
for the >>>-operator, have associativity in general. In this section we will see
how this can be accomplished by means of the module approach.

3.2.1. The associativity of the chaining operators. Although the rule CC holds in
the model of bisimulation semantics, we have not been able to prove it alge
braically from module ACP~. However, we can prove algebraically a weaker
version of rule CC if we make some additional assumptions about the alpha
bet. We assume that besides actions ch(D), the alphabet A contains actions:

H = {s(d),r(d)ldED} en H = {~(d),~(d)ldED}

One may think about these actions as special fresh atoms which are added to
A only in order to prove the 11ssociati~ty of the chaining operators. 1 Let
If={r(d),s(d)ldED} and let H=HUHUH. We assume that actions from
H do not synchronise with the other actions in the alphabet, and that

I. The Fresh Atom Principle (FAP) says that we can use new (or 'fresh') atomic actions in proofs.
In [16), it is shown that FAP holds in bisirnulation semantics. We have not included FAP in the
theoretical framework of this chapter. Therefore, if we need certain 'fresh' atoms in a proof, we
have to assume that they were in the alphabet right from the beginning.

3. Applications of the module approach in process algebra 85

A A

range(y)nH = 0. OnH communication is given by (dED):

y(j(d), r(d)) = y(j(d), r(d)) = y(s(d), r(d)) = y(s(d), r(d)) =
= y(!._(d), !._(d)) = y(!._(d), r(d)) = y(s(d), !._(d)) = c(d)

We define for v,wE{i,-1,,s,r,s,r,~!._} the renaming function vw:

_ {w(d) if a=v(d) for some dED
vw(a) - a otherwise

3.2.1.1. LEMMA. SACP.,. + RN + CH+ + AB + AA + RR 1-

on(x)=x, aH(Y)=y, aH(z)=z

ojj(Pt:r(x)llpv(Y))=x>~y = on(PtsCx)llp.1,r(Y))
- - -

PROOF. We only prove the first equality. The second one follows by symmetry.

oii(Pt:r(x)llp,17(Y)) = (Note 1 below, RRI)

= on°Pss0 Pr,(Pt:.(x)IIP.1,,(Y)) = (RN5, y=on(Y))

= on°Pss0 PrrCPtsCx)IIPrr0 P.1,r(Y)) = (Note 2, RR2)

= on°Pss0 PrrCPt:r(x)IIP.1,r(Y)) = (SC4, RN5, x=oii(x))

= ojj0 Prr0 PsrtP.1,r(Y)IIPss0 PtsCx)) = (as in Note 2, RR2)

= Oif0 Prr0 PsrtP.1,r(Y)IIPtsCx)) = (RN5)

= on°oii(P.1,r(Y)llpts(x)) = (Note 3, RRI, SC4)
CHI

= on(PtsCx)IIP.1,r(Y)) = x~y

Note I. Let B=A-H. We claim a(Pt:r(x)llp,17(Y))<;;;B
(recall that B=aeJ}:,beBb).

PROOF: a(Pt:r(x)llp,17(Y)) =
AA2

= aopt8(x)+aop.1,,(Y)+aopts(x)laopJ,,'(Y) <;;;
RN5

(Use that X <;;;y ==? X lz <;;;y lz. Use further x=oH(x) = On°on(x)=on(x).)
AAI

C a0 Pt:.0 on(x)+aop,17°on(Y)+A IA C

(Use that range(y)nH= 0 .)
RN5

C a0 a n°Pts(X) + aoa H 0 P .1,,(Y) +BC
AA3,RN4

c;;;; onoaopt:r(x)+onoaop,17(Y)+Bc;;;;

(Use that x <;;;y implies pfx)<;;;pfy).)

86 II. Modular specifications in process algebra - with curious queues

AA 1

C an(A)+an(A)+B=B

This finishes the proof of the claim.

Note 2. Application of axiom AAI gives: a0 p1'y(x)CA and a0 p-1,r(y)CA. In
order to apply axiom RR2, we first have to check that for all c EA:
rr(c)=rr0 rr(c). This is obviously the case. Because range(y)nH= 0, we have
for all b,cEA:rr0 y(b,c)=y(b,c). Now the last thing to be checked is that for
b,cEA: y(b,c)=y(b,rr(c)). This turns out to be the case.

Note 3. Let C=A -H. We claim: a(p-1,r(y)IIPtix)) CC. The proof is similar to
the proof in Note I.

This finishes the proof of the lemma.

3.2.1.2. THEOREM. SACPT + RN + CH+ + AB + AA + RR 1-

aH(x)=x, aH(y)=y, aH(z)=z

x>~(y>>>z)=(x>>>y)>>>z

D

PROOF. This is essentially Theorem 1.12.2 of [168]. We give a sketch of the
proof.

x>>>(Y>>>z) = aH(Pt:r(x)/lp.JJ0 an(Pts(Y)IIP-1,r(z))) =
- - -

RN5

= a.H(Pt:r(x)llan°P-1,,(Pts(y)llp-1,r(z))) =
- - -

RRI

= aH 0 an(Pt:r(x)llan°P-1,iPts(Y)IIP-1,,(z))) =
- - - -

RR1

= an°an(Pt:r(x)IIP.J,r(Pts(y)llp-1,r(z))) =
- - -

RR1

= a.H0 a!!(Pt:r(x)IIP-1,,(P.JJ0 Pt:(y)llp~(z))) =
RRI

= aH0 a!!(Pt:r(x)IIP.JJ0 Pt:(Y)IIP-1,_i:(z)) =
RN5

= an°aH(pt:r(x)IIPts 0 P-1,,(Y)IIP-1,,(z)) =
- - -

RRI

= a!!0 a.H(PtlPt:r(x)IIPt:0 P,1,r{Y))IIP-1,_i:(z)) =
RR1

= a!! 0 a.H(PtlPt:r(x)llp.JJ(y))llp-1,_i:(z)) =
RR1

= an°a.H(a.H0 PtsCPt:r(x)IIP-1,,(Y))IIP-1,,(z)) =
- - -

RRI

= a!!(a.H0 PtlPt:r(x)IIP,1,r{Y))llp-1,_i:(z)) =
RN5

an(Pts 0 a.H(Pt:r(x)IIP,1,r{Y))IIP-1,,(z)) = (x>>>y)>~z

D

3. Applications of the module approach in process algebra

3.2.1.3. THEoREM. SACP7 + RN + cH+ + AB + AA + RR r

aJI(x)=x, aJI(y)=y, aJI(z)=z

x»(y»z) = (x»y)»z

PROOF. Let/= {c(d)ldED}.
CH2

x»(y»z) = 1°J(x:;:};>>(1)(y>>>z))) =
CHI

= 'T1°aH(PtsCx)IIP,1,r 0 'T1(y>>>z)) =
RN5

= aH0 'T!CPtsCx)ll'T1°P,1,r(y>>>z)) =
RR2

= aH°'T!CPtsCx)IIP,1.,(y>>>z)) =
RN5

= 'T1°aH(PtsCx)IIP,1.,(y>>>z)) =
CHI

= TJ(x>>>(y>>>z)) =
3.2.1.2

87

= 'T1((x>:;:};>y)>>>z) = · · · = (x»y)»z □

3.2.2. Removing auxiliary atoms. We will now apply the module approach to
remove completely the auxiliary atoms which were used in the definition of the
chaining operators. What we want to obtain is a module where 'inside' the
auxiliary atoms are used to define the chaining operator but where 'outside'
they are no longer visible and moreover chaining is associative in general.
Below we will employ the notation:

o-AM=(~:(M)- o)□ M.

Consider the module:
~

CH-= ({IF:aEPlaEH}U{IF:pf:P➔Pl/:ATa➔ATa})

~(SACPT + RN +cH+ + AB+ AA+ RR).

This module cannot be used to prove any formula containing atoms in H. But
unfortunately module CH- still does not prove the general associativity of the
chaining operators:

CH- V x>>>(y>>>z)=(x:;:};>>y)>>>z

The reason is that the auxiliary atoms, although removed from the language,
are still present in the models of module CH-. Thus the countere.J£ample
(r(d)>>>(s(d)+s(e)))>>>r(e) still works in the models. Let A- =A-H. We
are interested in consistent models which only contain actions of A - . The
module CH-+ <a(x) \:A-> does not denote such models: all consistent
models of CH- contain the process A with a(A)=A SZ A-. Adding the law
a(x) \:A - therefore throws away all consistent models. The right class of
models can be denoted with the help of operator S. We consider the module

88 II. Modular specifications in process algebra - with curious queues

CH= S(CH-)+<a(x)(;:;A->.

Some models of module CH- have consistent submodels which do not contain
auxiliary atoms. In these models the law a(x) ~A - holds. Thus module CH
has consistent models.

From Theorems 3.2.1.2 and 3.2.1.3, together with axiom RRl, it follows
that:

CH- f- a(x)CA-, a(y)cA-, a(z)CA- and
(x>~y)>>>z=x>>>(y>>>z)

CH- f- a(x) CA-, a(y) CA-, a(z) cA
(x»y)»z =x»(y»z)

From this we can easily see that module CH proves the general associativity of
the chaining operators:

CH f- x~(y~>z)=(x>>>y)>>>x and

CH f- x»(y»z)=(x»y)»x.

3.2.3. The following laws can be easily proven from module CH (here
d,eED):

fd·x»(~ -.1,eye) = T·(x»yd)
eeD

td·x»tey = te·(td·x»y)

(~ -.1,d·xd)»(~ -.1,ef) = ~ -.1,d·(xd»(~ -.1,ef))

LI

L2

L3

The laws are equally valid when the operator » is replaced by >>>, except for
law LI where in addition the T has to be replaced by c(d).

3.3. SACPr Module SACP~ is an 'improved' version of module ACP1. It is
defined by:

SACP1 = SACPr+RN+CH+REC+PR+B+AIP-+AB+AA+RR

If modules in the above defining equation have an alphabet as parameter, this
is A - , and if they are parametrised by a communication function this is the
restriction y- of y to (A - U { 5}) X (A - U { 5}). The rules RSP, RSP+ and
CFAR can still be used in a setting with module SACPr We have SACP~ r
RSP, SACP~ f- RSP+ and SACP~+ KFAR r CFAR.

4. Queues 89

4. QUEUES

In the specification of concurrent systems FIFO queues with unbounded capa
city often play an important role. We give some examples:

The semantical description of languages with asynchronous message pass
ing such as CHILL (see Recommendation Z.200 (CHILL language
definition), CCITI Study Group XI, 1980),
The modelling of communication channels occurring in computer net
works (see LARSEN & MILNER [127] and VAANDRAGER [167)),
The implementation of languages with many-to-one synchronous com
munication, such as POOL (see AMERICA [9] and VAANDRAGER [168]).

Consequently the questions how queues can be specified, and how one can
prove properties of systems containing queues, are important. For a nice sam
ple of queue-specifications we refer to the solutions of the first problem of the
STL/SERC workshop [69]. Some other references are BROY [44], HOARE [116]
and PRATI [154].

4.1. Also in the setting of ACP a lot of attention has been paid to the
specification of queues. Below we give an infinite specification of the process
behaviour of a queue. Here D is a finite set of data, D • is the set of finite
sequences a of elements from D, the empty sequence is £. Sequence a*a' is the
concatenation of sequences a and a'. The sequence, only consisting of d ED is
denoted by d as well.

QUEUE = Q, = ~ ,l,d ·Qd
deD

Q "*d = ~ J,e ·Qe•<J•d + jd ·Q"
eeD

Note that this infinite specification uses only the signature of BPA6 (see Sec
tion 2.1). We have the following fact:

4.1.1. THEOREM: Using read/send communication, the process QUEUE cannot be
specified in ACP by finitely many recursion equa,tions.
PROOF: See BAETEN & BERGSTRA [11] and BERGSTRA & TIURYN [31]. □

It turns out that if one allows an arbitrary communication ·function, or extends
the signature with an (almost) arbitrary additional operator, the process
QUEUE can be specified by finitely many recursion equations. For some nice
examples we refer to BERGSTRA & Kl.OP [28].

4.2. Definition of the queue by means of chaining. A problem we had with all
ACP-specifications of the queue is that they are difficult to deal with in process
verifications. For example, let BUF I be a buffer with capacity one:

90 II. Modular specifications in process algebra - with curious queues

BUFI = I J,d·BUFid
dED

BUFid = jd·BUFI

In process verifications we need propositions like QUEUE»BUFI = QUEUE
(in Section 5 we present a protocol verification where a similar fact is actually
used). However, the proof of this fact starting from the infinite specification is
rather complicated. Now the following specification of a queue by means of
the (abstract) chaining operator allows for a simple proof of the proposition
and numerous other useful identities involving queues. This specification is
also described by HOARE [116] (p. 158).

Q = IJ.d·(Q»BUF1d)
deD

The first thing we have to prove is that the process described above really is a
queue.

4.2.1. THEOREM: Q = QUEUE.
PROOF: Define for every nElN and a=d 1, ••• ,dmED* processes D~ as fol
lows:

Dn = Q»BUFI · · · · »BUFld' · · · »BUFldm a n Umes

So by definition D~ = Q. Using the laws of Section 3.2.3, we derive the fol
lowing recursion equations:

D~ = Q = I J,d ·(Q»BUF1d) = I J,d ·D~
deD deD

D~.d = Q»BUFI ... n times »BUFld' ... »BUFldm»BUFld =
= IJ.e·(Q»BUFie»BUFI · · · n times »BUF1d' · · · »BUF1dm»BUF1d

note

+ jd·(Q»BUF1 · · · n times »BUFld' · · · »BUFldm»BUFl) =

I J,e ·(Q»BUFl · · · n times »BUF1e»BUFld' · · · »BUFldm»BUF1d

+ jd·(Q»BUF1 · · · n+I times »BUF1d' · · · »BUFldm) =
I J,e ·D~•a•d + jd ·D~ + 1

eeD

Note. In the second last step we moved the data in the sequence of 1-datum
buffers to the right as far as possible. It is easy to see that this is allowed. Sup
pose that not all data are moved to the right. By applying the associativity of
the chaining operator we can rewrite the expression in such a way that we get

4. Queues 91

a sub term of the form B UF 1 d » B UF 1. This sub term can be rewritten into
T·(BUFl»BUFld). Next we move the initial T to the front of the sequence
using the identity Txl[y =T(xl[y) of Proposition 2.1.3, and remove it by means
of axiom Tl (xT=x) of ACPT. Now we have moved one datum one place to
the right in the queue. We can iterate this procedure until the desired result is
obtained.

Define the process Q? by:

Q? = ~ J,d·Q~
dED

Q:*d = ~ J,e ·Q~*a•d + jd ·Q: + 1

The specification of process Q? is clearly guarded. Applying RSP gives us on
the one hand that QUEUE=Q?, and on the other hand that Q=D? =Q?.
Consequently QUEUE=Q. □

The proof above shows the 'view of a queue' that lies behind the specification
of Q. During execution there is a long chain of I-datum buffers passing mes
sages from 'the left to the right'. After the input of a new datum on the left, a
new buff er is created, containing the new datum and placed at the leftmost
position in the chain. Because no buffer is ever removed from the system, the
number of empty buffers increases after every output of a datum.

4.2.2. LEMMA: Q»BUFl = Q.
PROOF:

Q»BUFl = ~ J,d ·((Q»BUF1d)»BUF1) =

= ~ J,d·(Q»(BUF1d»BUF1)) =

2.1.3
= ~ J,d ·(Q»(BUFl»BUFld)) =

Now apply RSP+ (from the proof of Theorem 4.2.1 it follows that Q is guard
edly specifiable). □

By means of an inductive argument we can easily prove the following corollary
of Lemma 4.2.2.

4.2.3. COROLLARY: Let for <JED*, Q" be a queue with content <1:

92 II. Modular specifications in process algebra - with curious queues

Q' = Q

4.2.4. PROPOSITION: Q »Q = Q.
PROOF:

Q»Q = I J,d·((Q»BUFld)»Q) =
deD

= IJ,d·(Q»(BUFld»Q)) =
deD

= I J,d·(Q»T·(BUF1»(Q»BUF1d))) =
deD

2.1.3
= I J,d ·(Q »(B UF 1 »(Q » B UF 1 d))) =

deD

= I J,d·((Q»BUF1)»(Q»BUF1d)) =
deD

4.2.2
= I J,d·(Q»(Q»BUFld)) =

deD

= IJ,d·((Q»Q)»BUFld)
deD

Now apply RSP+.

4.2.5. COROLLARY: Let a,pED*. Then: r(Q 0 »QP) = rQ 0 *P.

D

4.2.6. Remark. It will be clear that the implementation which is suggested by
the specification of process Q is not very efficient: at each time the number of
empty storage elements equals the number of data that have left the queue.
But we can do it even more inefficiently: the following queue doubles the
number of empty storage elements each time a datum is written.

IQ= ,;,ld{Q:>-td·Q) I

A standard proof gives that Q = QUEUE. From the point of view of process
algebra this specification is very efficient. It is the shortest specification of a
FIFO-queue known to the authors, except for a 5-character specification of
PRATT (154]: J,f X D*. A problem with Pratt's specification is that a n~t
axiomatisation of the orthocurrence operator X is not available. Our Q
specification h~ ~ dis!_dvantage that it does not allow for simple proofs of
identities like Q»Q = Q.

4. Queues

4.3. Bags. In [24] a bag over data domain D is defined by:

BAG = ~ J,d ·(jdllBAG)
deD

4.3.1. THEOREM: Q»BAG = BAG.
PROOF:

Q»BAG = ~ J,d·((Q»jd·BUFl)»BAG) =

Now apply RSP.

= ~ J,d·(Q»(jd·BUFl»BAG)) =
deD

= ~ J,d·(Q»,,.·(BUFl»(BAGlljd))) =

= ~ J,d·(Q»(BUFl»(BAGlljd))) =
deD

= ~J,d·((Q»BUFl)»(BAGlljd)) =
deD

= ~ J,d·(Q»(BAGlljd)) =
deD

note
= ~ J,d·((Q»BAG)lljd)

deD

93

Note. We claim that SACPT+RN+CH++AB+AA+RR 1- (Q»(BAGlljd))
= ((Q»BAG)lljd). Let I= {c(d)ldED} and H = {r(d),s(d)ldED}. Then:

(Q»(BAGlljd)) = T1°an(PtsCQ)llpJ.r(BAGlljd)) =
(straightforward application of axioms of AB + AA + RR + SC6)

= T1°an(Pts(Q)IIP,1,r(BAG))llid =
= ((Q»BAG)llid)

From the claim it follows that CH 1- (Q»(BAGlljd)) = ((Q»BAG)lljd) and
consequently SACPf 1- (Q»(BAGlljd)) = ((Q»BAG)lljd). □

4.3.2. Remark. The identity BAG»Q =BAG does not hold. The intuitive
argument for this is as follows: if a bag contains an apple and an orange, and
the environment wants an apple, then it can just take this apple from the bag.
In the case where a system, consisting of the chaining of a bag and a queue,
contains an apple and an orange, it can occur that the first element in the
queue is an orange. In this situation the environment has to take the orange
first. The argument that processes Q»BAG and BAG are different, because in
the first process the environment is not able to pick an apple that is still in the

94 II. Modular specifications in process algebra - with curious queues

queue, does not hold. In ACP.,. we abstract from the real-time behaviour of
concurrent systems. If the environment waits long enough then the apple will
be in the bag.

4. 4. A queue that can lose data. In the specification of communication proto
cols, we often encounter transmission channels that can make errors: they can
lose, damage or duplicate data. All process algebra specifications of these
channels we have seen thus far were lengthy and often incomprehensible.
Consequently it was difficult to prove properties of systems containing these
queues. Now, interestingly, the same idea that was used to specify the normal
queue by means of the chaining operator, can also be used to specify the vari
ous faulty queues. One just has to replace the process B UF I in the definition
by a process that behaves like a buffer but can lose, damage or duplicate data.

First we describe a queue FQ that can lose every datum contained in it at
every moment, without any possibilities for the environment to prevent this
from happening. The basic component of this queue is the following Faulty
Buffer with capacity one:

FBUFl = °'2:,,l,d·FBUFld
dED

FBUFld = (jd + T)·FBUFl

If the faulty buffer contains a datum, then this can get lost at any moment
through the occurrence of a T-action. In the equation for FBUFld there is no
T-action before the jd-action because this would make it possible for the buffer
to reach a state where datum d could not get lost.

We use the above specification in the definition of the faulty queue FQ:

FQ = °'2:, ,J,d·(FQ»FBUFld)
dED

4. Queues 95

The idea behind this specification of the faulty queue is illustrated in Figure 3.

FIGURE 3. The faulty queue

4.4.1. LEMMA: FBUF1d»FBUF1 = T·(FBUFl»FBUFJd).
PROOF:

FBUF1d»FBUF1 = T·(FBUFl»FBUFld) + T·(FBUFJ»FBUFJ) =
= T·(FBUFl»FBUFid)

In the last step we use that:
T·(FBUFl»FBUFl)<;;,_FBUFl»FBUFld <;;T·(FBUFl»FBUFld). □

Compare the simple definition of FQ with the following BPAT6-specification of
the same process.

4.4.2. Let a,pED*. We write a➔p if p can be obtained from a by deleting one
datum. Let R(a) = {pla➔p} be the finite set of residues of a after one dele
tion. Now FQUEUE is the following process.

FQUEUE = FQ, = ~-1,d·FQd
dED

FQa•d = ~ -1,e ·FQe•a•d + jd ·FQ 0 + ~ T·FQP
eED pER(a•d)

4.4.3. THEOREM: FQ = FQUEUE.
PRooF: Analogously to the proof of Theorem 4.2.1. Use Lemma 4.4.1. □

Analogous versions of the identities we derived for the normal queue can be
derived for the faulty queue in the same way. In the proofs we use Lemma
4.4.1.

96 II. Modular specifications in process algebra - with curious queues

4.4.4. PROPOSITION:
i) FQ»FBUFl =FQ,
ii) Let for <JED•, FQ 0 be a faulty queue with content <1:

FQ' = FQ

Then: T·(FQ 0 »FBUF1) = T·FQ 0 ,

iii) FB UF 1 d » FQ = T·(FB UF 1 »(FQ » F B UF 1 d)),
iv) Q»FQ = FQ»FQ = FQ,
v) Let <1,pED*. Then: 'T"·(FQ 0 »FQP) = 'T"·FQ 0 *P.

4.5. An identity that does not hold. In this subsection we will discuss the iden
tity

FQ = Q»FBUFl.

'Intuitively' the processes FQ and Q » FB UF 1 are equal since both behave like
a FIFO-queue that can lose data. Furthermore, with both processes the
environment cannot prevent in any way that a datum gets lost. Unlike the
situation with the processes BAG»Q and BAG which we discussed in Section
4.3, we can think of no 'experiment' that distinguishes between the two
processes. Still the identity cannot be proved with the axioms presented thus
far.

4.5.1. THEOREM: If parameter D of operator » contains more than one element,
then SACPf V FQ = Q»FBUFl.
PROOF: We show that the identity is not valid in the model of process graphs
modulo bisimulation congruence as presented in BAETEN, BERGSTRA & KLoP
[13]. Suppose that there exists a bisimulation between processes FQ and
Q»FBUFI. Suppose that process FQ reads successively two different data,
starting from the initial state. Because of the bisimulation it must be possible
for the process Q»FBUFl to read the same data in such a way that the
resulting state is bisimilar to the state process FQ has reached. Now process
FQ executes a T-step and forgets the second datum. We claim that process
Q » FB UF 1 is not capable to perform a corresponding .sequence of zero or
more T-step. This is because there are only two possibilities:
1) Q»FBUFl forgets the second datum. But this means that also the first

datum is forgotten. In the resulting state Q » FB UF 1 cannot output any
datum (before reading one), whereas process FQ can do this.

2) Q » FB UF 1 does not forget the second datum. In the resulting state
Q » FB UF 1 can output this datum. Process FQ cannot do that.

The argument is illustrated in Figure 4.

4. Queues 97

FO 0 » FBUF 1

..... - - - -- --------------

!d !d

- -- -----------

FIGURE 4.

The next theorem shows that, if we add law T4, the two faulty queues can be
proven equivalent.

4.5.2. THEOREM: SACP' + T41- FQ=Q»FBUFl.
PROOF: Define the process QF by:

QF = QF, = ~ J,d ·QFa
deD

QF o•d = ~ J,e ·QFe•o•d + (jd + T) ·QF 0

eeD

Analogous to the proof of Theorem 4.2.1, using in addition the identity
Q»BUFI=Q, we prove that Q»FBUFI=QF. For this we do not need the
additional axiom.

The main trick in the proof is that we introduce yet another 'view of
queues': process QF0 is split in two parts, a read-process QF~ and a write pro
cess QF~. The read-process takes care of reading new data, whereas the write
process outputs the data in a. When the write process is ready, it sends a mes
sage ready to the read-process and dies. When the read-process, after reading a
sequence p of messages, receives the ready-signal it behaves again like process
QF p• The fact that the length of the sequence of data a in QF~ can only
decrease, allows us to use induction.

We extend the alphabet1 with actions ready, ready* and ready, and define

l. See Note I in Section 3.2.1.

98 II. Modular specifications in process algebra - with curious queues

communication by y(ready,ready*)=ready. For aED* and dED we define:

QF~ = ~ ,!,d ·QFd
dED

QF~•d = ~ ,!,e ·QF~•<J•d + ready* ·QF <J•d
eED

QF! = ready

QF~.d = (jd + -r) ·QF~

A short but nontrivial proof gives:

QF a = -r(,eat{vl 0 a(,ea4Y,ready') (QF~ IIQF~)

Also in this step we do not use the extra axiom. We claim that:
'T ·QF~.c,' C QP.,•d•<J'.

The proof of the claim goes with induction to the length of a'. If I a' I = 0 the
the claim holds trivially. Now suppose the claim is proved for I a' I ,s;;;;n.
Choose a with length n, and e ED. We have that:

'T ·QF~•ri•e = 'T ·(je ·QP.,.,; + -r ·QF~.,;) =

(this is the only step where we use axiom T4)

= je ·QP.,.,; + -r ·QF~.,; C

(because on the one hand je ·QF~.,; C je ·QF~•d•ri because of the induction
hypothesis and axiom T3, and on the other hand -r ·QF~.,; C -r ·QF~•d•ri
because of the induction hypothesis and axiom T2)

C je ·QF~•d•ri + -r ·QF~•d•ri = QF~•d•ri•e

This finishes the proof of the claim. A corollary is that -r ·QF <J*<J' C QF <J•d•<J':

-r·QF,,.(J, = ,..,.(ready) 0 a(ready,reat{t·')(QF~IIQF~.,,.) C

(Use the observation of Section 2.1.4 that -rx Cy implies -rxllz Cyllz)

C 'T(ready) 0 a(,eady,ready')(QF~IIQF~.d•cr) = QF,,•d•u'

We have shown that process QF (J is indistinguishable from a process that can
lose each datum at every moment. Using the notation of Section 4.4.2 we can
write down the following equation for processes QF <J*d:

QF a•d = ~ ,!,e ·QFe*<J*d + jd ·QF (J + ~ 'T ·QF P
eED pER(<J*a)

Application of RSP gives that the process FQUEUE of Section 4.4.2 equals
process QF. But according to Theorem 4.4.3 also FQUEUE=FQ. □

4. Queues 99

4. 6. The faulty and damaging queue. In the specification of certain link layer
protocols we have to deal with a communication channel that behaves like a
FIFO-queue with unbounded capacity (this is of course a simplifying assump
tion), but has some additional properties: (1) a datum can be damaged at
every moment it is in the queue; the environment cannot prevent this event,
and (2) a datum can be lost at every moment it is in the queue. We give a
process algebra specification of this process in two steps. First we specify the
Faulty and Damaging Buffer with capacity one (FDBUFI). We assume that
the domain of data D contains a special element er, representing a damaged
datum.

FDBUFl = ~ J,d ·FDBUFld
deD

FDBUFld = jd·FDBUFl + T·(jer+T)·FDBUFl

With the help of this process we can now easily define the Faulty and Damag
ing Queue (FDQ):

FDQ = ~ !J,d ·(FDQ»FDBUFld)
deD

4.6.1. LEMMA: FDBUFid»FDBUFl = T·(FDBUFl»FDBUFid).
PROOF: FDBUF1d»FDBUF1 =
= T·(FDBUFl»FDBUFld) + T·((jer+T)·FDBUF1»FDBUF1) =
= T·(FDBUFl»FDBUFld) + T·(T·(FDBUFI»FDBUFle') +

+ T·(FDBUF1»FDBUF1)) =
note
= T·(FDBUFI»FDBUFld) + T·(T·(FDBUFI»(T·(jer+T)·FDBUFl)) +

+ T·(FDBUFI»FDBUFI)) =
= T·(FDBUFI»FDBUFld) + T·(T·(FDBUFI»(jer+T)·FDBUFI) +

+ T·(FDBUFl»FDBUFl)) =
= T·(FDBUFl»FDBUFld) + T·(FDBUF1»(jer+T)·FDBUF1) =
= T·(FDBUFl»FDBUFld)

Note. FDBUFier = jer ·FDBUFl + T·(jer+T) ·FDBUFl =
T2

= T·(jer + T) ·FDB UF I. □

Once we have Lemma 4.6.1, it is standard to prove that process FDQ is guard
edly specifiable. It is moreover easy to derive an analogous version of Proposi
tion 4.4.4 for FDQ.

100 II. Modular specifications in process algebra - with curious queues

4.6.2. Remark. One might ask if there is not a T too many in the specification
of process FDBUFI. Why not specify the faulty and damaging buffer simply
as follows?

FDBl = ~t·FDBld
deD

FDB Id = (jd + jer + T) ·FDB 1

A first observation we make is that if D*{ er}:

SACP~ V FDB UF 1 = FDB I

This is because the two processes are different in bisimulation semantics. Pro
cess FDBUFI can input a datum d different from er, and then get into a state
where either an output action jer will be performed or no output action at all.
This means that it is possible that a datum is first damaged and then lost.
Process FDB I does not have such a state.

For similar reasons we also have the following fact:

SACP~ V FDB Id»FDB I = T·(FDB l»FDB Id)

This means that if we work with a queue defined with the help of FDB I, our
standard technique to prove facts about queues is not applicable. Note that
processes FDB 1 and FDBUFI are trivially equal if we work in a setting where
the law T4 (T(Tx +y)=Tx +y) is valid.

4. 7. The faulty and stuttering queue. This section is about a very curious queue:
a FIFO-queue that can lose or duplicate any element contained in it at every
moment. An infinite specification of this process can be found in LARSEN &
MILNER (127]. The basic component we use in the specification of the Faulty
and Stuttering Queue is a Faulty and Stuttering Buffer with capacity I:

FSBUFl = ~~·FSBUFld
deD

FSBUFld = jd·FSBUFld + T·FSBUFl

FSQ = ~ td ·(FSQ»FSBUFld)
deD

When we place two faulty and stuttering buffers in a chain, then we have the
possibility of an infinite number of internal actions (the first buffer stutters and
the second one loses all its input). This implies that, in the specification of the
faulty and stuttering queue, we have to guard against unguarded recursion.
We need a fairness assumption if we want to exclude the possibility of infinite
stuttering.

First we prove a simple lemma:

4. Queues

4.7.1. LEMMA: FSBUFld»FSBUFld = 'T·(FSBUFld»FSBUFld) =
= FSBUFld»FSBUFl = 'T·(FSBUFld»FSBUFl).
PROOF:

101

FSBUFld»FSBUFld;;;, 'T·(FSBUFld»FSBUFl);;:;, FSBUFld»FSBUFl ;;;,

:1 'T·(FSBUFld»FSBUFld);;;, FSBUFld»FSBUFld □

The proof of the next lemma is more involved.

4.7.2. LEMMA:

SACP¥ + KF ARI--FSB UF l d » FSB UF 1 = 'T ·(FSB UF 1 » FSB UF 1 d).

PROOF:

FSBUFld~>FSBUFl =
= c(d)·(FSBUFld>~FSBUFld) + 'T·(FSBUFI>>>FSBUFl)

FSBUFld>>>FSBUFld =
= 'T·(FSBUFld>>>FSBUFl) + 'T·(FSBUFl>>>FSBUFld) +

+ jd·(FSBUFld~FSBUFld)

Application of CFAR gives (J={ c(d) Id ED}):

FSBUFld»FSBUFl = 'TJ(FSBUFld~>FSBUFl) =

= 'T·'TJ('T·(FSBUFl>>>FSBUFl) + 'T·(FSBUFl>>>FSBUFld) +
+ jd ·(FSB UF 1 d >>> FSB UF 1 d)) =

4.7.1
= 'T ·('T ·(FSB UF 1 » FSB UF 1) + 'T ·(FSB UF 1 » FSB UF 1 d) +

+ jd·(FSBUFld»FSBUFl))

In addition we derive:

FSBUFl»FSBUFld = I.J,,e·(FSBUFle»FSBUFld) +

+ 'T ·(FSB UF 1 » FSB UF 1) + jd ·(FSB UF 1 » FSB UF 1 d)

FSBUFle»FSBUFld = 'T·(FSBUFl»FSBUFld) +
+ 'T·(FSBUFle»FSBUFl) + jd ·(FSBUFle»FSBUFld)

FSBUFl»FSBUFl = I .J,,d·(FSBUFld»FSBUFl)

Let E be the following guarded system of recursion equations:

yd. = 'T"('T·Y + 'T.y.d + jd·Yd·)

y.d = I .J,,e . yed + 'T. y + jd . y-d
eeD

102 II. Modular specifications in process algebra - with curious queues

yed = 'T.y-d + 'T.ye. + jd·Yed

y = }: td·Yd

RSP gives that FSB UF Id» FSB UF I = yd and FSB UF 1 » FSB UF Id = y-d.
Thus it suffices to prove that yd. = T · y.d_ Let F be the following guarded
system of recursion equations:

We derive:

zd = }: te .zed + -r·Z + jd ·Zd

zed = 'T .zd + 'T .ze + jd .zed

z = }:td·Zd
dED

'T.zd = T·T•zd = T·(T·Z + jd•zd + T·Zd)

If we substitute -r·zd for yd, zd for y-d, zed for yed and Z for Y, then RSP
gives: T·Zd= yd. and zd= y.d_ Consequently yd =T·Y·d. □

From Lemma 4.7.2 all the rest follows: process FSQ is guardedly specifiable
and we can derive an analogous version of Proposition 4.4.4 . .
5. A PROTOCOL VERIFICATION
In this section we present the specification and verification of a variant of the
Alternating Bit Protocol, resembling the ones discussed in KoYMANS &
MULDER [123] and LARSEN & MILNER [127]. The aim of this exercise is to
illustrate the usefulness of the proof technique developed in the previous sec
tion. The architecture of the Concurrent Alternating Bit Protocol (CABP) is as
follows:

A B

FQ
2

FQ

D C

FIGURE 5.

Elements of a finite set of data are to be transmitted by the CABP from port I
to port 2. Verification of the CABP amounts to a proof that (I) the protocol

5. A protocol verification 103

will eventually send at port 2 all and only data it has read at port I, and (2)
the protocol will send the data at port 2 in the same order as it has read them
at port I.

In the CABP sender and receiver send frames continuously. Since sender
and receiver will have a different clock in general, the number of data that can
be in the channels at a certain moment is in principle unlimited. In this section
we assume that the channels behave like the process FQ as described in Sec
tion 4.4: a FIFO-queue with unbounded capacity that can either lose frames or
pass them on correctly.

In the protocol, the sender consists of two components A and D, whereas
the receiver consists of components B and C. One might propose to collapse A
and D into a sender process, and B plus C into a receiver process. The result
ing processes would be more complicated and in the correctness proof we
would have to decompose them again.

5.1. Specification. Let D be a finite set of data which have to be sent by the
CABP from port I to port 2. Let B = {0,1}. 6D = (DXB)UB is the set of
data which occur as parameter in the actions of the chaining operators. The set
of ports is IP' = {l,2,3,4}, the set of data that can be communicated at these
ports is D = D U {next}. Alphabet A and communication function y are now
defined by the standard scheme for the chaining operators, augmented with
actions ri(d), si(d) and ci(d), for which we have communications
y(ri(d),si(d)) = ci(d) (iEIP' and dED).

We now give the specifications of processes A, B, C and D. Here b ranges
over B = (0, I} and d over D (the overloading of names B and D should
cause no confusion). The specifications are standard and need no further com
ment.

Ab= ~rl(d)·Adb
dED

Adb = jdb ·Adb + r3(next)·A l-b

D = D 0

Bdb = s2(d)·s4(next)·B 1-b

C = C 1 (not c0 !)

Db= -1,(1-b)·Db + cb = jb ·Cb + r4(next) ·C l-b
+ -1,b ·s 3(next) ·D J-b

Let H and J be the following sets of actions:

H = (r 3(next),s 3(next),r4(next),s 4(next)}

I= (c3(next),c4(next)}

The Concurrent Alternating Bit Protocol is defined by:

104 II. Modular specifications in process algebra - with curious queues

CABP = 'T1°an((A»FQ»B)ll(C»FQ»D))

5.2. Verification. If we do not abstract from the internal actions of the proto
col, then the number of states is infinite. This means that a straightforward
calculation of the state graph is not possible. A strategy which is often applied
in cases like this is that one substitutes a buffer with capacity 1 for the com
munication channels. As a result the system is finite and can be verified
automatically. Next a buffer with capacity 2 is substituted, followed by another
automatic verification, etc.. The verification for the case of buffers with capa
city 155 takes 23 hours CPU time. Thereafter it is decided that 'the protocol is
correct'.

Of course it is not so difficult to specify a protocol that is correct for buffers
with capacity less or equal than 155, but fails when the capacity is 156. The
conclusion that the protocol is correct for arbitrary buffer size because it works
in the cases where the buffer size is less than 156, is therefore influenced by
other observations. It is for example intuitively not very plausible that the
CABP works for buffer size 155, but not for buffer size 156, because the
specification is so short and the only numbers which occur in it are O and 1.

Because intuitions can be wrong people look for formal techniques which
tell in which situations induction over certain protocol parameters is allowed.

The basic merit of the results of Section 4 is that they make it possible to
use inductive arguments when dealing with the length of queues in protocol
systems. In the verification below we show that the protocol is correct if the
channels behave as faulty FIFO-queues with unbounded capacity. However, a
minor change in the proof is enough to show that the protocol also works if
the channels behave as n-buffers, faulty n-buffers, perfect queues, faulty and
stuttering queues, etc.

The following two lemmas will be used to show that, after abstraction, the
number of states of the protocol is finite. The first lemma says that if, at the
head of the queue, there is a datum that will be thrown away by the receiver
because it is of the wrong type, this datum can be thrown away immediately.

5.2.1. LEMMA:
i) FBUFldb»B 1-b = 7·(FBUFl»B 1-b); .
ii) FBUFldb»s4(next)·B 1-b = 7·(FBUFl»s4(next)·B 1-h);
iii) FBUFldb»Bdb = 7·(FBUFl»Bdh).
PROOF: The proof of (i) is trivial. Part (ii) goes as follows:

FBUFldb»s4(next)·B 1-b =
= 7•(FBUFl»s4(next)·B 1-b) + s4(next)·(FBUFldb»B 1-b) =
(i)

= 7·(FBUFl»s4(next)·B 1-b) + s4(next)·(FBUFl»B 1-b) =
= 'T·(FBUFl»s4(next)·B 1-b) (summand inclusion)

5. A protocol verification 105

The proof of part (iii) is similar:

FBUFldb»Bdb = r·(FBUFI»Bdb) + s2(d)·(FBUFldb»s4(next)·B 1-b) =
(ii)
= r·(FBUFI»Bdb) + s2(d)·(FBUF1»s4(next)·B 1-b) =
= r·(FBUFl»Bdb) □

The next lemma says that if two frames, of a type that the receiver is willing to
accept, are at the head of the queue, one of these can be deleted without
changing the process (modulo an initial r).

5.2.2. LEMMA: FBUFldb»FBUFldb»Bb = r·(FBUFl»FBUFldb»Bb).
PROOF: FBUFldb»FBUFldb»Bb =
= r·(FBUFl»FBUFldb»Bb) + r·(FBUFldb»FBUFl»Bb) +

+ r·(FBUFldb»FBUFl»Bdb) =
4.4.1
= r·(FBUFl»FBUFldb»Bb) + r·(FBUFl»FBUFldb»Bb) +

+ r·(FBUFl»FBUFldb»Bdb) =
5.2.1
= r·(FBUFl»FBUFldb»Bb) + r·(FBUFl»FBUFl»Bdb) =
= r·(FBUFl»FBUFldb»Bb) □

5.2.3. We will now derive a transition diagram for process A >>>FQ»B. In
the derivation we use Lemmas 5.2.1 and 5.2.2 to keep the diagram finite.
Furthermore we stop the derivation at those places where an action is per
formed that corresponds to the acknowledgement of a frame that has not yet
arrived. The result of the calculations is presented in Figure 6. The grey arcs
correspond to places where we stopped the derivation.

A>>>FQ»B = A 0 >~FQ»B0

Ab>>>FQ»Bb = ~rl(d)·(Adb>~FQ»Bb)
dED

Adb~FQ»Bb = c(db)·(Adb>>>FQ»FBUFldb»Bb) +
+ r3(next)·(A t-b>>>FQ»Bb)

Adb~>FQ»FBUFldb»Bb =
c (db) ·(A db>~ FQ » FBUF ldb »FBUF ldb » Bb) +
+ r·(Adb>>>FQ»FBUFl»Bb) +
+ r-(Adb~>FQ»FBUFl»Bdb) +
+ r3(next)·(A t-b~>FQ»FBUFldb»Bb) =

(0)

(1)

(2)

(3)

106 II. Modular specifications in process algebra - with curious queues

c(dO) c(dO) c(dO) c(dO)

I. r3(next)
~:$:

i r3(next)
tJ:

,Lr3(next)
:::··

r3(next) * r3(next) ! --~:

r3(next)r

6 s4(next)

c(dl) c(dl) c(dl) c(dl)

FIGURE 6. Transition diagram of process A ~> FQ » B

(Lemmas 5.2.2 and 4.4.4(i))

= c(db)·(Adb>>>FQ»FBUFidb»Bb) +
+ T·(Adb>>>FQ»Bb) +T·(Adb>>>FQ»Bdb) +
+ r3(next)·(A l-b>>>FQ»FBUFidb»Bb)

Adb>>>FQ»Bdb = c(db)·(Adb>>>FQ»FBUFidb»Bdb) +
+ s2(d)·(Adb>~FQ»s4(next)·B 1-b) +
+ r3(next) ·(A l-b>>>FQ»Bdb) =

(Lemmas 5.2. l(iii) and 4.4.4(i))

= c(db)·(Adb>~FQ»Bdb) +
+ s2(d)·(Adb~>FQ»s4(next)·B 1-b) +
+ r 3(ne.xt) ·(A l-b >>> FQ » Bdb)

Adb~>FQ»s4(next)·B 1-b =
c(db) ·(Adb>~FQ»FBUFidb»s4(next) ·B l-b) +
+ s 4(next) ·(A db>>> FQ »BI -b) +
+ r3(next)·(A l-b~>FQ»s4(next)·B 1-b) =

(Lemmas 5.2. l(ii) and 4.4.4(i))

= c(db) ·(Adb>>>FQ»s4(ne.xt) ·B l-b) +

r3(next)

(4)

(5)

5. A protocol verification

+ s4(next)·(Adb>>>FQ»B 1-b) +
+ r3(next) ·(A l-b~>FQ»s4(next) ·B l-b)

Adb>>>FQ»Bl-b = c(db)·(Adb>>>FQ»FBUF1db»B 1-b) +
+ r3(next)·(A l-b>>>FQ»B 1-b)

(Lemmas 5.2.l(i) and 4.4.4(i))

107

(6)

= c(db) ·(A db>>>FQ»B l-b) + r3(next) ·(A l-b>>>FQ»B l-b)

5.2.4. Summarising, we have shown that A>>> FQ » B satisfies the following
system of recursion equations.

X = x</

xy = ~ r l(d) ·Xib
deD

yfb = r3(next)·(A l-b>>>FQ»FBUF1db»B 6)

xtb = c(db)·X£b + s2(d)·Xgb + y£b

Yt = r3(next)·(A l-b>>>FQ»Bdb)

xgb = c(db)·Xgb + s4(next)·Xt6 + ygb

ygb = r3(next)·(A l-b>>>FQ»s4(next)·B 1- 6)

Xg6 = r3(next)·XJ-b + c(db)·Xt6

Using CF AR immediately gives the next lemma.

108 II. Modular specifications in process algebra - with curious queues

5.2.5. LEMMA: Let Ube specified by:

u = vY

uy = ~rl(d)·U!b
deD

ifib = -r·U1b + ~ + vf' ~ = r3(next)·(A l-b»FQ»Bb)

vjb = r3(next)·(A l-b»FQ»FBUFldb»Bb)

utb = s2(d)·Utb + ~b vtb = r3(next)·(A l-b»FQ»Bdb)

Ufb = s4(next)·Uib + vfb vfb = r3(next)·(A 1-b»FQ»s4(next)·B 1-b)

Uib = r3(next)·UJ-b

Then: SACP~ + KFAR 1- U=A »FQ»B.

In the same way we can derive similar lemmas for 'the other side' of the proto
col.

5.2.6. LEMMA:
i) FBUF1b»D 1-b = -r·(FBUF1»D 1-b);
ii) FBUF1b»s3(next)·D 1-b = -r·(FBUF1»s3(next)·D 1-b);

iii) FBUFlb»FBUFlb»Db = -r·(FBUFl»FBUFlb»Db).

5.2.7. LEMMA: Let W be specified by:

w= wl

W~ = s3(next)·WY + Z~ Z~ = r4(next)·(C 1-b»FQ»s3(next)·D 1-b)

Then: SACP~ + KFAR 1- C»FQ»D= W.

The fact that CABP is a correct protocol is asserted by

5.2.8. THEOREM: SACP~ + KFARI- CABP=-r·(~rl(d)·s2(d))·CABP.
deD

PROOF: Lemmas 5.2.5 and 5.2.7 together give that we can write CABP as:

CABP = -r1°dn(UIIW)

Conclusions and open problems 109

A straightforward expansion gives:

T1°on(UII W) = T {~ r l(d) ·s2(d)) ·(~ r l(e) ·s2(e)) ·T1°on(UII W)
deD eeD

The variables V and Z vanish in the expansion, due to the fact that they only
occur in situations where a receiver component sends a premature ack
nowledgement. An application of RSP concludes the proof of the theorem. □

5.2.9. Remark. A serious problem that has to be faced in the context of alge
braic protocol verification is the fairness issue. In the verifications of this
chapter we used KF AR to deal with fairness. KF AR is the algebraic
equivalent of the statement: 'if anything can go well infinitely often, it will go
well infinitely often'. In most applications a more subtle treatment of fairness
is desirable. Moreover KF AR is incompatible with lots of semantics between
bisimulation and trace semantics. In [29] it is proved that failure semantics is
inconsistent with the rule KFAR. In the same paper a restricted version
KF AR - of KF AR is presented which is consistent with the axioms of failure
semantics, but this version is not powerful enough to allow for a verification of
the CABP. The argument for this is simple: KFAR- allows for the fair
abstraction of unstable divergence. This means that a process will never stay
forever in a conservative cluster of internal T-steps if it can be exited by
another internal T-step. Since in the CABP component C can always perform
an internal step, and since the protocol is finite state (after suitable abstrac
tion), there must be a conservative cluster of internal steps which can only be
exited by performing an observable action. Thus the CABP contains stable
divergence.

CONCLUSIONS AND OPEN PROBLEMS

In this chapter we presented a language making it possible to give modular
specifications of process algebras. The language contains operations + and
□, which are standard in the theory of structured algebraic specifications, and
moreover two new operators Hand S. Two applications have been presented
of the new operators: we showed how the left-merge operator can be hidden if
this is needed and we described how the chaining operator can be defined in a
clean way in terms of more elementary operators. It is clear that there are
much more applications of our approach. Numerous otlier process combina
tors can be defined in terms of more elementary operators in the same way as
we did with the chaining operators. Maybe also other model theoretic opera
tions can be used in a process algebra setting (cartesian products?).

Strictly speaking we have not introduced a 'module algebra' as in [23]: we
do not interpret module expressions in an algebra. However, this can be done
without any problem. An interesting topic of research is to look for axioms to
manipulate module expressions. Due to the presence of the operators H and
S, an elimination theorem for module expressions as in [23] will probably not
be achievable.

110 II. Modular specifications in process algebra - with curious queues

An important open problem for us is the question whether the proof system
of Table 1 is complete for first order logic.

In this chapter the modules are parametrised by a set of actions. These
actions themselves do not have any structure. The most natural way to look
towards actions likes l(do) however, is to see them as actions parametrised by
data. We would like to include the notion of a parametrised action in our
framework but it turns out that this is not trivial. Related work in this area
has been done by MAuw [129] and MAuw & VELTINK [130].

In order to prove the associativity of the chaining operators, we needed aux
iliary actions s(d), r(d), etc. Also in other situations it often turns out to be
useful to introduce auxiliary actions in verifications. At present we have to
introduce these actions right at the beginning of a specification. This is embar
rassing for a reader who does not know about the future use of these actions
in the verification. But of course also the authors don't like to rewrite their
specification all the time when they work on the verification. Therefore we
would like to have a proof principle saying that it is allowed to use 'fresh'
atomic actions in proofs. We think that it is possible to add a 'Fresh Atom
Principle' (F AP) to our formal setting, but some work still has to be done.

In our view Section 4 convincingly shows that chaining operators are useful
in dealing with FIFO-queues. We think that in general it will be often the case
that a new application requires new operators and laws.

In Section 4.5 we presented a simple example of a realistic situation where
bisimulation semantics does not work: a FIFO-:queue which can loose data at
every place is different from a FIFO-queue which can only loose data at the
end. Adding the law T4, which holds in ready trace semantics (and hence in
failure semantics), made it possible to prove the two queues equal.

For the correctness of protocols which involve faulty queues one normally
needs some fairness assumption. Koomen's Fair Abstraction Rule (KFAR)
often forms an adequate, although not optimal, way to model fairness. An
interesting open problem is therefore the question whether the module SACPf
+ T4 + KFAR is consistent (conjecture: yes).

The verification of the Concurrent Alternating Bit Protocol as presented here
takes 4 pages (or 5 if the proofs of the standard facts about the queues are
included). Our proof is considerably shorter than the proof of similar proto
cols in [123] and [127] (15 and 11 pages respectively). But maybe this com
parison is not altogether fair because the proofs in these papers were meant as
an illustration of new modular proof techniques. Our proof shows that the
axioms of bisimulation semantics with fair abstraction are sufficient for the
modular verification of simple protocols like this. The axioms of bisimulation
semantics will turn out to be not sufficient for more substantial modular
verifications because bisimulation semantics is not fully abstract. We could
give a shorter and simpler proof of the protocol by using the notion of redun
dancy in context of [169]: the grey arcs in Figure 6 all correspond to sum
mands which are redundant in the context in which they occur. Additional
proof techniques will certainly be needed for the modular verification of more
complex protocols.

Appendix: logics 111

ACKNOWLEDGEMENTS

Our thanks to Jan Bergstra for his help in the development of the H-operator
and to Kees Middelburg for helpful comments on an earlier version.

APPENDIX: LOGICS

In this appendix equational, conditional equational and first order logic are
defined. Since all these logics share the concepts of variables and terms, these
will be treated first.

1. Variables and terms. Let a be a signature. A a-variable is an expression xs
with xe NAMES and (§:S)ea. A valuation of the a-variables in a a-algebra Ct
is a function~ that takes every a-variable xs into an element of slt_

For any (§:S)ea the set T's of a-terms of sort Sis defined inductively by:
xs eTJ, for any a-variable Xs-
If fF:f :S 1 X · · · XSn➔S is in a and t; eTs, for i = l, ... ,n then

fs, x · • · xs,-s(t 1, ... ,tn) E T's-
The ~-evaluation [t]E eS(f, of a a-term t e T's in a a-algebra Ct (with ~ a valua
tion) is defined by:
- [xs]~=~(xs)eSti'.

[rs X ... XS -s(t l,••·,tn)]E = 1 X ... XS -s([t1]E, ... ,[tn]E). J~ I 11 JS1 11

2. Equational logic. The set F',l of equations or equational formulas over a is
defined by:

If t;eTJ, for i = 1,2 and certain §:Sin a, then (t1 =t2)eF!qt_

An equation (t 1 =t2)eF~qt is ~-true in a a-algebra Ct, notation 6'.J 'F=~qt t 1 =t2, if
[tit= [t2]~.
Such an equation cf,eF~qt is true in @i notation Ct 'F=~qt cf,, if etJ 'F=!qt cf, for all
valuations f
An inference system I!qt for equational logic is displayed in Table 12 below.
There t, u and v are terms over a and x is a variable. Furthermore t [u Ix] is
the result of substituting u for all occurrences of x in t. Of course u and x

should be of the same sort. Finally an inference rule H with H= 0 is called
an axiom and denoted simply by cf,. cf,

t=t u=v
v=u

t =u, u =v
t =v

u=v u=v
t[u/x]=t[vlx] u[tlx]=v[tlx]

TABLE 12

112 II. Modular specifications in process algebra - with curious queues

3. Conditional equational logic. The set F~' of atomic formulas over CJ is defined
by:

If tiET"s for i = 1,2 and certain §:Sin CJ, then (t 1 =t2)EPo1.
If IR:p CS 1 X · · · XSn is in CJ and t;ET;, for i = 1, ... ,n then

Ps,x .. • xs.(t1,••·,tn) EF~'-
The set F~eqt of conditional equational formulas over CJ is defined by:
- If C CF~' and aEPo' then (C~a)EF~eql_

The ~-truth of formulas cpEF~1 U F~eqt in a CJ-algebra ti; is defined by:
- ci;,~ 'F~eql t1 =t2 if [t1]~=[t2]~.

ci;,~ 'F~eql Ps X ···XS (t1,••·,tn) ifpi X .. • XS ([!1]~, ... ,[tn]~).
cr,~ 'F~eqt C~a • if cr,~ V-~eql /3 •for some /3EC or cr,~ 'F~eql a.

q, is true in cr, notation ti; 'F~eqt q,, if cr,~ 'F~eqt q, for all valuations f

An inference system I~eqt for conditional equational logic is displayed in Table
13 below. There a and a; are atomic formulas, C is a set of atomic formulas, q,
is a conditional equational formula, t;, t, u and v are terms over CJ and x; and x
are variables. Furthermore a[u Ix] is the result of substituting u for all
occurrences of x in a. Of course u and x should be of the same sort. Likewise
<Pf. ti Ix; (i EI)] is the result of simultaneous substitution for i El of t; for all

occurrences of x; in cp. An inference rule ~ is again denoted by q, and a con-
cJ>

ditional equational formula 0 ~a by a.

C~a if aEC

t =t

c~a; (iEl), {a;jiEJ}~a

c~a

{u =v}~(v =u)

{u =v, a[ulx]}~(a[vl x])

TABLE 13

p
<P[t; / X; (i EI)]

{t=u, u=v}~(t=u)

The logic described above is infinitary conditional equational logic. Finitary con
ditional equational logic is obtained by the extra requirement that in condi
tional equational formulas C~a the set of conditions C should be finite. In
that case the inference rule

can be replaced by
cp[tlx].

Furthermore (in)finitary conditional logic is obtained by omitting all reference
to the equality predicate =.

Appendix: logics 113

4. First order logic. The set F!oleq of first order formulas with equality over a is
defined by:
- If t;ET's for i = 1,2 and certain §:Sin a, then (t 1 =t2)EF!o/eq_

If IR :p <;;;S 1 X · · · X Sn is in a and t; E Ts, for i = I, ... ,n then
Ps x ... xs (t1, ... ,tn) EF!oleq_
If ~EF!oleq" then -,q,EF!0 'eq_
If</> and 1/;EF!o/eq then (q,➔1/;)EF!01eq_
If q, and 1/;EF!oleq then (q,/\1/;)EF!01eq_
If q, and 1/;EF!01eq then (q,Vl/;)EF!01eq_
If q, and 1/;EF!0leq then (~1/;)EF!01eq_
If Xs is a a-variable and q,EF!0leq then 'vxs(</>)EF!01eq_
If Xs is a a-variable and q,EF!0leq then 3xs(</>)EF!01eq_

The !;-truth of a formula q,EF{0 leq in a a-algebra et is defined inductively by:
- @,/; l={oleq 11 =t2 if [!1]ii=[t2]ii.

@,I; t{,oleq Ps,x ... xs,(11, · · · ,tn) ifptx •·· xs,([t1]ii, ... ,[tn]/;).
@, I; t{,oleq -,q, if c£, /; ~ !oleq q,.
c£, I; l={oleq </>➔1/; if etJ ~ fj'eq </> or c£, I; l={oleq o/ ·
c£, /; l={oleq </> I\ VI if Ct, I; t{,oleq </> and c£, /; t{,oleq o/ ·
@,/; l={oleq </> Vl/; if @,I; t{,oleq </> or @,I; t{,oleq o/·
c£, I; t{,oleq ~VI if et.I; t{,oleq </> if and only if c£, I; l={oleq o/ ·
@,I; 1={01eq 'vxs(<P) if @,f t{,01eq q, for all valuations f with f(ys,)=«J,s,) for

all variables ys,=/=Xs-
@,I; 1={01eq 3xs(<P) if @,f t{,0leq q, for some valuation f with f(ys,)=/;(ys,)

for all variables Ys'=/=xs.
q, is true is c£, notation Ct 1={01eq q,, if @,I; t{,0leq q, for all valuations I;.

An inference system 1!01eq for first order logic with equality is displayed in
Table 14 on the next page. There q,, 1/; and p are elements of F!oleq, a is an
atomic formula (constructed by means of the first two clauses in the definition
of F!oleq only), t, u and v are terms over a and xis a variable. An occurrence of
a variable x in a formula q, is bound if it occurs in a subformula Vx(V1) or
3x(l/;) of q,. Otherwise it is free. A variable is free in a formula q, if all its
occurrences in q, are free. cp[t Ix] denotes the result of substituting u for all
free occurrences of x int. Of course u and x should be of the same sort. Nowt
is free for x in <P if all free occurrences of variables in t remain free in cp[t/ x].

As before an inference rule H with H = 0 is called an· axiom and denoted
<I>

simply by q,.

114 II. Modular specifications in process algebra - with curious queues

P., ~Y!. modus ponens -7)" generalisation
if; 'vx cf,

~(ifl-cp)
} deduction axioms { cf,-'J>(ifl-p)}-{ (cp-ifl)-(cf,-'J>p)}

{'vx(cp-ifl) }-{ cf,-'J>'vx(i[;) }, if xis not free in cf,
(-,cf,-'J>cf,)-cf, axiom of the excluded middle
-,~(cf,-'J>if;) axiom of contradiction
'vx(cf,)-'J>cp[t Ix], if tis free for x in cf, axiom of specialisation

(cp/\ifl)-cp ~(cf,Vif;) (cf,~ t)-{(ct,-1[;)/\(if;-cp)}
(cp/\if;)-'J>if; if;-'J>(cf, V if;) {(cf,-'J>if;)/\(if;-'J>cf,)}-(cf, ~ if;)
~{if;-(<j>/\1[;)} (cf, V if;)-'J>(-,cp-if;) 3x(cp) ~ -,'vx(-,cp)

t =t (u =v)-(v =u) {(t =u)/\(u =v)}-(t =v)
(u =v)-(a[u/ x] ~ a[vl x])

TABLE 14

First order logic is obtained from first order logic with equality by omitting all
reference to =. It is also possible to present first order logic without the con
nectives /\, V and ~ and the quantifier 3, and introduce them as notational
abbreviations. In that case the third block of Table 14 can be omitted.

5. Expressiveness. One can translate an equation aEF!ql by a (finitary) condi
tional equational formula 0 "9a and a finitary conditional equational formula
{a1, ... ,an}"9a into a first order formula (a1/\ · · · /\an)-'J>a. Using this trans
lation we have FY1 cpfceql cpfoleq and furthermore (f, Feql ,I,. <=> (f, l=ceql ,I,. for a a a a 't' a 'Y

cf,EF~ql and (t F~eql cf, <=> ct to!oleq cf, for cf,EF{ceql_ This means that first order
logic with equality is more expressive then equational logic and finitary condi
tional equational logic is somewhere in between. However first order logic with
equality and infinitary conditional equational logic have incomparable expres
sive power.

6. Completeness. For all logics mentioned above the following completeness
result is known to hold: Alg(u,T) 1=~ cf, "9 T 1-~ cf,. The reverse direction also
holds, since all these logics are obviously sound. As a corollary we have

T 1-!ql cf, <=> T 1-~eql cf, for cf,EF~ql and

T 1-~eql cf, <=> T 1-{oleq cf, for cf,EF{ceql_

For this reason in most process algebra papers it is not made explicit which
logic is used in verifications: the space needed for stating this could be saved,
since the resulting notion of provability would be the same anyway. However,
the situation changes when formulas are proved from modules. Equational
logic and conditional equational logic are not complete anymore and for first

Appendix: logics 115

order logic with equality this is still an open problem (as far as we know).
Here a logic e is complete if M 1=e </> ~ M 1--e <f>. It is easily shown that

M 1--eql </> ~ M 1--ceql </> for </>EF'!ff(M) and

M 1--ceql </> ~ M i-foleq </> for </>EFt{Jh,

but the reverse directions do not hold. Thus we should state exactly in which
logic our results are proved.

7. Notation. This chapter employs infinitary conditional equational logic.
However, no proof trees are constructed; proofs are given in a slightly infor
mal way, that allows a straightforward translation into formal proofs by the
reader. Furthermore all type information given in the subscripts of variables,
function and predicate symbols is omitted, since confusion about the correct
wes is almost impossible. Outside Section 1 and this appendix inference rules

- do not occur, but all conditional equational formulas C~a are written ..f.,
</> a

as is usual. However, the suggested similarity between inference rules and con-

ditional equational formulas is misleading: H holds in an algebra cP, if (if,,~ t= i/;
</>

for all i/;EH and all valuations{) implies (if,,~ t= </> for all valuations{), while ..f.
a

holds in cP, if for all valuations f (if,,~ t= /3 for all /3EC implies cP,J t= a).

8. Positive and universal formulas. In equational logic all formulas are both
positive and universal. In conditional equational logic all formulas are univer
sal and the positive formulas are the atomic ones. In first order logic with
equality the positive formulas are the ones without the connectives-,, ➔ and
~ and the universal ones are the formulas without quantifiers. Model theory
(see for instance [140]) teaches us that a formula </> is preserved under
homomorphisms (respectivez; subalgebras) iff there is a positive (respectively
universal) formula i/; with i-1° eq i/; ~ </>-

Chapter Ill

Branching time and abstraction
in bisimulation semantics

Rob van Glabbeek & Peter Weijland

In comparative concurrency semantics one usually distinguishes between linear
time and branching time semantic equivalences. Milner's notion of observation
equivalence is often mentioned as the standard example of a branching time
equivalence. In this chapter we investigate whether observation equivalence really
does respect the branching structure of processes, and find that in the presence of
the unobservable action 't of CCS this is not the case.

Therefore the notion of branching bisimulation equivalence is introduced which
strongly preserves the branching structure of processes, in the sense that it
preserves computations together with the potentials in all intermediate states that
are passed through, even if silent moves are involved. On closed CCS-terms
branching bisimulation congruence can be completely axiomatized by the single
axiom scheme:

a.('t.(y + z) + y) = a.(y + z)

(where a ranges over all actions) and the usual laws for strong congruence.
We also establish that for sequential processes observation equivalence is not

preserved under refinement of actions, whereas branching bisimulation is.
For a large class of processes it turns out that branching bisimulation and

observation equivalence are the same. As far as we know, all protocols that have
been verified in the setting of observation equivalence happen to fit in this class,
and hence are also valid in the stronger setting of branching bisimulation
equivalence.

TABLE OF CONIBNTS

Introduction 118
1. Branching and abstraction 120
2. Axioms 130
3. Branches and traces 143
4. Completeness proofs 149
5. Correspondence 158
6. Refinement of actions 159
7. Divergence 163
8. Modal Characterizations 164
Conclusion 167

117

118 Ill. Branching time and abstraction in bisimulation semantics

INlR0DUCTI0N
When comparing semantic equivalences for concurrency, it is common practice to
distinguish between linear time and branching time equivalences (see for instance DE
BAKKER, BERGS1RA, KL0P & MEYER [18], PNUELI [152]). In the former, a process
is determined by its possible executions, whereas in the latter also the branching
structure of processes is taken into account. The standard example of a linear time
equivalence is trace equivalence as employed in HOARE [115]; the standard example of
a branching time equivalence is observation equivalence or bisimulation equivalence as
defined by MILNER [134] and PARK [145] (cf. MILNER [136-138]). Furthermore,
there are several decorated trace equivalences in between (cf. Chapter I), preserving
part of the branching structure of processes but for the rest resembling trace
equivalence.

Originally, the most popular argument for employing branching time semantics was
the fact that it allows a proper modelling of deadlock behaviour, whereas linear time
semantics does not. However, this advantage is shared with the decorated trace
semantics which have the additional advantage of only distinguishing between
processes that can be told apart by some notion of observation or testing. The main
criticism on observation equivalence - and branching time equivalences in general - is
that it is not an observational equivalence in that sense: distinctions between processes
are made that cannot be observed or tested, unless observers are equipped with
extraordinary abilities like that of a copying facility together with the capability of
global testing as in MILNER [134,135] or ABRAMSKY [1].

Nevertheless, branching time semantics is of fundamental importance in
concurrency, exactly because it is independent of the precise nature of observability.
Which one of the decorated trace equivalences provides a suitable modelling of
observable behaviour depends in great extent on the tools an observer has to test
processes. And in general a protocol verification in a particular decorated trace
semantics, does not carry over to a setting in which observers are a bit more powerful.
On the other hand, branching time semantics preserves the internal branching structure
of processes and thus certainly their observable behaviour as far as it can be captured
by decorated traces. A protocol verified in branching time semantics is automatically
valid in each of the decorated trace semantics.

Probably one of the most important features in process algebra is that of abstraction,
since it provides us with a mechanism to hide actions that are not observable, or not
interesting for any other reason. By abstraction, some of the actions in a process are
made invisible or silent. Consequently, any consecutive execution of hidden steps
cannot be recognized since we simply do not 'see' anything happen.

Algebraically, in ACP't of BERGS1RA & KL0P [26] abstraction has the form of a
renaming operator which renames actions into a silent move called 't. In MILNER's
CCS [134] these silent moves result from synchronization. This new constant 'tis
introduced in the algebraic models as well: for instance in the graph models (cf.
[26,134]) we find the existence of 't-edges, and so the question was how to find a
satisfactory extension of the original definition of bisimulation equivalence that we had
on process graphs without 't.

Introduction 119

It turns out that there exist many possibilities for extending bisimulation
equivalence to process graphs with 't-steps. One such possible extension is
incorporated in Milner's notion of observation equivalence-called -r-bisimulation
equivalence in [26]-, which resembles ordinary bisimulation, but permits arbitrary
sequences of 't-steps to precede or follow corresponding atomic actions. A different
notion, the so-called n-bisimulation, was suggested by BAE1EN & VAN GLABBEEK
[15], yielding a weaker set of abstraction axioms. In MILNER [135] another notion of
observational equivalence was introduced which in this chapter is referred to as delay
bisimulation equivalence. As we will show, the treatments of Milner and Baeten & Van
Glabbeek fit into a natural structure of four possible variations of bisimulation
equivalence involving silent steps. The structure is completed by defining branching
bisimulation equivalence. As it turns out, observation equivalence is the coarsest
equivalence of the four, in the sense of identifying more processes. TJ- and delay
bisimulation equivalence are two incomparable finer notions whereas branching
bisimulation equivalence is the finest of all.

In a certain sense the usual notion of observation equivalence does not preserve the
branching structure of a process. For instance, the processes a('tb + c) and
a('tb + c) + ab are observation equivalent. However, in the first term, in each

computation the choice between b and c is made after the a-step, whereas the second
term has a computation in which b is already chosen when the a-step occurs. For this
reason one may wonder whether or not we should accept the so-called third 't-law
a('tx + y) = a('tx + y) + ax-that is responsible for the former equivalence. Similarly,
the processes 'ta+ b and 'ta + a+ b are observation equivalent. However, only in the
first term every computation in which a occurs passes through a state where a did not
yet happen but the possibility to do b instead is already discarded. Hence we argue that
also the second 't-law-'tx = 'tx + x--(responsible for the latter equivalence) does not
respect branching time.

These examples shows us that while preserving observation equivalence, we can
introduce new paths in a graph that were not there before. To be precise: the traces are
the same, but the sequences of intermediate nodes are different (modulo observation
equivalence), since in the definition of observation equivalence there is no restriction
whatsoever on the nature of the nodes that are passed through during the execution of a
sequence of 't-steps, preceding or following corresponding atomic actions. This is the
key point in our definition of branching bisimulation equivalence: in two bisimilar
processes every computation in the one process corresponds to a computation in the
other, in such a way that all intermediate states of these computations correspond as
well, due to the bisimulation relation. It turns out that it can be defined by a small
change in the definition of observation equivalence.

The fact that observation equivalence can be too coarse in its identifications is
illustrated even more strongly by the problems that it may cause in practical applications
and analysis. As an example, it can be shown (cf. GRAF & SIFAKIS [102]) that there is
no modal logic with eventually operator ♦ which is adequate for observation
equivalence. Here ♦ ~ means that all paths will sooner or later reach a state were ~
holds. Indeed, suppose that such a logic would exist, then this means that two

120 Ill. Branching time and abstraction in bisimulation semantics

processes are observation equivalent iff they satisfy the same modal fonnulas. For
instance, there exists a fonnula $ such that: ('Cb+ c) I=$ and b 1;c $ since obviously
these processes are not observation equivalent. However, from ('tb + c) I=$ it follows
that we have a('tb + c) I= ♦ $ whereas from b 1;c $ we find a('tb + c) + ab 11'= ♦$ although
both processes are observation equivalent. Obviously, this inconsistency is due to the
third 't-law. Similarly there must be a fonnula 'I' such that a I= 'I' and 'ta+ a+ ba 11'= '1'·
Thus 'ta + ba t= ♦ 'I', whereas 'ta + a + ba 1;c ♦ 'I', although both processes are
observation equivalent. This time the inconsistency is due to the second 't-law.

A paper by JONSSON & PARROW [119] on deciding bisimulation equivalence
shows a different kind of struggle with the third 't-law. In this paper, infinite data flow
is turned into a finite state representation by considering symbolic transitions. This
provides us with a method to decide on the equivalence of infinite data flow programs.
It turns out to work easily for strong equivalence, but for observation equivalence there
is no straightforward generalization of the fonner results and a less intuitive transition
system is needed to fix this problem. It is easy to see that using branching bisimulation
would serve as a key to a more natural solution of this problem.

Having at least four options for the definition of bisimulation congruence involving 't
steps, in any particular application it becomes important to have a clear intuition about
which kind of abstraction is preferable. In an important class of problems one can
prove however, that all four notions of bisimulation yield the same equivalence. In
particular this is the case if one of the two bisimulating graphs does not have any 't
steps. It is interesting to observe that, as far as we know, all case studies on protocol
verification perfonned so far fit into this class of problems, hence all of their proofs
that have been given in the setting of observation equivalence still hold in branching
bisimulation semantics.

1. BRANCIIlNG AND ABS1RACTION
In this section we define the semantic equivalences that we want to discuss on a domain
of process graphs. Since we focus on branching and abstraction, we have chosen to
abstain from a proper modelling of divergence, concurrency, real-time behaviour and
stochastic aspects of processes. Moreover, we will disregard the nature of the actions
that our processes may perform: they will be modelled as uninterpreted symbols
a,b,c, ... from a given set Act. We have chosen process graphs.(or labelled transition
systems) to represent processes, since they clearly visualize the aspects of the modelled
systems' behaviour we are interested in. The nodes in our graphs (or states in our
transition systems) remain anonymous. A common alternative is to use closed
expressions in a system description language like CCS or ACP as nodes in process
graphs, but here we prefer to separate the semantic issues from the treatment of a
particular language. In the next section, however, we will give an interpretation of
certain subsets of CCS and ACP in (parts of) the graph model and discuss the algebraic
aspects of our equivalences.

DEFINillON 1.1 A process graph is a connected, rooted, edge-labelled, directed graph.

1. Branching and abstraction 121

In an edge-labelled directed graph, edges go from one node to another (or the same)
node and are labelled with elements from a certain set Act. One can have more than one
edge between two nodes as long as they carry different labels. A rooted graph has one
special node which is indicated as the root node. We require process graphs to be
connected: they need not be finite, but one must be able to reach every node from the
root node by following a finite path. If r and s are nodes in a graph, then r ➔a s
denotes an edge from r to s with label a or it will be used as a proposition saying that
such an edge exists. Process graphs represent concurrent systems in the following
way: the elements of Act are actions a system may perform; the nodes of a process
graph represent the states of a concurrent system; the root is the initial state and if
r ➔a s, then the system can evolve from stater to state s by performing an action a. The
domain of process graphs will be denoted by G.

On G we consider the notion of bisimulation equivalence, which originally was
due to PARK [145] and used in MILNER [136-138] and in a different formulation
already in MILNER [134]. On the domain of process graphs, a bisimulation usually is
defined as a relation R,;; nodes(g)xnodes(h) on the nodes of graphs g and h satisfying:

i. The roots of g and h are related by R
ii. If R(r,s) and r ➔a r', then there exists a nodes' such thats ➔as' and R(r',s')
iii. If R(r,s) and s ➔as', then there exists a node r' such that r ➔a r' and R(r',s').

Equivalently-as is done in this chapter--one can obtain bisimulation equivalence from
a symmetric relation R between nodes of g and h, only satisfying (i) and (ii). Such a
symmetric relation can be defined as a relation R ,;; nodes(g)xnodes(h) u
nodes(h)xnodes(g) such that R(r,s) ~ R(s,r), or alternatively, as a set of unordered
pairs of nodes R ,;; { { r,s}: renodes(g), senodes(h)}. In the latter case R(r,s)
abbreviates { r,s }eR. Note that this restriction to symmetric relations does not cause
any loss of generality.

DEFINITION 1.2 Two graphs g and h in G are bisimilar-notation: g:!:!h-if there exists
a symmetric relation R (called a bisimulation) between their nodes such that:
i. The roots of g and h are related by R
ii. If R(r,s) and r ➔a r', then there exists a node s' such that s ➔a s' and R(r',s')

Bisimilarity turns out to be an equivalence relation on G which is called bisimulation
equivalence. Depending on the context we will sometimes use Milner's terminology
and refer to bisimulation equivalence as strong equivalence or str:ong congruence.

Now let us postulate the existence of a special action -ceAct, that represents an
unobservable, internal move of a process. We write r = s for a path from r to s
consisting of an arbitrary number (~O) of -c-steps.

The definition of strong congruence was the starting point of MILNER [134] when
he considered abstraction in CCS. Having in mind that -c-steps are not observable, he
suggested to simply require that for g and h to be equivalent, (i) every possible a-step
(a:;c-t) in the one graph should correspond with an a-step in the other (as for usual
bisimulation equivalence), apart from some arbitrary long sequences of -c-steps that are
allowed to precede or follow, and (ii) every -c-step should correspond to an arbitrary
long (~0) -c-sequence. This way he obtained his notion of observation equivalence (cf.

122 Ill. Branching time and abstraction in bisimulation semantics

MILNER [134,137,138])--or 't-bisimulation equivalence-which can be defined as
follows:

DEFINIDON 1.3 Two graphs g and h are 't-bisimilar-notation: g :!:!:'th-if there exists a
symmetric relation R (called a 't-bisimulation) between their nodes such that:
i. The roots are related by R
ii. If R(r,s) and r ➔a r', then either a='t and R(r',s), or there exists a path

s ==> s1 ➔a s2 ==> s' such that R(r',s').

Again, :!:!:'t is an equivalence on G which is called 't-bisimulation equivalence, also
known as observation equivalence or weak (bisimulation) equivalence.

For cr=a1 a2··· an a sequence of visible actions let p :::::,CT q denote p ==> ➔al ==> ➔a2 ==> · ·

· · ==> ➔a1 ==> q, i.e. a path from p to q passing through a sequence of actions that
reduces to crafter leaving out the internal ones. Then a 't-bisimulation can equivalently
be defined as a symmetric relation between the nodes of graphs g and h, such that:

i. The roots are related by R
ii. If R(r,s) and r :::::,CT r', then there exists a paths :::::,CT s' such that R(r',s').

Although less useful for purposes of verification, in this (original) form the 't
bisimulation shows a clear parallel with the 't-less version.

Still, to some extent, the notion of 't-bisimulation cannot be regarded as the natural
generalization of ordinary bisimulation to an abstract setting with hidden steps. The
reason for this is that an important feature of a bisimulation is missing for 't
bisimulation, namely the property that any computation in the one process corresponds
to a computation in the other, in such a way that all intermediate states of these
computations correspond as well, due to the bisimulation relation. When HENNESSY &
MILNER [111] introduced the first version of observation equivalence, they also
insisted on relating the intermediate states of computations, as they tell us: " ... any
satisfactory comparison of the behaviour of concurrent programs must take into
account their intermediate states as they progress through a computation, because
differing intermediate states can be exploited in different program contexts to produce
different overall behaviour ... " and: "If we consider a computation as a sequence of
experiments (or communications), then the above remarks show that the intermediate
states are compared. In fact, if p is to be equivalent to q, there must be a strong
relationship between their respective intermediate states. At each intermediate stage in
the computations, the respective "potentials" must also be the same". However, in
Milner's observation equivalence, when satisfying the second requirement of Definition
1.3 one may execute arbitrary many 't-steps in a graph without worrying about the
status of the nodes that are passed through in the meantime.1

l. The quoted text was actually intended to motivate a non-functional semantics for reactive processes.

We also note that observational equivalence does take the intermediate states of related processes into

account, although not on the level of matching computations. Here we merely take the same ideas that

motivated Hennessy and Milner to an extreme. In the conclusion we will show how the different

intermediate states of corresponding computations of observationally equivalent processes can be

exploited in different program contexts to produce different overal behaviour.

1. Branching and abstraction 123

(a)

(b)

(c)

FIGURE 1. Observation equivalence.

As an illustration, in Figure 1 we consider a path a·t·b•t•c with outgoing edges
d1, ... ,<4, and it follows easily that all three graphs are observation equivalent. Note
that one may add extra b-edges as in (b) and (c) without disturbing equivalence.
However, in both (b) and (c) a new computation path is introduced-in which the
outgoing edge d2 (or d3 respectively) is missing-and such a path did not occur in (a).
Or-to put it differently-in the path introduced in (b) the options d1 and d2 are
discarded simultaneously, whereas in (a) it corresponds to a path containing a state

124 Ill. Branching time and abstraction in bisimulation semantics

where the option d1 is already discarded but d2 is still possible. Also in the path
introduced in (c) the choice not to perfonn d3 is already made with the execution of the
b-step, whereas in (a) it corresponds to a path in which this choice is made only after
the b-step. Thus we argue that observation equivalence does not preserve the branching
structure of processes and hence lacks one of the main characteristics of bisimulation
semantics.

Consider the following alternative definition of bisimulation in order to see how we
can overcome this deficit

DEFINIDON 1.4 Two graphs g and h are branching bisimilar-notation: g :!:!b h-if
there exists a symmetric relation R (called a branching bisimulation) between the
nodes of g and h such that:
i. The roots are related by R
ii. If R(r,s) and r ➔a r', then either a=t and R(r',s), or there exists a path

s = s1 ➔a s2 = s' such that R(r,s1), R(r',s2) and R(r',s').

In a picture, the difference between branching and "t-bisimulation can be characterized
as follows:

"t

a a

"t

FIGURE 2. Bisimulations with 't.

The double arrow corresponds to the symbol =. Ordinary "t-bisimulation (Definition
1.3) says that every a-step r ➔a r' corresponds with a path s = s1 ➔a s2 = s' and so
we obtain Figure 2 without the lines marked with (1) and (2). Branching bisimulation
moreover requires relations between rand St and between r' and s2 and thus we obtain
Figure 2 with (1) and (2). Note that if g :!:!b h then there exists a largest branching
bisimulation between g and h, since the set of branching bisimulations is closed under
arbitrary union. One can easily check that branching bisimilarity is an equivalence on
G, referred to as branching bisimulation equivalence or branching equivalence for
short.

Obviously, branching equivalence more strongly preserves the branching structure
of a graph since the starting and endnodes of the "t-paths s = St and s2 = s are related
to the same nodes. Observe that in Figure 1 there are no branching bisimulations

1. Branching and abstraction 125

between any of the graphs (a), (b) and (c). In particular, adding extra edges as in (b)
and (c) no longer preserves branching equivalence. Equivalently, we could have
strengthened Definition 1.3 (ii) by requiring all intennediate nodes in s ==> s1 and s2 ==> s
to be related with rand r' respectively. In fact, this would yield the notion we really
want to define. That this alternative definition yields the same equivalence relation can
be seen by use of the following lemma:

LEMMA 1.1 (stuttering lemma)

Let R be the largest branching bisimulation between g and h.
// r ➔-c fl ➔-c ••• ➔-c rm ➔-c r' (m2'.0) is a path such that R(r,s) and R(r',s) then
v'I::;i::;m: R(ri,S).

PROOF First we prove Lemma 1. 1 for a slightly different kind of bisimulation, defined
as follows:

DEFINITION A semi branching bisimulation between two graphs g and h is a
symmetric relation R between the nodes of g and h such that:
i. The roots are related by R
ii. IfR(v,w) and v ➔av' then either

(a) a=t and there exists a path w ==> w' such that R(v,w') and R(v',w'), or:
(b) there exists a path w ==> w1 ➔a w2 ==> w' such that R(v,w1), R(v',w2) and

R(v',w').

The difference with branching bisimulation is in case (a), which can be illustrated
by:

FIGURE 3. Semi branching (left) and branching bisimulation.

Now let (*) denote the property, mentioned in the lemma. Observe that (a) any
branching bisimulation is a semi branching bisimulation and (b) any semi branching
bisimulation satisfying (*) is a branching bisimulation.

CLAIM The largest semi branching bisimulation between g and h satisfies (*).

Let R be the largest semi branching bisimulation between g and h, let s be a node
and let r ➔-c fl ➔-c ••• ➔-c rm ➔-c r' (m2'.0) be a path such that R(r,s) and R(r',s).
Then we prove that R' = Ru { { Ti,S}: lgs;m} is a semi branching bisimulation. We
check the conditions:
(i) Clearly, the root nodes of g and h are related by R' (since by R).

126 Ill. Branching time and abstraction in bisimulation semantics

(ii) Suppose R'(v,w) and v -+av'. If R(v,w) then it follows that either (a) a='t and
there exists a path w ==> w' such that R(v,w') and R(v',w'), or (b) there exists a path
w ==> w1 -+a w2==> w' such that R(v,w1), R(v',w2) and R(v',w'). Hence, from
R,;;R' we find that R' satisfies the requirements in the definition above.
So assume not R(v,w), then we find that either (1) v=s and w=ri or (2) v=ri and
w=s.

(1) Ifs -+as' then it follows from R(r',s) that
either: a='t and there is a path r' ⇒ r" such that R(r" ,s) and R(r" ,s'). Hence there is a
path Ti==> r' ==> r" such that R'(r",s) and R'(r",s') as required.
or: there is a path r' ==> t1 -+a t2 ==> r" such that R(t1 ,s), R(t2,s') and R(r" ,s') and
hence Ti==> r' ==> t1 -+a t2==> r" with R'(t1,s), R'(t2,s') and R'(r",s').

(2) If Ti -+a r" then r --+'t r1 --+'t •·· --+1: Ti -+a r" and since R(r,s) we find that
there exists a sequence s ==> s1 ==>•··==>Si such that R(ri,s1), ... ,R(ri,Si)- It follows
from R(ri,Si) that
either: a='t and there exists a path Si==> s' such that R(ri,s') and R(r" ,s'). Hence
s ==> s' with R'(ri,s') and R'(r",s') as required.

or: there exists a path Si==> t1 -+a t2 ==> s" such that R(ri,t1), R(r",t2) and R(r",s"),
and hence s ==>Si==> ti -+a t2 ==> s" with R'(ri,t1), R'(r",t2) and R'(r",s").

This proves that R' is a semi branching bisimulation. Since R is the largest we
find R=R'.

So we proved the claim. Finally, conclude that the largest semi branching
bisimulation is equal to the largest branching bisimulation, and thus we proved the
lemma □

The stuttering lemma will play a crucial role in some of the results we will present later.
An alternative proof, presented in a somewhat different setting, can be found in DE

NICOLA, MONTANARI & VAANDRAGER [66).

It follows from Figure 2 that we can find two more kinds of bisimulation with 't, since
we can leave out (1) while still having (2) and vice versa. Consider the following two
definitions:

DEFINIDON 1.5 Two graphs g and h are rt-bisimilar-notation g :!:!11 h-if there exists
a symmetric relation R (called an rt-bisimulation) between their nodes such that:
i. The roots are related by R
ii. If R(r,s) and r--+a r', then either a=-r and R(r',s), or there exists a path

s·⇒ s1 -+a s2 ==> s' such that R(r,s1) and R(r',s').

DEFINITION 1.6 Two graphs g and h are delay bisimilar-g :!:!d h-if there exists a
symmetric relation R (called a delay bisimulation) between their nodes such that:
i. The roots are related by R
ii. If R(r,s) and r -+a r', then either a=-r and R(r',s), or there exists a path

s ==> s1 -+a s2 ==> s' such that R(r',s2) and R(r',s').

1. Branching and abstraction 127

Notice the subtle differences between both definitions (and Definition 1.4). In
Definition 1.5 the notion of11-bisimulation corresponds to Figure 2 without the relation
(2) but with (1). Similarly, with delay bisimulation we have (2) but not (1). It is easy to
see that in the definition of both branching and delay bisimulation the existence
requirement of a nodes' such that s2 = s' and R(r',s') is redundant.

From the definitions we find immediately that g =b h = g =Tl h = g ='t h and
similarly g =b h = g =ct h = g ='t h. Observe that in Figure 1 we find an 11-
bisimulation between (a) and (c) and a delay bisimulation between (a) and (b).
Conversely, there is no 11-bisimulation between (a) and (b) and no delay bisimulation
between (a) and (c), so all implications are strict.

The notion of 11-bisimulation was first introduced by BAE1EN & VAN GLABBEEK
[15] as a finer version of observation equivalence. A variant of delay bisimulation
only differing in the treatment of divergence-first appeared in MILNER [135], also
under the name observational equivalence.

HISTORICAL N0lE:
The first semantic equivalence preserving the branching structure of processes was
defined in HENNESSY & MILNER [111] and MILNER [134]. In [134] it was called
strong equivalence or strong congruence. It was defined in terms of a decreasing
sequence ~o, ~I, ... , ~k, ... of equivalence relations. Originally, these relations where
defined on CCS expressions that figured as states in transition systems, but one can
also define them on nodes of (possibly different) process graphs.

DEFINm0N 1.7 Let rands be nodes of process graphs. Then:
r ~o s is always true
r ~k+ 1 s iff for all as Act

(i) if r ➔a r' then there exists a nodes' such thats ➔as' and r' ~ks'
(ii) ifs ➔as' then there exists a node r' such that r ➔a r' and r' ~k s'

r ~ s iff for all keN: r ~k s.
Two graphs g and hare strongly equivalent, notation g ~ h, ifroot(g) ~ root(h).

A process graph is finitely branching if each node has only finitely many outgoing
edges. In HENNESSY & MILNER [111] and MILNER [134] strong congruence was
defined only on CCS expressions corresponding with finitely branching graphs. On
this domain, as was shown in [111] and [134], strong congruence 'satisfies its
definition' in the following sense:

PR0POSffi0N 1.2 Let rands be nodes of finitely branching process graphs.
Then r ~ s ijffor all aeAct:
i. ifr ➔a r' then there exists a nodes' such thats ➔as' and r' ~ s'
ii. ifs ➔as' then there exists a node r' such that r ➔a r' and r' ~ s'.

128 Ill. Branching time and abstraction in bisimulation semantics

Strong equivalence is closely related to the notion of bisimulation, introduced by PARK
[145] (cf. Definition 1.2). It is easy to verify that any bisimulation is included in each
of the relations ~k for keN. Hence bisimulation equivalence is at least as discriminating
as strong equivalence. On the other hand, from the former proposition it follows that
with respect to finitely branching process graphs strong equivalence is a bisimulation,
and hence the two notions coincide. With respect to infinitely branching graphs,~ is
strictly coarser than bisimulation equivalence as can be seen from the following
example. Consider the graphs

a

,.._,

RGURE 4. 'Strongly equivalent' graphs that are not bisimilar.

One can easily verify that these graphs are strongly equivalent in the sense of definition
1.7, but not bisimilar.

PR0P0Sill0N 1.3 (SANDERSON [160])
i. With respect to finitely branching process graphs the notions ~ and:!::! coincide;
ii. With respect to infinitely branching process graphs:!::! is strictly contained in~·

Starting from this observation, there are two different ways ill which the notion of
strong equivalence (in HENNESSY & MILNER [111] and MILNER [134] defined for
finitely branching processes only) can be extended to infinitely branching process
graphs. In MILNER [136] strong equivalence is chosen to be the relation of Definition
1.2, so "strong equivalence" and "bisimulation equivalence" are synonyms.

In the presence of a special action 't, representing an unobservable move of a process,
one looks for a semantic equivalence that abstracts from internal moves in a process
and for the rest resembles bisimulation equivalence. Such an abstract equivalence has to
satisfy requirements such as:

1. Branching and abstraction 129

- it is coarser than (strong) bisimulation equivalence
- it is equal to bisimulation equivalence with respect to processes not containing 't-edges
- it does not discriminate between the graphs

and

FIGURE 5. Contraction of internal moves.

The definition of strong congruence (~) was the starting point of HENNESSY &
MILNER [111] when they introduced abstraction in CCS. Having in mind that 't-steps
are not observable, they proposed that two process graph g and h are equivalent if
every visible step in the one graph corresponds with a similar step in the other, apart
from some arbitrary long sequences of 't-steps that are allowed to precede or follow.
This way they obtained a notion of observational equivalence. Originally, this relation
was defined in the sty le of Definition 1. 7, but in order to facilitate comparison with the
other equivalences, we will present it in bisimulation style.

DEFINITION 1.8 Two graphs g and h are observational equivalent in the sense of
HENNESSY & MILNER if there exists a symmetric relation R between the nodes of g
and h such that:
i. The roots are related by R
ii. If R(r,s) and r ➔a r' (a;t:'t), then there is a path s = s1 ➔a s2 = s' with R(r',s').

This equivalence does not coincide with the one from Definition 1.3. As an example,
consider the following two process graphs:

• •

--------- - ,, t -....... ..":- - --- --- --- .,,-' I ~ --••••• : I
b ··• .. -------::,,~ ___ ~·

........ .,._ -------_-.-: : : : ·. - -- - -.. -. -

FIGURE 6. Observational equivalent in the sence of HENNESSY & MILNER [111], but not 't-bisimilar.

130 /JI. Branching time and abstraction in bisimu/ation semantics

These graphs are observational equivalent in the sense of HENNESSY & MILNER [111];
the relation R has been indicated in the figure above. But they are distinguished by
MILNER [134] (Definition 1.3).

Unfortunately, this type of observational equivalence turned out not to be a
congruence for the CCS parallel composition operator, the free merge, or any other
operator representing concurrent activity (cf. HENNESSY & MILNER [111]). Hence
Milner's version of observation equivalence [134], which we call 't-bisimulation
equivalence, can be regarded as an improvement. Both notions satisfy the requirements
mentioned above, but additionally 't-bisimulation equivalence is a congruence for the
CCS parallel composition operator. Since observational equivalence in the sense of
HENNESSY & MILNER [111] is coarser than 't-bisimulation equivalence, the criticism
that 't-bisimulation equivalence does not preserve the branching structure of processes
also applies to the variant of [111].

2. AXIOMS
In this section we will turn sever~ parts of our graph domain G into algebras, by
defining some operations on them. This will enable us to give equational
characterizations of the equivalences studied in the previous section. In the first
subsection we use the operators of the axiom system BPA,: (cf. BERGSTRA & KLOP
[26]): action constants, alternative and sequential composition. In the second
subsection we take the operators inaction, prefixing and alternative composition of
CCS (cf. MILNER [134]). Finally, in the third subsection we combine the features of
the previous two approaches, thereby obtaining the kernel of the extended algebra
ACP,: (cf. BERGSTRA & KLOP [26]). We will not consider parallel composition,
restriction (or encapsulation), hiding and relabelling. However, we claim that these can
be added without problem.

2.1. BASIC PROCESS ALGEBRA
For sake of convenience, in this subsection we will only consider root unwound
process graphs, i.e. process graphs with no incoming edges at the root. Since each
bisimulation equivalence class of process graphs contains a root unwound graph, this
does not cause any loss of generality. Furthermore, we restrict ourselves to non-trivial
graphs-having at least one edge-and we assume our graphs to be divergence free,
meaning that they do not contain infinite 't-paths. The latter restriction will be cancelled
later, but for the time being it suits us since having it we can stay closer to CCS in our
presentation, as will be explained in Section 2.3. (NOIB: apart from arguments about
presentation, one may argue that there is still discussion about the role of divergence in
bisimulation equivalence on processes, such as the dichotomy between explicit
divergence (MILNER [135], WALKER [181]) and fair abstraction (MILNER [134],
BAETEN, BERGSTRA & KLOP [13]), see also Section 7). The domain of root
unwound, non-trivial and divergence free process graphs will be denoted by GBPA
Clearly GBPA,;;;;; G.

2. Axioms 131

In order to equip GBPA with some structure, we introduce two binary infix written
operators + and • and constants for every element in Act.

DEFINITION 2.1 The constants aeAct and the operators+ and• are defined on GBPA as
follows:
(i) Constants aeAct are interpreted by one-edge graphs labelled by a
(ii) (g + h) can be constructed by identifying the root nodes of g and h
(iii) (g•h) is constructed by identifying all endnodes (leaves) in g with the root of h.

If g is without endnodes, then the result is just g.

Formally, identifying is defined as dividing out the equivalence relation 'to be
identified' on the disjoint union of the nodes of g and h. The convention applies that
any pointer (such as a name) to a node of g or his also used to refer to its equivalence
class, this being a node of g+h or g•h. In particular, if "R" is the name of a relation
between the nodes of g and g', then "R" is also the name of a relation between the
nodes of g·h and g', or g•h and g'·h'. Which of these relations is meant by a given
occurrence of "R" should be determined by the context.

As in regular algebra we will often leave out brackets and•, assuming that• will
always bind stronger than+.

The operators + and • are well-defined, even after dividing out bisimulation
equivalence on GBPA, as follows from the following proposition, the proof of which is
straightforward and omitted.

PROPOSITION 2.1 Bisimulation equivalence is a congruence with respect to the
operators+ and •.

Hence the structure (GBPA/!:!,+,,Act) is a well-defined algebra. Considering its first
order equational theory we find the axiom system BPA (cf. BERGS1RA & KLOP [25])
which stands for Basic Process Algebra.

X + y = y+ X Al
(x + y) + z = x + (y + z) A2
x+x=x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) AS

Table 1. BPA.

Now let us say that a theory r is a complete axiomatization of a model M if for every
pair of closed terms p and q we have: r I- p=q if and only if Mt= p=q. This definition
deviates from the standard one, since usually also open terms are considered. Then the
following theorem is due to BERGS1RA & KLOP [26]:

132 Ill. Branching time and abstraction in bisimulation semantics

THEOREM 2.2 BPA is a complete axiomatization of (GBPNt:!.,+,,Act).

Observe that in the presence of the trivial graph, BPA is not sound with respect to
(GBPNt:!.,+,,Act): Axiom A4 no longer holds, with the trivial graph substituted for the
variable y. For this reason it was excluded from GBPA from the beginning.

In the same way one may wish to find axiomatizations for algebras resulting from
dividing out the other equivalences of Section 1. However, as it turns out these
equivalences are not congruences with respect to the operator +. In the case of
observation equivalence this problem was solved by MILNER [134] by simply taking
the closure of t:!.'t with respect to all contexts in CCS, thereby obtaining observation
congruence. Similarly in HENNESSY & MILNER [111] observational congruence was
defined as the CCS-closure of their variant of observational equivalence (Definition
1.8) and this congruence coincides with the one of MILNER [134]. BERGS1RA & KLOP
[26] formulated an additional condition, yielding an immediate definition of observation
congruence by means of bisimulation relations.

DEFINIDON 2.2 (root condition) A relation R between nodes of process graphs is called
rooted if root nodes are related with root nodes only.

Observe that every bisimulation as in Definition 1.2 is rooted, but this is not necessarily
the case for the relations defined in Definitions 1.3-1.6. For any two process graphs g
and hand* e { 't,b,Tl,d} we write R: g t:!.Pf< h if R is a rooted *-bisimulation between g
and h, and g ~Pf< h if such a relation exists.

THEOREM 2.3 For* e{'t,b,Tl,d}, t:!.r-t< is a congruence on GBPA with respect to+ and·.

PROOF We prove Theorem 2.3 for t:!.rb• The other proofs proceed in the same way.
t:!.rb is reflexive since the identity relation is a rooted branching bisimulation between
any graph and itself, and it is symmetric by definition. Furthermore, assume that R:
g t:!.rb g' and S: g' t:!.rb g" and define: T(r,r") :<=> for some r' in g': R(r,r') and
S(r',r"). Now one can easily prove that T: g t:!.rb g", and so t:!.rb is transitive. Thus
we proved that t:!.rb is an equivalence. So it is left to prove that t:!.rb respects the
operators. Suppose that R: g t:!.rb g' and S: h t:!.rb h'.
±..:. We prove that (RuS): (g + h) t:!.rb (g' + h').
(i) Obviously the roots of (g + h) and (g' + h') are related.
(ii) Assume that in (g + h) we have an edge r -+a r' and suppose we have
(RuS)(r,s) then from the construction of (g + h) it follows that this edge either
originates from g or from h; let us say it is g. It follows from (RuS)(r,s) that we
have either R(r,s) or S(r,s), so we have two distinct cases:
Firstly, suppose that R(r,s). Then either a='t and R(r',s) - hence (RuS)(r',s) and
(RuS) satisfies Definition 1.4 - or there exists a path s :::;. s1 -+a s2:::;. s' in g' such
that R(r,s1), R(r',s2) and R(r',s'). Obviously, we can find the same path in
(g' + h') and we have that (RuS)(r,s1), (RuS)(r',s2) and (RuS)(r',s') as required.

2.Axioms 133

Secondly, suppose that we do not have R(r,s). Then we have S(r,s), and since we
assumed that the edge r -+a r' came from g, we find that r has to be the (joint) root
node of g and h. However, in S root nodes are related with root nodes only (the
root condition), and sos must be the joint root node of g' and h'. Hence R(r,s),
which is a contradiction.
(iii) Obviously, the root nodes of (g + h) and (g' + h') are uniquely related by
(RvS).
,:_;_ we prove RvS: (g•h) :!:!:rb (g'•h').
(i) Clearly, the roots of both graphs are related by R, hence by RvS.
(ii) Assume that in (g•h) we have an edger -+a r' and suppose we have (RvS)(r,s)
then from the construction of (g•h) it follows that this edge either originates from g
or from h.
(1) Firstly, let us say it is from g. From (RvS)(r,s) we find that either R(r,s) or
S(r,s). Since r cannot be an endnode in g we have R(r,s). It follows from the fact
that R is a rooted branching bisimulation that either a=t and R(r',s) - hence
(RvS)(r',s) as required - or there is a path s = st -+a s2 = s' in g' such that
R(r,st), R(r',s2) and R(r',s') and thus we find the same path in (g'•h') such that
(RvS)(r,st), (RvS)(r',s2) and (RvS)(r',s'), as is required.
(2) Secondly, assumer -+a r' is from h.
- In case R(r,s), we find that r is an endnode in g (since those are the only nodes of
g that are identified with nodes from h). Supposes is an endnode in g', then it is
identified with the root node of h', and since S is a rooted branching bisimulation
we find:
either a=t and S(r',s), hence (RvS)(r',s);
or there exists a path s = st -+ s2 = s' such that S(r,st), S(r',s2) and S(r',s') and
hence (RvS)(r,st), (RvS)(r',s2) and (RvS)(r',s') as required.
So let us assume thats is not an endnode in g', then it has at least one outgoing edge
s -+b st. Since Risa rooted branching bisimulation and R(r,s), we find that b=t
and R(r,st). The same argument holds for St and thus we find a path
s=so-+'t st -+'t s2-+'t ... such that R(r,Si). Since all graphs in GBPA are divergence
free we have that all nodes Si are distinct and furthermore the sequence
s=so-+'t St -+'t s2 -+'t ... has bounded length. Hence there exists a paths= s' to an
endnode s' in g', such that R(r,s') (and hence (RvS)(r,s')). Note that s' is
identified with the root node of h'. Combining this result with the former part, we
find that the conditions of Definition 1.4 are satisfied as required.
- In case not R(r,s), then S(r,s) and both rands are from hand h' respectively.
Now the requirement follows immediately from the fact that S is a branching
bisimulation.
(iii) Clearly, the root nodes are uniquely related by (RvS). □

THEOREM 2.4 Provided that there exists at least one action aeAct with a#t, :!:!:r,1< is the
coarsest congruence on GBPA with respect to + that is contained in :!:!:,.., for
* e{t,b,T\,d}. Hence :!:!:rt coincides with observation congruence.

134 Ill. Branching time and abstraction in bisimulation semantics

PROOF The idea for this proof is due to J.W. Klop (personal communication). Let g
and heGBPA and suppose g+k :!:!:* h+k for any graph keGBPA· Suppose there is an
action aeAct (a:;t't) that does not occur in g and h. Then g+a :!:!:* h+a. Let R be a*
bisimulation between g+a and h+a, then R must be rooted. Therefore the restriction
of R to the nodes of g and h is a rooted *-bisimulation between g and h.
If no 'fresh atom' aeAct can be found a variant of this method still works. First note
that for each infinite cardinal K there are at least K *-bisimulation equivalence classes
of graphs with less then K nodes. (Choose an action aE Act (a:;t't) and define for
each ordinal bO the graphs g" as follows: g1=a, g}.+1=g}.+ag}. and for 'A, a limit
ordinal g" is constructed from all graphs gµ for µ<l. by identifying their roots. Then
with transfinite induction it follows that no two different g}.'S are *-bisimilar.
Furthermore, for infinite 'A,, the cardinality of the nodes of g" is the cardinality of
'A,.) Thus for any two graphs g and h there must be a graph keGBPA with the same
cardinality such that k is not bisimilar with any subgraph corresponding with a node
in g or h. Now take a *-bisimulation between g+1:k and h+1:k. □

The equivalence relations :!:!:r* are called rooted *-bisimulation equivalence or
*-bisimulation congruence. As a consequence of Theorem 2.3, we find that all
structures (GBPAl:!:!:r*,+,-,Act) are well-defined algebras, every one of which may
satisfy a different equational theory. In a slightly different setting, MILNER [134] found
that the algebra (GBPA/:!:!:rc,+,,Act) can be completely axiomatized by BPA together
with the following three equations:

X't = X Tl

'tX = 'tX + X T2

a('tx + y) = a('tx + y) + ax TI

Table 2. 't-laws (ae Act).

THEOREM 2.5 BPA + Tl-T3 is a complete axiomatization of (GBPAl:!:!:rc,+,,Act).

In the setting of BPA and process graphs, this theorem was first established in
BERGSTRA & KLOP [26]. Its proof will be given in Section 4, together with the proofs
of the Theorems 2.6-2.8.

From Figure 1 one can observe that the constructions (b) and (c) are highly
fundamental for the behaviour of 't in the graph model. For instance, by simplifying
Figure 1 (b) one finds the second 't-law T2, whereas T3 can be easily found from
Figure 1 (c). This shows us that the extra 't-laws T2 and T3 originate from the fact that
observation equivalence does not preserve branching structures.

2. Axioms 135

Since branching bisimulation equivalence distinguishes between all three graphs in
Figure 1, we expect that the laws T2 and T3 will no longer hold in (GBPAl:!rb,+,,Act).
As it turns out, Axiom T3 is completely dropped and T2 is considerably weakened to
Axiom H2 from the following table:

X't = X
x('t(y + z) + y) = x(y + z)

Hl (Tl)
H2

Table 3. 1:-laws for branching bisimulation.

Hl is the same axiom as Tl whereas H2 is derivable from Tl and T2 as one can check
easily. Both axioms refer to the axiomatization of 11, a constant for abstraction from
BAEIBN & VAN GLABBEEK [15] similar to 't. In fact they are a variation on the first
two 11-laws in the sense that in [15] the second law H2 was only introduced for atomic
actions x, instead of taking x as a general variable ranging over all processes. On the
domain of closed terms the two variants are equally powerful. In Section 4 we will
establish that

THEOREM2.6 BPA + Hl-H2 is a complete axiomatization of(GBPAl:!rb,+,,Act).

Obviously, :!rri is a coarser notion than :!rb and it respects the Axioms Hl-H2. As it
turns out we have the additional Axiom H3 which was introduced earlier as T3.

X't = X
x('t(y + z) + y) = x(y + z)
a('tX + y) = a('tX + y) + ax

Table 4. T]-laws (ae Act).

Hl (Tl)
H2
H3 (T3)

BAEIBN & VAN GLABBEEK [15] established a completeness theorem for rooted 11-
bisimulation:

THEOREM2.7 BPA + Hl-H3 is a complete axiomatization of(GBPN:!rri,+,,Act).

So, on closed terms, the difference between H2 and T2 is precisely all the difference
there is between the usual 't-laws and 11. Finally a completeness theorem for delay
bisimulation was (in the setting of CCS) established by WALKER [181].

THEOREM 2.8 BPA + Tl-1'2 is a complete axiomatization of (GBPAl:!r~,+,,Act).

136 Ill. Branching time and abstraction in bisimulation semantics

Resuming we have the following diagram (see Figure 7):

2.2 ccs

weak bisimulation

Tl, T2, T3

~~
r11 -bisimulation

HI, H2, H3

delay bisimulation

Tl,T2

~~
branching bisimulation

HI, H2

Tl X't = X HI
x('t(y + z) + y) = x(y + z) H2

T2 'tX = 'tX + X
T3 a(1:x + y) = a('tx + y) + ax H3

FIGURE 7. Four notions of bisimulation with 't (ae Act).

In the setting of CCS we extend the graph domain GBPA to Gees consisting of the
root unwound process graphs, thus no longer excluding the trivial graph (the one-node
graph without edges) nor any of the graphs with divergences (i.e. infinite 1:-paths). We
obtain: GBPA,; Gees,; G.

We introduce a constant O for inaction, a binary infix written operator + for
alternative composition, and unary operators a. for prefixing (aeAct).

DEFINmON 2.3 The constant O and the operators + and a. are defined on Gees as
follows:
(i) The constant O is interpreted as the trivial graph
(ii) (g + h) can be constructed by identifying the root nodes of g and h
(iii) (a.g) is constructed from g by adding a new node which will be the root of a.g,

and a new a-labelled edge from the root of ag to the root of g.

We will often leave out brackets, assuming that+ will be the weakest operator symbol.
For agents p we will often write ap instead of a.p in order to avoid non-essential
distinctions between CCS and ACP. Similarly, we write Act for the set of prefix
operators {a.: aE Act}. MILNER [134] proved that the operators from Act and + all are
well-defined on Gees/~:

2. Axioms 137

PROPOSITION 2.9 Bisimulation equivalence is a congruence with respect to the
operators from Act and+. ·

So again, the structure (Gees/:!:!,0,+,Act) is a well-defined algebra, and as in the case
of (GBPN:!:!,+,,Act) we can find a complete axiomatization of its equalities with
respect to closed tenns:

x+ y =y+ x Al
(x + y) + z = x + (y + z) A2
x+x=x A3
x+0=x M

Table 5. Basic ees.

Let us call the theory from Table 5 Basic CCS, and write BCCS := Al-A3,A6. Then
the following theorem is due to HENNESSY & MILNER [111] and MILNER [134].

THEOREM 2.10 BCCS is a complete axiomatization of (Gees/:!:!,0,+,Act).

As before, we have four other equivalences :!:!r• for * e { 't,b, T\,d} on Gees which can
be considered. First we establish that they are congruences.

THEOREM 2.11 For* e{'t,b,T\,d}, :!:!r• is a congruence on Gees w.r.t. + and Act.

PROOF We prove it for :!:!rb• The other proofs proceed in the same way.
The proof that :!:!rb is an equivalence and respects + can be copied from the proof of
Theorem 2.3. So it is left to prove that it respects the operators in Act. So suppose
that R: g :!:!rb g' and p, p' are the root nodes of a.g and a.g'. Put R * := Rv { p,p'}.
Then we prove R*: (a.g) :!:!rb (a.g').
(i) Clearly, the roots of both graphs are related by R *.
(ii) Assume that in (a.g) we have an edger ➔b r' and suppose R*(r,s) then from the
construction of (a.g) it follows that either r=p or this edge originates from g.
If r=p then by the definition of R* we have s=p'. Furthennore, b=a and r' is the
root node of g and by the construction of prefixing we find that in g' there exists an
edge s ➔a s' to the root node s' of g'. Since R is a branching bisimulation we find
R(r',s') and hence R*(r',s').
Ifr ➔b r' originates from g then it follows from the definition of R* that R(r,s),
from which the requirement follows immediately.
(iii) Clearly, the root nodes are uniquely related by R*. □

It follows from Theorem 2.4 that :!:!r• is moreover the coarsest BCCS-congruence
contained in :!:!,...

Now consider the axioms from the following table:

138 Ill. Branching time and abstraction in bisimulation semantics

HI' au=ax Tl'
H2' a(1:(y + z) + y) = a(y + z)

'CX = 'tX + x T2'
H3' a('tx + y) = a('Cx + y) + ax T3'

Table 6. ,-laws in CCS (aeAct).

The only difference between these axioms and the ones introduced in the previous
section is the replacement of sequential composition by prefixing in the Axioms Tl
(HI) and H2. The prime accents(') refer to this replacement. Note that HI' is derivable
from H2. We find the following completeness results:

THEOREM 2.12

(i) BCCS is a complete axiomatization of (Gccs/:!:!,O,+,Act)
(ii) BCCS + Tl '-T3' is a complete axiomatization of (Gccs/:!:!rc,O,+,Act).
(iii) BCCS + H2' is a complete axiomatization of (Gccs/:!:!rb,0,+,Act).
(iv) BCCS + H2'-H3' is a complete axiomatization of (Gccs/:!:!111 ,0,+,Act).
(v) BCCS + Tl'-T2' is a complete axiomatization of (Gccs/:!:!rd,0,+,Act).

For the proof of Theorem 2.12, we refer to Section 4.

2.3. TERMINATION

In the previous two subsections, we presented two models: the model
(GBPAl:!:!r*,+,,Act) for BPA with sequential composition, and (Gccs/:!:!r*,O,+,Act)
for BCCS with prefixing. As we argued before, including the trivial graph in
GBPN:!:!r* would destroy the soundness of BPA in the corresponding model, namely
of the Axiom A4. Furthermore, from GBPN:!:!f* we have to exclude graphs containing
infinite 1:-paths since otherwise sequential composition no longer respects the
equivalences- i.e. the equivalences :!:!r* are no longer congruences with respect to•.
For consider the following example:

a

FIGURE 8. Equivalent graphs with and without divergence.

2. Axioms 139

In Figure 8, we find two equivalent graphs, one with and one without divergence,
which we informally denote by a•-cro and a. So: a--cro :!:!r* a, for *e{'t,b,T\,d}.
However, since a--cro does not contain any endnodes we find that (a--cro)·b = a•-cro and
a--cro ~ ab. So in the presence of divergence :!:!I* no longer is a congruence with respect
to•.

The question arises whether the virtues of (G BPA/:!:!u,+,•,Act) and
(Gees/:!:!f*,0,+,Act) can be combined, i.e. whether it is possible to define inaction and
general sequential composition in one model (without destroying the intuitively
plausible Axiom A4) as well as to define general sequential composition on graphs with
possible divergence paths, while respecting the equivalences. We will give a positive
answer to this question by once again extending Gees to a larger domain GAeP (so:
GBPA,;; Gees,;; GAep).

Let us extend the set Act with an additional label, written as ✓. Then, in GAeP we
will distinguish between successful and unsuccessful termination of a process by
adding a termination edge to the endnodes which are considered to terminate
successfully. Such tennination edges consist of an outgoing edge labelled with ✓ to a
new endnode. Let G AeP consist of all graphs that can be obtained from non-trivial,
root unwound graphs from GBPA by adding termination edges to some of their
endnodes. Next we add the trivial graph to GAeP but assume that GAeP is without the
graph consisting of a single termination edge, i.e. the graph representing instant
termination.

Observe that in graphs from G AeP every node has at most one outgoing
termination edge and if it has one, then it does not have any other outgoing edges.
Furthermore, if a node has an incoming termination edge then it is an endnode and it
does not have any other incoming edges. We immediately find that Gees,;; GAeP and
G AeP,;; G✓, where a✓ is the set of process graphs with ✓ as a possible edge-label.
The difference between Gees and GAeP is that the latter distinguishes between two
kinds of termination.

a

✓

FIGURE 9. Process graphs with tennination edges.

With respect to the algebraic operators, we simple combine the operators from BPA
and CCS, but we adapt the definitions of action constants and sequential composition

140 Ill. Branching time and abstraction in bisimu/ation semantics

to the presence of ✓-labels. This is done in the following definition. The new operator
for sequential composition will again be denoted by •, and similarly for action
constants. It will appear from the context (whether it is about GsPA or GAeP) which
one of the Definitions 2.1 and 2.4 presents their current interpretation. In case of doubt
we underline the BPA operators.

DEFINITION 2.4 On G AeP the constants O and a (for aeAct) and the operators + and ·
are defined as follows:
(i) 0 is the trivial graph
(ii) Constants aeAct are interpreted by the left hand side of Figure 9
(iii) (g + h) can be constructed by identifying the root nodes of g and h
(iv) (g-h) is constructed by identifying every node in g with an outgoing termination

edge with the root node of h while deleting its termination edge. The root node
of (g•h) is that of g. If g is without termination edges, then (g·h) is just g.

The prefixing operator of CCS can now be defined by: a.g=a•g. In the subdomain
Gees of G AeP all processes end in deadlock (unsuccessful termination), so g-h=g.
This explains the absence of sequential composition on Gees. Let G'BPA be the
subdomain of G AeP consisting of all divergence free graphs from G AeP only ending
with successful termination. Then (G'BPA,+,,Act) and (GBPA,+,.:.,Act) are
isomorphic algebras and the latter can be interpreted as a notational abbreviation of the
former, where all ✓-labels have been left out.

On the new graph domain G AeP we can define the bisimulation relations from
Definition 1.2-1.6 and 2.2, taking into account that ✓eAct. That is, termination edges
are not treated differently from other edges. The relations on GBPA, inherited through
the isomorphism from G'BPA, coincide with the relations considered in Subsection
2.1. However, this is no longer true if divergent graphs would be added to GspA; in
that case all relations need an additional clause:

If R(r,s) and r is an endnode than there is a path s ==> s' to an endnode s'.
In order to prevent this complication in Section 2.1, there we treated divergence free
graphs only.

The fact that Definition 2.4 provides us with a proper algebraic structure on GAeP
follows from the following theorem:

THEOREM 2.13 All equivalences:!:!, :!:!rr, :!:!rb, :!:!111 and :!:!rd are congruences with respect
to the operators + and · on G AeP-

PR00F Again we prove the theorem for :!:!rb• The fact that on G AeP they are
congruences with respect to + can be found from the proof of Theorem 2.3.
Considering the proof for ·, suppose that R: g :!:!rb g' and S: h :!:!rb h'. Let R' be the
restriction of R to the nodes in g that also appear in g-h (i.e. the nodes without
incoming -J-edges). We prove that R'uS: (g•h) :!:!rb (g'-h').
(i) Clearly the roots of (g-h) and (g'-h') are related by R'uS.

2. Axioms 141

(ii) Assume that in (g•h) we have an edger -+a r' and suppose (R'vS)(r,s), then
from the construction of (g•h) it follows that this edge either originates from g or
from h. If it is from g, then the proof proceeds as in the proof of Theorem 2.3. So
assume r -+a r' is from h.
-In case R'(r,s), we find that in g the node r has an outgoing termination edge
r--+ ✓ r" to an endnode r" (since those are the only nodes of g that are identified with
nodes from h). Since R is a branching bisimulation, we find that in g' there exists a
path s = s'--+ ✓ s" such that R(r,s') and R(r",s"). By applying the definition of :!:!;rb
we even find that all nodes in s = s' are related with r. Furthermore, by
construction of (g'•h') the nodes' is identified with the root node of h', and since S
is a rooted branching bisimulation between h and h', we find:
either a='t and S(r',s'), hence (R'vS)(r',s');
or there exists a path s' = s1 --+ s2 = s3 such that S(r,s1), S(r',s2) and S(r',s3) and
hence (R'vS)(r,s1), (R'vS)(r',s2) and (R'vS)(r',s3) as required.
-In case not R'(r,s), then S(r,s) and both rands are from hand h' respectively.
Now the requirement follows immediately from the fact that S is a branching
bi simulation.
(iii) In G ACP the root node cannot have an outgoing termination edge, and hence the
root nodes of (g·h) and (g'•h') are only related by R' (they are not identified with
nodes from h or h'). Hence (R'vS) is rooted since R is. □

As a consequence, we find a well-defined algebra (GAcP/:!:!;,O,+,,Act), and four
others with domain GAcPh=-r* (* e{'t,b,T\,d}). To start with, we find that the
following basic theory is valid in all five algebras (see Table 7):

x+y =y+ x Al
(x + y) + z = x + (y + z) A2
x+x=x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x+O=x A6
O·x = 0 A7

Table 7. BPAo.

The theory BP Ao is the kernel of the axiom system ACP, introduced in BERGS1RA & KLOP

[25], where O was called o. As before, we have the following completeness theorem for the
five respective algebras:

142 Ill. Branching time and abstraction in bisimulation semantics

THEOREM 2.14

(i) BPAo is a complete axiomatization of (GAcP/~,o,+,-,Act)

(ii) BP Ao+ Tl-T3 is a complete axiomatization of (GAcP/~n,0,+,-,Act)

(iii) BPAo + Hl-H2 is a complete axiomatization of (GAcPl~rb,0,+,-,Act)

(iv) BPAo + Hl-H3 is a complete axiomatization of (GAcP/~111 ,0,+,-,Act)

(v) BP Ao+ Tl-TI is a complete axiomatization of (GAcPl~rd,0,+,-,Act).

Again for the proof of this completeness theorem we refer to Section 4.

2.4. TURNING EQUIVALENCES INTO CONGRUENCES
't-bisimulation equivalence is not a congruence for +, and therefore 't-bisimulation
congruence is defined as the closure of 't-bisimulation equivalence under contexts, or
by means of the root condition. We established (in Theorem 2.4) that (if Act-{'t} is
nonempty) both methods yield the same result. In this respect 1)-, delay and branching
bisimulation behave exactly the same. However, each 't-bisimulation equivalence class
consists of at most two 't-bisimulation congruence classes (this follows from Exercise
7.6 of HENNESSY in MILNER (134]), as is the case for delay bisimulation, whereas T]

and branching bisimulation equivalence classes may contain many congruence classes.
Nevertheless, for all four bisimulations there exists a close relationship between rooted
and non-rooted bisimulation, since the root condition (Definition 2.2) only works on
the root nodes:

THEOREM 2.15 For all root unwound graphs g and h and* e{'t,b,TJ,d}we have:
g ~* h if and only if 't•g ~I* 't·h.

PROOF If Risa *-bisimulation between g and hand r,s are the roots of 't•g and 't·h
then Ru { r,s} is a rooted *-bisimulation between 't•g and 't·h. On the other hand, if
R is a rooted *-bisimulation between 't•g and 't·h, then the roots of g and h are
related by R, so R restricted to the nodes of g and h is a *-bisimulation between g
and h. □

This theorem provides us with a tool to decide upon *-bisimulation equivalence, using
the axiom systems of *-bisimulation congruence.

In defining rooted bisimulations we restricted ourselves to root-unwound process
graphs. The reason for doing so is that the definitions given do not work for graphs
with incoming edges in the root. As remarked in Section 2.1 already, this does not
cause any loss of generality. It is straightforward to define an operator p for root
unwinding, such that fort any graph g, p(g) is root-unwound and strongly bisimilar
with g (and moreover if g is root-unwound already, p(g) and g are isomorphic). Now
the definitions of rooted bisimulation can be extended to all process graphs by letting
g ~I* h iff p(g) ~I* p(h). In case we do not restrict to root unwound process graphs,

3. Branches and traces 143

the definitions of the operators + and • on process graphs have to be upgraded as well.
An easy way to do so is by defining g +has p(g) + p(h) and g-h as g·p(h).

A rooted branching bisimulation between two graphs g and h can alternatively be
defined as a branching bisimulation R such that, for a visible or invisible:

iii. If root(g) ➔a r, then there is an edge root(h) ➔as with R(r,s).
iv. If root(h) ➔as, then there is an edge root(g) ➔a r with R(r,s).

This means that a rooted branching bisimulation behaves like a strong bisimulation in
the first step, and like a branching bisimulation further on. It is easy to see that for root
unwound graphs this definition agrees with Definition 2.2. However, it has the
advantage that it can directly be used for graphs that are not root-unwound. Also delay,
l)- and 't-bisimulation congruence can be characterized in a similar fashion (cf. MILNER
[138] and BAETEN & VAN GLABBEEK [15]) (but giving up the analogy with a strong
bisimulation in the first step). However, the characterizations of this type of the various
bisimulation congruences have not exactly the same appearance, whereas the root
condition gives a uniform way for turning weak, delay, l)- and branching bisimulation
into a congruence.

3. BRANCHES AND 1RACES
As we saw in Figure 1, while preserving observation equivalence we are able to
introduce new 'paths' in a graph. To be more precise: in these new paths alternative
options may branch off in places different from any in the old paths. So far, we
claimed to have solved this problem by defining a new kind of bisimulation, but as of
yet we still have to prove that our solution solves the problem in a fundamental way. In
this section we will establish an alternative characterization of branching bisimulation.
In fact, we will show how branching bisimulation preserves the branching structure of
graphs. Let us first consider ordinary bisimulation.

DEFINITION 3.1 A concrete trace of a process graph is a finite sequence (a1, a2, a3, ... ,
ak) of actions from Act, such that there exists a path ro ➔al ri ➔a2 r2 ➔ ·••➔ak rk
from the root node ro.

Two graphs g and h are said to be concrete trace equivalent, notation g =t h, if their
concrete trace sets (i.e. the sets of their concrete traces) are equal. It is easily checked
that =t is a congruence on GBPA and g :!::!; h => g =t h. Consequently we find that
GBPAl=t is a model for BPA. Compared to bisimulation, concrete trace equivalence
makes many more identifications. For example, we find that GBP Al=t satisfies the
equation x(y + z) = xy + xz which cannot be proved from BPA.
The main reason for this is that a concrete trace does not provide us with information
about the branching potentials in the intermediate nodes. Therefore we cannot
distinguish between processes a(b + c) and (ab+ ac). In the following we will use
colours at the nodes to indicate these potentials.

144 Ill. Branching time and abstraction in bisimulation semantics

DEFINIDON 3.2 A coloured graph is a process graph with colours CeC as labels at the
nodes.

Obviously, in a coloured graph we have traces which have colours in the nodes:

DEFINITION 3.3 A concrete coloured trace of a coloured graph g is a sequence of the
fonn (Co, a1, Ct, a2, C2, ... , ak, Ck) for which there exists a path ro ➔al fJ ➔a2 r2
➔ ··· ➔aic fk in g, starting from the root node ro, such that Ti has colour Ci.

The concrete coloured traces of a node r in a graph g are the concrete coloured traces of
the subgraph (g)r of g that has r as its root node. This graph is obtained from g by
deleting all nodes and edges which are inaccessible from r.

The question remains how to detect the colour differences of the nodes, or-to put
it differently-how to define the concept of 'branching potential in a node' properly.
There are several ways to do this. A natural definition is the following:

DEFINIDON 3.4 A concrete consistent colouring of a set of graphs is a colouring of their
nodes with the property that two nodes have the same colour only if they have the
same concrete coloured trace set.

Obviously, the trivial colouring-in which every node has a different colour-is
consistent on any set of graphs. Note that-even apart from the choice of the colours
a set of graphs can have more than one consistent colouring. For instance, consider a
set containing only an infinite graph representing aro or a•a•a••· then obviously the
homogeneous colouring-in which every node has the same colour-is a consistent
one, as well as the alternating or the trivial colouring.

Let us say two graphs g and h are concrete coloured trace equivalent-notation:
g =cc h-if for some concrete consistent colouring on {g,h} they have the same
concrete coloured trace set, or equivalently, if for some concrete consistent colouring
on {g,h} the root nodes have the same colour. Then we have the following important
characterization:

11-IEOREM 3.1 g :!:!: h if and only if g =cc h.

PROOF=: Suppose R is the largest bisimulation relation between g and h. Let .R be the
transitive closure of R then R is an equivalence relation on the set of nodes from g
and h. Let C be the set of equivalence classes induced by .R and label every node
with its own equivalence class. Then this colouring is consistent on g and h.

To see this let robe a node in g say, and (Co, a1, C1, a2, C2, ... , ak, Ck) be a
concrete coloured trace which corresponds to a path ro ➔al ri ➔a2 r2 ➔ ··· ➔ak fk
starting from ro. Now suppose for some node so in h we have R(ro,so), then we
find from Definition 1.2 that so ➔al s1 for some SJ such that R(ri,s1). Thus ri and
SJ have the same colour CJ. By induction we find that so has the same concrete

3. Branches and traces 145

coloured trace (Co, at, Ct, a2, C2, ... , ak, Ck). So R preserves concrete coloured
trace sets, hence so does &.

Since the roots of g and h are related we find g =cc h.
~: Suppose that g and h have the same concrete coloured trace sets. Then

consider the relation R which relates two nodes of g and h iff they are labelled with
the same colour. It is easy to prove that Risa bisimulation between g and h. □

So far we did not have any notion of abstraction in the definition of coloured traces, so
if a coloured graph has 't-labels then these are treated as if they were ordinary actions.
In the following definition we find how to abstract from these 't-steps. The idea is
simple: -r-steps can only be left out if they are inert, meaning that they are between two
nodes that have the same colour. Thus it is not only that inert steps are not observable,
but even more, they do not cause any change in the overall state of the machine.

DEFINITION 3.5 A coloured trace of a coloured graph is a sequence of the form
(Co, at, Ct, a2, C2, ... , ak, Ck) which is obtained from a concrete coloured trace of
this graph by replacing all subsequences (C, 't, C, 't, ... , 't, C) by C.

DEFINmON 3.6 A consistent colouring of a set of graphs is a colouring of their nodes
with the property that two nodes have the same colour only if they have the same
coloured trace set. Furthermore such a colouring is rooted if no root-node has the
same colour as a non-root node.

For two root unwound graphs g and h let us write g =c h if for some consistent
colouring on { g,h} they have the same coloured trace set, and g =re h if moreover this
colouring is rooted. Then we find the following characterization for (rooted) branching
bisimulation:

11-IEOREM 3.2

i. g =b h if and only if g =c h
ii. g =rb h if and only if g =re h.

PROOF=: Suppose R is the largest (rooted) branching bisimulation between g and h.
Let R be its transitive closure and C the set of equivalence classes induced by &.
Then the colouring in which every node is labelled with its own equivalence class is
consistent (and rooted) on g and h. ·

To see this, let us write C(r) for the colour of the node r and assume that, for
certain nodes ro and so, R(ro,so) and ro has an coloured trace (Co, at, Ct, a2,
C2, ... , ak, Ck). Then there exists a path of the form ro -'tut -1: ... -'tum -a1 ri
(m?:0) such that C(ri) = Ct and for all i: C(ui) = C(ro) = Co. For every edge
Ui -1: Ui+t (O~i<m, uo=ro) there exists a path Yi =vi+l (vo=so) such that R(ui,Yi),
and all intermediate nodes are related to either Ui or Ui+l (by Lemma 1.1), hence all
Yi have the same colour Co. So we find a path so= Vm with only one colour in the
nodes such that R(um,Ym).

146 Ill. Branching time and abstraction in bisimulation semantics

Next, since Um ➔al ft and R(um,Vm) we find that either a1='t and R(ft,Vm)-in
which case C1 =Co in contradiction with (Co, a1, C1, a2, Cz, ... , ak, Ck) being a
coloured trace-or there is a path Vm ~ t1 ➔al s1 such that R(um,t1) and R(ri,s1).
Again by Lemma 1.1 we find that t1 and all the intermediate nodes in~ have the
same colour as Vm and so we find a coloured trace (Co, a1,C1) of so. By repeating
this argument k times, we find that so has a coloured trace (Co, a1, Ct, a2, Cz, ... ,
ak, Ck) and so R preserves coloured trace sets. Thus R induces a consistent
colouring and since the roots are related we find g =c h. If moreover R is rooted,
then so is the induced colouring.

=: Consider a (rooted) consistent colouring such that the coloured trace sets of g
and hare equal with respect to that colouring. Let R be the relation between nodes of
g and h relating two nodes iff they have the same colour, then it is easy to see that R
is a (roott>,d) branching bisimulation. D

This characterization provides us with a clear intuition about what branching
bisimulation actually is, since the difference between inert steps-not changing the state
of the machine--and relevant 't-steps-that behave as common actions-is visualized
immediately by the (change of) colours at the nodes. It follows that branching
bisimulation equivalence preserves computations together with the potentials in all
intermediate states that are passed through.

Another way of looking at the colouring of a graph is the following. Since trace
equivalence is too weak to characterize branching bisimilarity we can add more
information to traces in order to distinguish between processes. Consider the following
definition:

DEFINmON 3.7 For ordinals a the a-trace set of a graph g is defined as follows:
1. The a-trace set of a node r of g is the set of all y-traces of r, for y<a.
2. An a-trace of r is made of a sequence (To, a1, Tt, a2, ... , ak, Tk), where ai are

actions from Act and Ti are a-trace sets such that g has a path of the form
ro ➔al fI ➔a2 ... -+ate 1k and ri has a-trace set Ti, by replacing all subsequences
(T, 't, T, 't, ... , 't, T) by T.

3. The a-trace set of g is the a-trace set of its root.

Note that all 0-trace sets are empty, and the 1-trace set of g is just the set of its concrete
traces from which 't's have been left out. Two graphs g and h are a-trace equivalent
-notation g =a h-if they have the same a-trace set. Let us say that they are
hypertrace equivalent-notation g = h-if g =a h for all ordinals a. Note that if A<a
then g =ah implies g =')... h. From this it immediately follows that if G',;; G is a set of
process graphs then on G' the notion of a-trace equivalence stabilizes for some ordinal
-i.e. there exists a closure ordinal a such that, for g,hE G', g = h iff g =a h.
It will follow from the proof of Theorem 3.3 that the smallest ordinal with
(g =ah = g =a+l h) is a closure ordinal. Furthermore if G has cardinality~ then~

3. Branches and traces 147

must be a closure ordinal. Next we prove that hypertrace equivalence coincides with
coloured trace equivalence:

THEOREM 3.3 g = h if and only if g =c h.

PROOF=: Let G' be a set of process graphs containing g,h and all their subgraphs and
let a be the smallest ordinal such that, for g',h'eG ', g' =a h' iff g' =a+! h'. If
g' =a+ 1 h' then by definition g' and h' have the same set of y-traces (y_5;a). Since a
traces are recognizable from their form, this implies that g' and h' must have the
same a-traces. Consider the colouring on g and h in which every node is coloured
with its own a-trace set. Now a coloured trace (Co, a1, C1, a2, ... , ak, Ck) of a node
r is precisely an a-trace and by definition of a we have that r and r' have the same
a-trace set only if they have the same a-traces, i.e. they have the same colour only if
they have the same coloured traces. Hence the colouring is consistent.

Now g = h ⇒ g =a+! h ⇒ g and h have the same coloured traces ⇒ g =ch.
$=: Take a consistent colouring on g and h such that the roots of g and h have the

same colour. Then with transfinite induction on y it is easy to prove that equally
coloured nodes have the same y-traces for all ordinals y. □

Hence we find that= is equivalent to =c, and hence to !:!b (Theorem 3.2). Note that
compared to readiness semantics (cf. OLDEROG & HOARE [144]), possible-futures
semantics (cf. ROUNDS & BROOKES [159]) and ready trace semantics (cf. BAETEN,
BERGS1RA & KLOP [14]) in an a-trace (eel) we keep track of a lot more information.
Apart from just all one-step exits from the endstate of a partial execution we are now
able to see all traces (and higher traces) that can be chosen at every intermediate state
during the execution.

The notion of hypertrace equivalence gives us an indication of the amount of extra
information that is needed to turn trace equivalence into branching bisimulation
equivalence. Furthermore, it provides us with an idea of how to build a consistent
colouring on a set of graphs by distinguishing more and more between nodes.

A construction similar to Definition 3.7 was used by MILNER [137,138] to
characterize observation equivalence in the spirit of Definition 1.7.

As a tool for further analysis we have the following proposition:

PROPOSffiON 3.4 lt is possible to colour the nodes of a root unwound process graph g
in such a way that two nodes have the same colour if! they can be related by a rooted
branching autobisimulation on g (relating g with itself). This colouring is rooted and
consistent.

PROOF For every root unwound process graph g the largest rooted branching
autobisimulation on g is an equivalence relation on the nodes. It follows from the
proof of Theorem 3.2 that every node can be labelled with its equivalence class as a
colour, in order to obtain a rooted consistent colouring. □

148 Ill. Branching time and abstraction in bisimulation semantics

This colouring of a graph is called its canonical colouring. Note that two different
nodes r and s of a root unwound process graph g have the same colour with respect to
its canonical colouring if and only if r,s -:;:. root(g) and (g)r =b (g)8 (the subgraph (g)r of
g with root r is defined in the beginning of this section; furthermore, remember that in
the canonical colouring root nodes have colours different from those of internal nodes).
In this case we say that rand s are rooted branching bisimilar.

DEFINITION 3.8 A root unwound graph is said to be in norma.l form if each node has a
different colour with respect to its canonical colouring and it has no 't-loops r ➔ -r r.

Next we show that each root unwound process graph is rooted branching bisimilar
with exactly one normal form (up to isomoiphism).

DEFINITION 3.9 Let g be a root unwound process graph and consider its canonical
colouring with colour set C. Let N(g) - the normal form of g - be the graph which
can be found from g by contracting all nodes with the same colour and removing 't
loops. To be precise:
1. N(g) has colours CeC as its nodes.
2. N(g) has an edge C ➔a C' (a:;t't) iff g has an edger ➔a r' such that C(r)=C and

C(r')=C', where C(r) denotes the colour of the node r.
3. N(g) has an edge C ➔-c C' iff C"#C' and g has an edger ➔-c r' with C(r)=C and

C(r')=C'.

PROPOSITION 3.5 For all root unwound process graphs g: g =rb N(g).

PROOF Consider the canonical colouring on g, and the trivial colouring on N(g) in
which each node (being a colour from C) is labelled by itself. Let R be the relation
relating nodes from g and N(g) iff they have the same colour. Now it follows
directly from the construction above that R is a rooted branching bisimulation
between g and N(g). □

So in every rooted branching bisimulation equivalence class of root unwound process
graphs there is a normal form. We proceed by showing that up to isomoiphism there is
only one.

DEFINITION 3.10 A graph isomorphism is a bijective relation R between the nodes of
two process graphs g and h such that:
1. the roots of g and h are related by R
2. if R(r,s) and R(r',s') then r ➔a r' is an edge in g iff s ➔a s' is an edge in h

(aeAct).

Note that a graph isomoiphism is just a bijective bisimulation, or a bijective branching
bisimulation for that matter. Two graphs are isomoiphic--notation g = h-iff there
exists an isomoiphism between them. In that case g and h only differ with respect to
the identity of the nodes. Note that= is a congruence relation on process graphs.

4. Completeness proofs

THEOREM 3.6 (normal form theorem)

Let g and h be root unwound graphs that are in normal form.
Then g :!:!:rb h if and only if g = h.

PROOF This follows since any bisimulation R: g :!:!:rb h must be bijective:

149

(i) it is surjective because every node in g or h can be reached from the root; hence
by Definition 1.4 every node is related to some node in the other graph;
(ii) it is injective since every node is related with at most one other node: if two
different nodes in g are related to the same node in h, then these two are also related
by a branching autobisimulation on g, and so with respect to the canonical colouring
they have the same colour. But then by Definition 3.8 the nodes are identical, which
is a contradiction. □

Theorem 3.6 says that each equivalence class in G/:!:!:rb can be represented by one
special element: its normal form. It follows that g :!:!:rb h if and only ifN(g) = N(h).

4. COMPLEIBNESS PROOFS
In this section we will present the proofs of the completeness Theorems 2.6, 2.7, 2.8
and 2.5. By means of a rather trivial adaptation of the contents of this section one
obtains the completeness theorems for CCS and ACP't (Theorems 2.12 and 2.14). The
basic idea in these proofs is to establish a graph rewriting system on finite process
graphs, which is confluent and terminating. We prove that (i) normal forms with
respect to the graph rewriting system are normal forms in the sense of Definition 3.8,
hence two normal forms are bisimilar iff they are equal (i.e. isomorphic). Furthermore
we prove that every rewriting step in the system (ii) preserves bisimulation, and
(iii) corresponds to a proof step in the theory. Then we conclude:
- two finite graphs are bisimilar iff they have the same normal form
- if two graphs have the same normal form then the corresponding terms can be

proved equal.

To start with, let us consider some definitions.

DEFINITION 4.1 Let H .;;;; G be the set of finite process graphs and n+ .;;;; GBPA the set
of finite, non-trivial process graphs. Here a process graph. is finite if it has only
finitely many paths.

Note that finite process graphs are acyclic and thus certainly root-unwound, and
contain only finitely many nodes and edges. Later on, we will establish a
correspondence between graphs from n+ and closed terms in BP A't, i.e. the signature
of BPA together with the extra constant 't. Below we will use the results from the
previous section, starting from Proposition 3.4.

150 Ill. Branching time and abstraction in bisimulation semantics

DEFINITION 4.2 A pair (r,s) of nodes in a process graph g is called a pair of double
nodes if ..ts, r,s :t= root(g) and for all nodes t and labels as Act: r -+at<=> s -+at.

DEFINITION 4.3 An edge r-+ 't s in a process graph g is called manifestly inert if r :t=

root(g) and for all nodes t and labels asAct such that (a,t) :t= ('t,s): r -+at:::;. s -+at.

Figure 10. A pair of double nodes (left) and a manifestly inert 't-step.

Note that for finite process graphs g, the requirement r,s :t= root(g) in Definition 4.2 is
redundant. A 't-edge in a root unwound graph g is inert if it is between two rooted
branching bisimilar nodes (i.e. nodes that have the same colour in the canonical
colouring of g). For root unwound graphs it is easily checked that if (r,s) is a pair of
double nodes or if r-+ 't s is manifestly inert, then r and s are rooted branching bisimilar
(though it need not be the case that (g)r and (g)8 are rooted branching bisimilar). As one
can see from Figure 10, it is essential in the Definitions 4.2 and 4.3 that this can be
found by investigating the outgoing edges only up to one level. For this reason, in
Definition 4.3 the 't-step is called manifestly inert, since it can be recognized as such.
On H, sharing of double nodes and contraction of manifestly inert 't-steps turns out to
be strong enough to reduce a graph to its normal form. This means that in the reduction
process all rooted branching bisimilar nodes become manifestly rooted branching
bisimilar.

THEOREM 4.1 A graph gE H without double nodes or manifestly inert edges is in
normal form.

PROOF Let gE H be a finite graph which is not in normal form. Then with respect to its
canonical colouring (Proposition 3.4) it has at least one pair of different nodes with
the same colour. Now define the depth d(s) of a nodes as the nwnber of edges in
the longest path starting from s, and the combined depth of two nodes as the sum of

4. Completeness proofs 151

their depths. Choose a pair (r,s) of different equally coloured nodes in g with
minimal combined depth. Consequently we have:
(*) if r' ands' have the same colour and d(r') + d(s') < d(r) + d(s) then r'=s'.
Without loss of generality assume d(s)~d(r). Then we prove the following two
statements:
1. if r ➔at (aeAct) is an edge in g and (a,t)=t{'t,s), thens ➔at is an edge in g
2. ifs ➔at (aeAct) is an edge in g, then either r ➔-cs or r ➔at is an edge in g.
From these two statements we find that if r ➔-cs is an edge in g then it is manifestly
inert, and if r ➔ -c s is not an edge in g, then (r,s) is a pair of double nodes, which
proves our theorem. Note that since rands are different equally coloured nodes,
they both must be different from the root.

ad 1: Let r ➔at be an edge in g and (a,t):;t:('t,s). Since rand s have the same
colour (hence the same coloured traces) we find that either a='t and t has the same
colour as r and s, or s has the coloured trace (C(r), a, C(t)). In the first case it
follows from d(t) < d(r) and (*) that t=s, which is in contradiction with our
assumption (a,t):;t:('t,s). So s has a coloured trace (C(r), a, C(t)). Suppose that
s ➔-cu for a node u with colour C(u)=C(s)=C(r), then it follows from d(u)<d(s) and
(*) that u=r, contradicting d(u)<d(s)~d(r). Hence there is a node u such thats ➔au

and C(t)=C(u), and since d(t) + d(u) < d(r) + d(s) we conclude from (*) that t=u.
Hence s ➔a t is an edge in g.

ad 2: Lets ➔at be an edge in g. If C(t)=C(s)=C(r) then it follows from (*) and
d(t)<d(s) that r=t, in contradiction with d(t)<d(s)~d(r). So (C(s), a, C(t)) is a
coloured trace of s, and since r and s have the same colour (C(s), a, C(t)) is a
coloured trace of r as well. Now if r has an outgoing 't-edge r ➔-cu to a node with
the same colour C(r), then it follows from d(u) + d(s) < d(r) + d(s) and(*) that u=s.
If r has no such edge, then it has an edge r ➔a u with C(u)=C(t), and since
d(u) + d(t) < d(r) + d(s) we find that u=t. Thus we proved that either r ➔-c s or
r ➔a t, which proves (2). D

Theorem 4.1 tells us that all we need do in order to turn a finite graph g into its normal
form is to repeatedly unify its pairs of double nodes and contract its manifestly inert
edges. In the case of finite graphs this can be done in finitely many steps as follows:

DEFINITION 4.4 For any graph gE H the rewriting relation ➔n is defined by the
following two one-step reductions:
1. sharing a pair of double nodes (r,s): replace all edges t ➔a r by t ➔a s (if not
already there, otherwise just remove t ➔a r) and remove r together with all its
outgoing edges from g;
2. contracting a manifestly inert step r ➔-cs: replace all edges t ➔a r by t ➔as (if not
already there, otherwise just remove t ➔a r) and remove r together with all its
outgoing edges from g.

152 Ill. Branching time and abstraction in bisimu/ation semantics

PRorosmoN 4.2 The rewriting relation-+ff has the following properties:
i. Has well as Ir" are closed under applications of-+ ff
ii. if g -+ff h then g =rb h
iii. -+ff is confluent and terminating.

PROOF (i) In applications of-+ff the root is never removed and in the resulting graph
all nodes remain accessible from the root. It is never the case that two edges with the
same label appear between the same two nodes. The graph also remains finite (and
non-trivial).
(ii) Suppose (r,s) is a pair of double nodes or r-+'t sis a manifestly inert edge in g,
and g -+ff h identifies the nodes rands(= removes the node r). Let I be the identity
relation on the nodes of h then Iu { { r ,s} } is a rooted branching bisimulation
between g and h. This is easy to prove from the Definitions 4.2 and 4.3.
(iii) -+ff is terminating since it decreases the number of nodes, and every finite
process graph has finitely many nodes. Next, suppose g has two normal forms n
and n', then by the definition of -+ff n and n' are without pairs of double nodes and
without manifestly inert edges. Thus by Theorem 4.1 n and n' are in normal form.
By (ii) it follows that n =rb n' and hence by Theorem 3.6 (normal form theorem) we
haven= n'. □

Next we will establish a correspondence between finite non-trivial graphs and closed
BPArterms, such that the graph reductions of Definition 4.4 correspond to proof steps
in BPA + Hl,2.

Write s ar t for r 1- s=t saying that s and t are equal modulo applications of axioms
from rand the standard axioms for equality (reflexivity, commutativity, transitivity and
replacement). It is quite easy to turn finite non-trivial graphs into BPA't-terms as
follows. Let T(BPA't) be the set of closed BPA't terms.

DEFINITION 4.5 Let<•>: Ir"-+ T(BPA't) be a mapping that satisfies

<g> = L r(g) ➔as is an edge in g; a•<(g)s> + L
s not an endnode

r(g) ➔b sis an edge in g; b.
sis an endnode

Here r(g) denotes the root node of ge H+ and if Pi is a BPA't-term for ie I, with
l={i1, ... ,inl a finite non-empty set of indices, then Lie I Pi.denotes a BPA't-term
Pi1 + ... +Pin• Note that the notation Lie I Pi does not determine the order and
association of the terms Pi•

If ge H+, r(g) -+a s is an edge in g, and s is not an endnode, then (g)s e H+.
Furthermore, since ge Ir" is finite, r(g) has only finitely many outgoing edges, so the
requirement of Definition 4.5 is well-defined. Moreover, with induction on the depth of
its arguments, one easily proves that a mapping that meets this requirement exists.
However, for geH+, this requirement determines <g> is only modulo Al-A2.

4. Completeness proofs 153

PROPOSITION 4.3 If g,hElr and g = h, then Al-A2 I- <g> = <h>.
PROOF Trivial. □

DEFINITION 4.6 The denotation [p] of a BP Ac-term p in the graph domain G, is
defined by:

[a] = aa for aE A't
[x + y] = [x] +G [y]
[x•y] = [x] ·G [y]

where aa, +G and •G are the interpretations in G, of the constants and operators a, +
and • of BP A't, as defined in Definition 2.1.

Now it turns out that terms of the form <g> (for gE Ir) are all of a specific shape, and
for terms of this shape, <·> is a left-inverse of[·], modulo Al-A2. Consider the
following definition:

DEFINITION 4.7 The set BT of basic terms over BPA't is inductively defined as follows:
1. For all aeAct we have aeBT;
2. If p,qeBT then (p + q)eBT and for all aeAct: a-peBT.

LEMMA 4.4 For gElr, <g> is a basic term and if PE BT, then <[p]> =Al,2 p.

PROOF With induction to the structure of terms:
- Ifp = a (aeAct) then [p] is the one-edge graph labelled with a, and so< [p] > = p.
- If p = a•u for some basic term u, then [p] is the graph with an edge labelled a

followed by [u].
Then, < [p] >=a•< [u] > and so by induction we find that< [p] > =Al,2 a•u.

- Suppose p = u + v. One can easily see that for graphs g and h: < g +G h > =Al,2
<g> + <h>.
Then: Al-A21- < [u + v] > = < [u] > + < [v] > = u + v (by induction). □

LEMMA 4.5 (elimination)
For every closed BPArterm p there exists a basic term q such that A4-A5 I- p = q.

PROOF By induction on the structure of p.
Ifp = a (aeAct) then pis a basic term.
If p = u·v and Lemma 4.5 can be proved for all terms smaller than p, then there
exist basic terms u' and v' such that A4-A5 I= u = u', v = v'. Now suppose u' has
the form (Iii llj_•Wi + Lj bj), then we find:

A4-A5 I= p = u'·v' = (Li ai•Wi + Lj bj)•v' =
= Li (ai•Wi)•v' + Lj bj•V' (by Axiom A4)
= Li ai'(Wi•v') + Lj bj•V' (by Axiom AS)
= Li ai•~ + Lj bj'v' for some basic terms qi (by induction)

which is a basic term again.
If p = u + v then A4-A5 I= p = u' + v' for basic terms u' and v', and the sum of
two basic terms is again a basic term. □

154 /II. Branching time and abstraction in bisimulation semantics

PROPOSITION 4.6 For all closed BPArterms p we have: Al-A2+A4-A5 I- <[p]> = p.

PROOF If 'p=q' is an instantiation of axioms A4 or A5 (possibly in a context) then
< [p] > =Al,2 < [q] >. Now the proposition follows immediately from the
Lemmas 4.4 and 4.5. □

This concludes the establishment of a correspondence between H+ and T(BPA't).
Next we will show that every rewriting step on H+ corresponds to a proof step in
BPA + Hl-H2.

LEMMA 4.7 Let (r,s) be a pair of double nodes or r ➔'ts be a manifestly inert i-step in
a process graph g, such that neither r nor s are endnodes, and let aeAct. Then we
have: BPA + Hl-H21- a•<(g)r> = a•<(g)8>.

PROOF In case (r,s) is a pair of double nodes r has an edger ➔at iff s has an edge
s ➔at and so <(g)r> =Al,2 <(g) 8>, hence a•<(g)r> = a·<(g)s>.
In case r ➔ 't s is a manifestly inert 't-step we distinguish two subcases: First assume
that r has more outgoing edges than only r ➔'ts. Then there must be basic terms
p and q such that

(1) <(g)r> =Al,2 't·<(g)s> + P
(2) <(g)s> =Al,2 P + q.

So we derive:
Al,2 + H21- a•<(g)r> = a•('t·<(g)s> + p) (by (1)) =

= a•('t·(p + q) + p) (by (2)) =
= a•(p + q) (by applying H2)
= a•<(g)8> (by (2)).

In case r has no more outgoing edges than r ➔'ts we have <(g)r> = 't·<(g) 8>,
hence

A5 + HI I- a•<(g)r> = a•('t·<(g)8>) = (a•'t)·<(g)s> = a•<(g)s>. D

PROPOSITION 4.8 /f g ➔n h then BPA + Hl-H21- <g> = <h>.

PROOF On H the rewriting relation ➔n can be decomposed in the following
elementary reductions:
Take a pair of double nodes (r,s) or a manifestly inert 't-step r ➔ 't s and replace one
edge t ➔a r by t ➔a s (if not already there, otherwise just remove t ➔a r) and if r has

no more incoming edges remove r together with all its outgoing edges from g. So it
suffices to prove that if h is obtained from g by means of such an elementary
reduction, we have <g> =r <h>, where r = BPA + Hl-H2. From Definition 4.5 it
follows that it even suffices to prove <(g)t> =r <(h)t>.
- First consider the case that neither r nor s are endnodes and there is no edge

t ➔as in g. Then <(g)t> =Al,2 a•<(g)r> + p for certain basic term p. Lemma 4.7
says a•<(g)r> =T a•<(g)s>, hence <(g)t> =r a•<(g)s> + p =Al,2 <(h)t>-

4. Completeness proofs 155

- In case t ➔a s is an edge in g, and r,s are still assumed not to be endnodes we
have <(g)t> =Al,2 a•<(g)r> + a•<(g)s> + p =r a•<(g)s> + a·<(g)s> + P =A2,3
a•<(g)s> + p =Al,2 <(h)t>-

- If (r,s) is a pair of double nodes than r is an endnode iff sis. In this case we have
<(g)t> =Al,2 a+ p =Al,2 <(h)1> ift ➔as is not an edge in g and
<(g)t> =Al,2 a+ a+ p =A2,3 a+ p =Al,2 <(h)t> otherwise.

- Finally if t ➔a s is a manifestly inert t-edge and s is an endnode in g, we have
<(g)t> =Al,2 a·t + p =HI a+ p =Al,2 <(h)t> if t ➔as is not an edge in g and
<(g)!> =Al,2 a-t +a+ p =HI a+ a+ p =A2,3 a+ p =Al,2 <(h)t> otherwise. □

Now we are in the position to prove the completeness of BP A+ Hl-H2 with respect to

GBP Af '!:rb:

PROOF OF 1HEOREM 2.6: (soundness) The fact that (GBPA/'!:rb,+,,Act) is a model for
BP A + H 1-H2 follows easily by inspection of the axioms of BP A + H 1-H2.

(completeness) Let (GBPA/'!:rb,+,,Act) l=p=q for two closed BPA,.-tenns p,q,
then by definition [p] '!:rb [q]. Let g and h be the unique nonnal forms of [p] and
[q] with respect to ➔H- By Proposition 4.2 we find g '!:rb [p] '!:rb [q] '!:rb h. From
Theorem 4.1 it follows that g and h must be in nonnal fonn in the sense of Section 3
and by the nonnal fonn theorem (Theorem 3.6) it then follows that g = h. Thus we
find BPA + Hl-H2 I- p = <[p]> = <g> = <h> = <[q]> = q using Propositions
4.3, 4.6 and 4.8. So BPA + Hl-H2 is a complete axiomatization of GBPA/'!:rb· □

Next we will prove the other completeness theorems, using the earlier results in this
section. In fact we will extend the graph rewriting system to one which is 'typical' for
the corresponding bisimulation relation. The rewrite rules which are added to the
system are derived from Figure 1: in case ofT\-bisimulation we will saturate the graph
by exhaustively adding edges of the kind of Figure 1 (c), whereas in the case of delay
bisimulation we add edges as in Figure 1 (b). For t-bisimulation we do both. This way
we obtain nonnal fonns which are saturated and which turn out to be unique modulo
rooted branching bisimulation. From there we establish the completeness result
precisely in the same way as before.

DEFINITION 4.8 Let aeAct, then:
1. The rewriting relation ➔11 is defined on H by the rule:

if a graph has a paths ➔a s1 ➔-cs' without an edges ➔as' then adds ➔as'.

2. The rewriting relation ➔ d is defined on H by the rule:
if a graph has a paths ➔-c s1 ➔as' without an edges ➔as' then adds ➔as'.

3. Furthennore, we set: ➔-c = ➔11 u ➔d-

Applications of ➔11 , ➔d or ➔-care referred to as saturation steps (cf. BERGSTRA &
KLOP [27]).

156 Ill. Branching time and abstraction in bisimulation semantics

PROPOSIDON 4.9 The relations - 11, -d and-1: satisfy the following properties:
i. Has well as n+ are closed under applications of-11, -d and -'t
ii. - 11, -d and -'tare confluent and terminating.

PROOF (i) Directly from Definition 4.8.
(ii) (termination) Let geH. Let n(g) be the (finite) number of nodes in g, l(g) be

the number of labels and e(g) be the number of edges in g. Note that n(g) and l(g)
are not changed by - 11 , -d and-1: whereas e(g) increases with every saturation
step. Since g is finite we find that e(g) < n(g)xl(g)xn(g) and so n(g)xl(g)xn(g) - e(g)
is positive and decreasing with the number of saturation steps.

(confluence)-11, -d and-1: do not eliminate redexes. □

So from Proposition 4.9 we find that any graph geH has unique normal forms with
respect - 11 , -d and -'t• These are written as H(g), D(g) and T(g) and (in that order)
are called 11-, d- and 't-saturated. The latter is also often referred to as the transitive
closure of 't-steps. Furthermore, saturation preserves the corresponding bisimulation:

PROPOSITION 4.10 For all g,heH:
i. if g-11 h then g :!::!ITJ h

ii. if g -d h then g :!:!rd h

iii. if g -1: h then g :!:!rt h.

The proof of the Proposition 4.10 is straightforward.

THEOREM 4.11 (normal form theorem) Let g,heH, then
i. if g and h are 1]-saturated process graphs, then g :!::!ITJ h if and only if g :!::!rb h

ii. if g and hared-saturated process graphs, then g :!:!rd h if and only if g :!::!rb h

iii. if g and h are -r-saturated process graphs, then g :!:!rt h if and only if g :!::!rb h.

PROOF We will only prove (i). The other cases proceed in the same way.
Suppose that R: g :!::!ITJ h then it is sufficient to prove that R is a rooted branching
bisimulation:
(i) The roots of H(g) and H(h) are related and (iii) R satisfies the root condition.
(ii) If R(r,s) and r -a r' then either a='t and R(r',s), ors= s1 -a s2 = s' such that

R(r,s1) and R(r',s'). Let t1, ... ,tk be such that s2 = to -1: t1 -1: ··· -1: tk = s'
(k20) then since g and hare 11-saturated there are edges s1 -a ti and so there is
a path s = s1 -as'. □

COROLLARY

i. g :!::!ITJ h if and only ifH(g) :!:!rb H(h) if and only ifN(H(g)) = N(H(h))
ii. g :!:!rd h if and only ifD(g) :!::!rb D(h) if and only ifN(D(g)) = N(D(h))
iii. g :!:!rt h if and only if T(g) :!::!rb T(h) if and only ifN(T(g)) = N(T(h)).

PROOF It follows by Proposition 4.10 that H(g) :!:!ITJ g, D(g) :!:!rd g and T(g) :!:!rt g.
Now apply the normal form theorems 4.11 and 3.6. □

4. Completeness proofs 157

So we find that in each r*-bisimulation equivalence class of finite process graphs for
* e{'t,T\,d} there is exactly one *-Saturated process graph up to rooted branching
bisimulation and exactly one *-Saturated normal form up to isomorphism. In order to
prove the completeness theorems we still need to prove that rewriting steps correspond
to proof steps.

PROPOSffiON 4.12For finite graphs g and h:
i. If g ➔11 h then Al-A3 + Hl,3 1- <g> = <h>
ii. If g ➔d h then Al-A3 + T2 I- <g> = <h>
iii. If g ➔-ch then Al-A3 + Tl-31- <g> = <h>.

PROOF (i) If r ➔a r' ➔ -c r" ➔ is a path is g and r ➔a r" is added in g to obtain h, then
we find that <(g)r> =Al-3 <(g)r> + a•<(g)r•> and

<(g)r·> =Al-3 't·<(g)rn> + <(g)r·> and hence:
Al-A3 + H31- <(g)r> = <(g)r> + a•('t·<(g)ru> + <(g)r·>) =

= <(g)r> + a•('t·<(gk> + <(g)r•>) + a• <(gk> (by H3) =
= <(g)r> + a• <(g)ru> = <(h)r>.

In case r ➔a r' ➔ -c r" and r" is an endnode we find:
Al-A3 + Hl,3 1- <(g)r> = <(g)r> + a•('t + <(g)r·>) =

= <(g)r> + a•('t·'t+ <(g)r•>) (by Hl) =
= <(g)r> + a•('t·'t + <(g)r·>) + a•'t (by H3) =
= <(g)r> +a= <(h)r>-

From Al-A3 + H3 I- <(g)r> = <(h)r> it easily follows that
Al-A3 + H3 1- <g> = <h>.

(ii) If r ➔ -c r' ➔a r" ➔ is a path is g and r ➔a r" is added in g to obtain h, then:
<(g)r> =Al-3 <(g)r> + 't·<(g)r•> and
<(g)r·> =Al-3 a•<(g)r"> + <(g)r•> and hence:

Al-A3 + T2 I- <(g)r> = <(g)r> + 't•(a•<(g)rn> + <(g)r•>) =
= <(g)r> + a· <(g)rn> (by T2 and A3) = <(h)r>.

In case r ➔a r' ➔ 't r" and r" is an endnode we simply leave out •<(g)r"> in the
argument above.
Hence Al-A3 + T2 1- <g> = <h>.

(iii) Immediately from (i) and (ii). Note that Hl = Tl and H3 = T3. □

PROOFS OF 1HE 1HEOREMS 2.5, 2.7 AND 2.8

The soundness theorems follow easily after inspection of the axioms. Of the
completeness theorems we only prove Theorem 2.7. The others proceed in the same
way.
Let (GBPAl!:!:f'll,+,,Act) l=p=q for two closed BPA-c-terms p,q, then by definition
[p] !:!:f'll [q]. Let g and h be the unique normal forms of [p] and [q] with respect to
➔11 . By Proposition 4.10 we find g !:!:f'll [p] !:!:f'll [q] !:!:f11 h. The graphs g and h
must be Tl-saturated and by the normal form theorem (Theorem 4.11) it then follows
that g !:!:rb h. Thus we find BPA + Hl-H3 1- p = <[p]> = <g> = <h> = <[q]> =q
using Propositions 4.6 and 4.12 and Theorem 2.6. So BPA + Hl-H3 is a complete
axiomatization of GnpA/!:!:f11, □

158 Ill. Branching time and abstraction in bisimulation semantics

5.CORRESPONDENCE
Here we present a theorem which tells us that in quite a number of cases observation
and branching bisimulation equivalence are the same. For instance, consider the
practical applications where implementations are verified by proving them equal to
some specification (after having abstracted from a set of unobservable actions of
course). In many such cases, the specification does not involve any 't-steps at all: in
fact all 't-steps that occur in the verification process originate from the abstraction
procedure which is carried out on the implementation.

As it turns out, in all such cases there is no difference between observation and
branching bisimulation equivalence. For this reason we may expect many verifications
involving observation equivalence to be valid in the stronger setting of branching
bisimulation as well. In particular this is the case for all protocol verifications in 't
bisimulation semantics known to the authors.

TIIEOREM 6.2 Suppose g and hare two graphs, and g is without edges labelled with 't.
Then:
i. g:!:!:-chifandonlyifg:!:!:bh
ii. g :!:!:rt h if and only if g :!:!:rb h.

PROOF Let R be the largest (rooted) 't-bisimulation between g and h. We show that R is
even a (rooted) branching bisimulation. Assume that R(r,s) and r ➔a r' is an edge in
g, then either a=-r and R(r',s)-contradicting the absence of 't-edges in g--0r in h
there is a path s => SJ ➔a s2 => s' and R(r',s'). Assume s => SJ has the form
s = vo ➔-c VJ ➔-c •·· ➔-c Vm = SJ (m;?:O) then it follows from s ➔-c VJ and R(r,s) that
for some q: r=>rJ and R(TJ,VJ). Since g has no 't-edges we find that r=q.
Repeating this argument m times we find that R(r,vJ and R(r,sJ).

Furthermore, since R(r,sJ) and SJ ➔a s2 we find that r ➔a r" (g has no 't-steps)
such that R(r",sz). Since s2 = wo ➔-c WJ ➔-c ••• ➔-c Wn = s' it follows from the
same argument as before that R(r",wi) and R(r",s'). Thus we find R(r',s'), R(s',r")
and R(r" ,s2) and since R is the largest rooted 't-bisimulation we have R(r',sz).

On the other hand, if R(r,s) and r ➔a r' is an edge in h, then either a='t and
R(r',s) or directly s ➔as' such that R(r',s'), since g contains no 't-edges. □

For TJ- instead of branching bisimulation equivalence this theorem was already proven
in BAE1EN & VAN GLABBEEK [15]. From Theorem 2.15 we easily find that for graphs
g and h:

g is without 't-edges => ('t·g :!:!:rt 't·h => 't·g :!:!:rb 't·h).

BOUALI [36] presents what is claimed to be "a counter example to the feelings in
[4] about the fact that Branching Bisimulation and Weak Bisimulation coincide for a
large class of processes". Here "[4]" is GROOTE & VAANDRAGER [106], who refer to
the results of this section and confirm that they "are not aware of any protocol that can
be verified in the setting of observation equivalence but not in the stronger setting of
branching bisimulation equivalence". Bouali's counterexample concerns the

6. Refinement 159

minimization of PETERSON'S mutual exclusion algorithm [147]. Here minimization
means finding an equivalent process that is as small as possible. In branching
bisimulation semantics this yields a process with 17 states, whereas in weak
bisimulation semantics a process with only 14 states is obtained. In our opinion this
does not constitute a counterexample, as this is not a case of verification. It would be a
verification if the minimal representation modulo weak bisimulation would be an
acceptable specification. However, it has too many 't-transitions for this purpose. It is a
process obtained as the result of a calculation, not anything one likely would start with.
Much more plausible candidates for a specification are the minimizations modulo
coupled simulation (9 states) or failure equivalence (4 states). More on this matter in the
conclusion.

6. REFINEMENT
Virtually all semantic equivalences employed in theories of concurrency ar~as in this
thesis-defined in terms of actions that concurrent systems may perform. Mostly, these
actions are taken to be atomic, meaning that they are considered not to be divisible into
smaller parts. In this case, the defined equivalences are said to be based on action
atomicity.

However, in the top-down design of distributed systems it might be fruitful to
model processes at different levels of abstraction. The actions on an abstract level then
turn out to represent complex processes on a more concrete level. This methodology
does not seem compatible with non-divisibility of actions and for this reason PRATT
[154], LAMPORT [125] and others plead for the use of semantic equivalences that are
not based on action atomicity.

As indicated in CASTELLANO, DEMICHELIS & POMELLO [46], the concept of
action atomicity can be formalized by means of the notion of refinement of actions. A
semantic equivalence is preserved under action refinement if two equivalent processes
remain equivalent after replacing all occurrences of an action a by a more complex
process r(a). In particular, r(a) may be a sequence of two actions a1 and a2. An
equivalence is strictly based on action atomicity if it is not preserved under action
refinement.

In the previous sections in this chapter we argued that Milner's notion of
observation equivalence does not respect the branching structure of processes, and
proposed the finer notion of branching bisimulation equivalence which does. In this
section we moreover find, that observation equivalence is not preserved under action
refinement, whereas branching bisimulation equivalence is.

From the Axioms T3 (see Table 2), it is easy to show why the notion of observation
congruence is not preserved under refinement of actions: replacing the action a by the
term be, we obtain bc(u + y) = bc(-cx + y) + bcx, which obviously is not valid in
G/t::!rc. Applying T3, we do find bc('tx + y) = b(c(-cx + y) + ex), unfortunately
denoting a different process however.

160 Ill. Branching time and abstraction in bisimulation semantics

In this section we will prove that branching equivalence is preserved under refinement
of actions, and so it allows us to look at actions as abstractions of much larger
structures. We will present our result in the style of BPA, and indicate afterwards how
our construction can be adapted to obtain refinement theorems in the style of CCS and
ACP. Put A=Act\{0} (or A=Act\{0,✓} if there are ✓-labels around). Consider the
following definitions.

DEFINffiON 6.1 (substitution) Let r: A ➔ GBPA be a mapping from observable actions to
graphs, and suppose geGBPA· Then, the graph r(g) can be found as follows.
For every edger ➔a r' (aeA) in g, take a copy ru!l of r(a) (eGBPA)- Next, identify r
with the root node of ru!l, and r' with all endnodes of@, and remove the edge r
➔ar•.

Note that in this definition it is never needed to identify r and r', since r(a) is non
trivial. This way, the mapping r is extended to the domain GBPA· Note that since 't'ii!A,
't-edges cannot be substituted by graphs. Finally, observe that every node in g is a node
in r(g).

DEFINITION 6.2 (presetvation under action refinement) An equivalence= on GBPA is said to
be preserved under refinement of actions if for every mapping r: A ➔ GBPA, we
have: g = h = r(g) = r(h).

In other words, an equivalence = is preserved under refinement if it is a congruence
with respect to every substitution operator r.

Starting from a relation R: g :!:!rb h, we construct a branching bisimulation r(R):
r(g) :!:!rb r(h), proving that preserving branching congruence, every edge with a label
from A can be replaced by a root unwound non-trivial graph.

DEFINITION 6.3 Let r: A ➔ GBPA be a mapping from observable actions to graphs,
g,heGBPA and R: g :!:!rb h. Now r(R) is the smallest relation between nodes of r(g)
and r(h), such that:
1. R<,;;; r(R).
2. If r ➔a r' ands ➔as' (aeA) are edges in g and h such that R(r,s) and R(r',s'),

and both edges are replaced by copies r(a) and r{aJ of r(a) respectively, then
nodes from ru!l and r{aJ are related by r(R) iff they are copies of the same node
in r(a).

Edges r ➔a r' ands ➔as' (aeA) such that R(r,s) and R(r',s'), will be called related by
R, as well as the copies ruu and r{aJ that are substituted for them. Observe, that on
nodes from g and h the relation r(R) is equal to R. Note that if r(R)(r,s), then r is a
node in g iff s is a node in h.

THEOREM 6.1 (refinement) Branching congruence is preserved under refinement of
actions.

6. Refinement 161

PROOF We prove that R: g !:!rb h => r(R): r(g) !:!rb r(h) by checking the requirements.
For convenience, in the definition of branching equivalence (Definition 1.4), we
omit the requirement of the existence of a path s2 => s', as it is redundant (see the
remark just after Definition 1.6). Then we find:
i. The root nodes of r(g) and r(h) are related by r(R).
ii. Assume r(R)(r,s) and in r(g) there is an edge r ➔a r'. Then there are two
possibilities (similarly in case r ➔ar' stems from r(h)):

(1) The nodes r and s originate from g and h. Then R(r,s), and by the
construction of r(g) we find that either a='t and r ➔ -c r' was already an edge in g, or
g has an edge r ➔ b r* and r ➔a r' is a copy of an initial edge from r(b).
In the first case it follows from R: g !:!rb h that either R(r',s)-hence r(R)(r',s)-or
in h there is a paths=> s1 ➔-cs' such that R(r,s1) and R(r',s'). By definition of
refinement, the same path also exists in r(h), and thus we have r(R)(r,s1) and
r(R)(r',s').
In the second case there must be a corresponding paths=> s1 ➔b s* in h such that
R(r,s1) and R(r*,s*). Then, in r(h) we find a paths=> s1 ➔as' (by replacing ➔b
by r(b)) such that r(R)(r,s1) and r(R)(r',s).

(2) The nodes r and s originate from related copies r(b) and rf61 of a substituted
graph r(b) (for some beA), and are no copies of root or endnodes in r(b). Then
r ➔a r' is an edge in r(b). From r(R)(r,s) we find that rands are copies of the same
node from r(b). So, there is an edges ➔as' in rf61 wheres' is a copy of the node in
r(b), corresponding with r'. Clearly r(R)(r',s').
iii. Since for nodes from g and h we have r(R)(r,s) iff R(r,s), the root condition is
satisfied. D

With respect to closed BPA-c-terms, the refinement theorem can be proved much easier
by syntactic analysis of proofs, instead of working with equivalences between graphs.
For observe that the Axioms Al-AS+ Hl-H2, that form a complete axiomatization of
branching congruence for closed terms, do not contain any occurrences of (atomic)
actions from A. Now assume we have a proof of some equality s=t between closed
terms, then this proof consists of a sequence of applications of axioms from Al-AS+
Hl-H2. Since all these axioms are universal equations without actions from A, the
actions from s and t can be replaced by general variables, and the proof will still hold.
Hence, every equation is an instance of a universal equation without any actions.
Immediately we find that we can substitute arbitrary closed terms for these variables,
obtaining refinement for closed terms.

Nevertheless, the semantic proof of the refinement theorem is important since it
also holds for larger graphs from GBPA that cannot be represented by closed BPA-c
terms.

In the setting of BCCS, a substitution should be a mapping r: A ➔ Gees\{ 0}, where O
denotes the trivial graph. Then the semantic proof of the refinement theorem goes
exactly as in the setting of BPA. However the syntactic proof breaks down on the
absence of general sequential composition and on the presence of actions in the axioms

162 Ill. Branching time and abstraction in bisimulation semantics

for branching congruence. In the setting of basic ACP, Definition 6.1 should be
adapted such that r' is identified not with all endnodes of W!}, but with all nodes of ruu
that have an outgoing termination edge. These termination edges should then be
deleted. Furthermore if certain parts in the resulting graph have become disconnected
from the root, they should be deleted as well. Now both the semantic and the syntactic
proof of the refinement theorem remain valid.

Delay bisimulation is also preserved under action refinement (as pointed out in
DEVILLERS [72]), and T]-bisimulation is not (same counterexample as for weak
bisimulation). Moreover, delay bisimulation is the coarsest equivalence that is
preserved under refinement and finer then 't-bisimulation (i.e. fully abstract with
respect to weak bisimulation and action refinement) (CHERIEF & SCHNOEBELEN [48]),
but branching bisimulation is not quite the coarsest equivalence that is preserved under
refinement and finer then T]-bisimulation. This was established in CHERIEF [47], who
characterized the quasi-branching bisimulation equivalence below as the coarsest
equivalence that is preserved under refinement and finer then T]-bisimulation.

DEFINITION 6.4 Two graphs g and hare quasi-branching bisimilar-notation: g :!:!:b h-
if there exists a symmetric relation R (called a quasi-branching bisimulation) between
the nodes of g and h such that:
i. The roots are related by R
ii. If R(r,s) and r ➔a r', then either a='t and there is a path s => s' such that R(r',s'),

or there exists a paths=> s1 ➔as' such that R(r,s1) and R(r',s').

It is easy to see that quasi-branching bisimulation is finer than both delay and T]
bisimulation, but coarser than branching bisimulation equivalence, i.e. we have
g :!:!:b h => g :!:!:qb h => g :!:!:1J h and g :!:!:qb h => g :!:!:d h. The strictness of the first
implication follows from the example 't('t+b)+a :!:!:qb 't('t+b)+a+'t, which does not apply
to :!:!:b. The strictness of the other two implications follows from the fact that neither :!:!:1J

nor :!:!:d implies the other. Cheriefs quasi-branching bisimulation coincides with the
simple branching bisimulation independently proposed by VAN BENTI-IEM, VAN EIJCK
& SIBBLETSOVA [21] and discussed in the Section 8.

Finally it should be noted that action refinement as defined in this section is a
meaningful notion that can be used in the design of systems only if these system are
assumed to be sequential (i.e. performing only one action at a time). In the presence of
parallel composition, process graphs as presented here are not sufficiently expressive
for defining a refinement operator. For this purpose one may better use causality based
models of concurrency, such as event structures or Petri nets. This will be the topic of
the following chapter.

7. Divergence 163

7. DIVERGENCE
In the literature on bisimulation semantics roughly three ways are suggested for treating
divergence (= infinite 't-paths). The original notion of 't-bisimulation equivalence
(HENNESSY & MILNER [111], MILNER [134] and PARK [145]) abstracted from all
divergencies; the first two graphs of Figure 11 are equivalent, as well as the two graphs
of Figure 8.

't

Figure 11. Three ways of modeling divergence.

These identifications can be justified by an appeal to fairness (MILNER [134] and
BAETEN, BERGSTRA & KLOP [13]), and play a crucial role in many protocol
verifications. In BERGSTRA, KLOP & OLDEROG [29] the corresponding semantics is
referred to as bisimulation semantics with fair abstraction. A variant were divergence is
taken into account, in the sense that the first two graphs of Figure 11 are distinguished,
as well as the two graphs of Figure 8, was proposed in HENNESSY & PLOTKIN [113]
for (a variant of) 't-bisimulation and in MILNER [135] for delay bisimulation. In both
cases a complete axiomatization is provided in WALKER [181]. In these semantics the
basic notion is a preorder rather then an equivalence, and divergence is identified with
underspecification. The induced equivalences identify the last two graphs of Figure 11,
which are distinguished in 't-bisimulation semantics with fair abstraction. Hence the
two notions are incomparable. A semantics that refines both notions was proposed in
BERGSTRA, KLOP & OLDEROG [29] under the name bisimulation semantics with
explicit divergence.

11-, delay and branching bisimulation as presented in this chapter are all based on
the variant of 't-bisimulation with fair abstraction. However it is completely
straightforward to generalize the r-bisimulation preorder of HENNESSY & PLOTKIN
[113] to a 1]-bisimulation preorder, and the delay bisimulation preorder of MILNER
[135] to a branching bisimulation preorder. Also it is not difficult to define 17-, delay
and branching bisimulation with explicit divergence in the spirit of BERGSTRA, KLOP

164 Ill. Branching time and abstraction in bisimulation semantics

& OLDEROG [29]. For branching bisimulation the definition can conveniently be given
in tenns of coloured traces.

DEFINIDON 7 A node in a coloured graph is divergent if it is the starting point of an
infinite path of which all nodes have the same colour. A colouring preserves
divergence if no divergent node has the same colour as a non-divergent node. Two
graphs g and h are (rooted) branching bisimulation equivalent with explicit
divergence if there exists a (rooted) consistent divergence preserving colouring on g
and h for which they have the same coloured trace set.

8. MODAL CHARACIBRIZA TIONS
It is well known (cf. HENNESSY & MILNER [112]) that strong and weak equivalence
can be characterized by means of a simple modal language, called Hennessy-Milner
logic (HML):

DEFINITION 8 The fonnulas of the Hennessy-Milner logic (HML) are given by the
syntax

cp ::= <a>cp I (j)Aljf I -,cp I T
The (strong) satisfaction relation I= between processes and fonnulas is defined by
i. g I= T for all process graphs g,
ii. g I= <a>cp if there is an edge root(g) ➔a s and (g)s I= cp,
iii. g 1= (J)A'I' if g 1= cp and g 1= 'I',
iv. g I= -, cp if g lie cp.

We called the satisfaction relation above strong because it is tailored to strong
bisimulation equivalence. Hennessy and Milner established that for finitely branching
process graphs g and h

g =t h <=> Vq>E HML (g I= cp <=> h I= cp).

In MILNER [137) this characterization was generalized to infinitely branching processes
by replacing the finite conjunction A by an infinite conjunction Aiel•

This result was adapted to weak bisimulation equivalence by replacing the modality
<'t> by <£> and changing the satisfaction relation a bit. What we call the weak notion
of satisfaction, l=-c, is given by

g l=-c <a>cp if there is a path root(g) => ➔a=> s and (g)s l=-c cp
g l=-c <t>cp if there is a path root(g) => s and (g)8 l=-c cp

and the same clauses for T, A (or A) and-, as we had before. Now one obtains:

Equivalently, one can introduce a modality <cr> for any sequence cr of visible actions
and put g l=-c <cr>cp if there is a path root(g) =>cr s and (g)8 l=-c cp.

B. Modal characterizations 165

In fact, Hennessy and Milner considered a different kind of observational equivalence
(Definition 1.8) than what is now known as weak or 't-bisimulation equivalence, and
this version of observational equivalence is modally characterized just as weak
bisimulation above, but without the modality<£>.

In MILNER [135] a modal characterization of delay bisimulation was given. Define
the delay notion of satisfaction, l=d, by

g l=d <a>cp if there is a path root(g) =➔as and (g)5 l=d cp
g l=d <E>cp if there is a path root(g) = s and (g)5 l=d cp

and the same clauses for T, A (or A) and-, as before. Now one obtains:

g :t:td h ¢::} VcpE HML (g l=d cp ¢::} h l=ct cp).

Actually, this is not precisely Milner's characterization, as he simultaneously changed
the treatment of divergence (see the previous section).

Now the question arises if a modal characterization can also be obtained for
branching equivalence. A positive answer was given in DE NICOLA & V AANDRAGER
[67], but it required the addition of a family of until-operators to HML. These operators
are also denoted <a>, but can be distinguished from the operators above because they
are binary. cp<a>'I' says that, during a sequence of internal actions, formula cp remains
valid until the action a happens, and afterwards 'I' holds:

g l=b cp<a>'I' if there is a path root(g)=so ➔-rs1 ➔-r ··· ➔-rsn ➔as (n2:0)
such that (g)si l=b cp for i=0,1, ... ,n and (g)s l=b 'I'

g l=b cp<E>'I' if there is a path root(g)=so ➔-r s1 ➔-r ··· ➔'t Sn (n2:0) such
that (g)si l=b cp for i=0,1, ... ,n-1 and (g)sn l=b '1'·

Now the unary modalities <a>cp can be regarded as abbreviations for T<a>cp. In this
sense is HML with until operators an extension of HML under the delay interpretation.
They established that

g :t:tb h {:::} VcpEHML+'until' (g l=b cp {:::} h l=b cp).

In VAN GLABBEEK [81] a variant of this characterization is proposed. There binary
modalities a and 't, written without angular brackets, are considered, defined by

g l=b cpa'I' if there is a path root(g)='t r ➔as such that (g)r l=b cp and (g)s l=b 'I'
g l=b 'P't'I' if there is a path root(g)= 'tr such that r=s or r ➔ 't s

with (g)r l=b cp and (g)s l=b '1'·
Also these modalities, together with T, A and-,, characterize branching bisimulation
equivalence.

In fact this modal language is equally expressive as the one of De Nicola &
Vaandrager.Namely

g l=b cpa"' ¢::} g l=b T<E>(cp<a>'!') and g l=b 'P't'I' ¢::} g l=b T<E>(cpA(cp<E>'I'))
which establishes that it can be expressed in HML+'until', and, using the stuttering
lemma,

g l=b cp<a>'I' ¢::} g l=b (pA(cpa'I') and g l=b cp<E>'I' ¢::} g l=b (cpA((p't'l'))v'I'
which establishes that it can express HML+'until'.

166 Ill. Branching time and abstraction in bisimulation semantics

In VAN GLABBEEK [81] also a modal characterization of 11-bisimulation is
provided. Besides the HML modalities is has a binary modality a (for a#'t), as in the
characterization above, but this time the interpretation of the modalities is weak, rather
than delay-like.

g 1=11 <pa'lf if there is a path root(g)=>-c r ➔a ::::,.-cs with (g)r 1=11 <p and (g)s 1=11 'If.
Again <a><p can be regarded as an abbreviation for Tacp. However, any attempt to
generalize the modality <£><p to a binary version yields, under the weak interpretation,
a modality that is no more expressive than <e><p. And indeed, HML together with the
binary modalities a (for a#'t), yields a modal characterization of11-bisimulation:

g :=11 h ¢=> '9' cpe HML1l (g l=11 <p ¢=> h l=11 <p).

Considering the absence of a binary modality for silent activity in the 11-
characterization, it appears that one variant is still unexplored, namely HML with the
binary modalities a (for a#'t), or equivalently <a> (for a#'t), without a binary modality
for internal activity, but employing the delay (= branching) interpretation. This
possibility is investigated in VAN BEN111EM, VAN BUCK & SIBBLETSOVA [21], and
the equivalence characterized by these modalities is called simple branching
bisimulation equivalence. It happens to be the same as the quasi-branching bisimulation
independently proposed by CHERIEF [47] and discussed in the Section 6.

In MILNER [134,135] the name observation equivalence is justified by the
presentation of a scenario in which two processes are observation inequivalent iff there
is an experiment on which one reacts differently than the other. A successful
experiment on a process p corresponds with an HML formula satisfied by p, and, vice
versa, for each HML formula satisfied by p there is an experiment showing so. In
order to upgrade this testing scenario to one that distinguishes branching inequivalent
processes by experiment, it suffices to find experiments corresponding to the 'until'
operators added to HML. For this purpose one may assume that a process leaves a
continuous chain of core-dumps when it proceeds. Here each core-dump contains all
information needed to reconstruct the process in the state were its core was dumped,
and 'continuous' means that in every state at least one, but possible many core-dumps
are left. By examining all core-dumps of a process prior to the execution of an action a,
it is possible to ascertain that a formula cp holds until a occurs. Similarly one can check
that during a series of internal actions <p holds until 'I' holds. More details can be found
in VAN GLABBEEK [81].

Besides HML with until operators several other modal characterizations of
branching bisimulation have been proposed. First of all each of the logics (A)CTL and
(A)CTL * without nexttime operator, characterize (a variant of) branching bisimulation
(DE NICOLA & VAANDRAGER [67,68]). See Argument 5 in the conclusion. These
logics are more expressive than HML+'until'.

In DE NICOLA, MONTANARI & VAANDRAGER [66] it has been established that if in
the definition of *-bisimulation, for* e{t,b,11,d}. it is required that moves in the one
process can be simulated by the other process, not only when going forward but also
when going back in history, these modified notions all coincide with branching

Conclusion 167

bisimulation. This yields another modal characterization of branching bisimulation,
namely HML with backward modalities.

A last possibility may be adding the eventually operator to HML. It remains to be
determined for which classes of process graphs HML + 'eventually' is adequate.

CONCLUSION

In this chapter we introduced a new semantic equivalence for concurrent systems that
we called branching bisimulation equivalence. We compared branching bisimulation
with the coarser notion of weak bisimulation equivalence and two intermediate notions.
Our main motivation for introducing branching bisimulation is that it preserves the
branching structure of processes. Although we believe that this has been demonstrated
in Sections 1 and 3, this chapter does not contain a formal definition of the branching
structure' of a process. Such a definition will be offered in VAN GLABBEEK [82].

Here we would like to stress that this feature of branching bisimulation is of more
than philosophical interest. Actually, we think that of all the equivalences in the linear
time - branching time spectrum, branching bisimulation is most suited for verifying the
correctness of concurrent systems in applications were the final word on what exactly
is observable behaviour has not been pronounced. Below we list our arguments.
1. In applications were the notion of observable behaviour is clear, the most suitable

equivalence is usually the one which is fully abstract with respect to this notion of
observable behaviour, i.e. identifies two processes if and only if their observable
behaviour is the same. However, if there is no clarity on what is observable, a
verification in a fully abstract semantics w.r.t. any notion of observability needs to
be redone every time one discovers that a little bit more can be observed than what
was originally accounted for. Moreover, the soundness of the verification depends
crucially on the right estimation of what can be observed. A verification (of the
equivalence of two processes) in a semantics that preserves the internal structure of
processes, on the other hand, does not depend on considerations of observability
(as long as it is clear that no more can be observable than this internal structure),
and is automatically valid in any semantics that is fully abstract w.r.t. some notion
of observable behaviour. Now for the simple kind of processes that are the subject
of this chapter, the best formalization of the internal structure of a process appears
to be its branching structure. (However, for more complex systems the internal
structure may involve more, e.g. the causal structure of processes.)

This argument is by no means new, and also appeared in the original version of
this text. But the elaboration paraphrased above stems from VAN GLABBEEK [82].

2. The above argument says that branching bisimulation equivalence (or
congruence) is suited for applications in which their is no certainty on what
constitutes observable behaviour. However, it does not show that it is the only
such notion. It could be that there exists a coarser equivalence that still preserves
the upperbound on observable behaviour. In fact the name observation equivalence
suggest that weak (or delay?) bisimulation equivalence is the coarsest equivalence
with this property. This argument is enforced by Milner's testing scenario for

168 /II. Branching time and abstraction in bisimu/ation semantics

observation equivalence, presented in [134] and [135]. However, the testing
scenario briefly sketched Section 8 and elaborated in VAN GLABBEEK [81]
(together with argument 1 above) shows that in fact branching bisimulation
represents the limit of observable behaviour, and hence no coarser equivalence
shares the advantage mentioned in argument 1.

Of course one could argue that the testing scenario of Section 8 is not very
realistic. However, the same can be said of the testing scenario for weak
bisimulation, and the question of what is a realistic testing scenario is exactly the
one that we want to avoid.

For those readers that believe that some variant of ready simulation equivalence
represents the limit of observable behaviour and is therefore the right notion (cf.
BLOOM, IS1RAIL & MEYER [35] and ULIDOWSKI [1661) we refer to the lifeness
argument in VAN GLABBEEK [81].

3. This leaves us with the question whether a finer equivalence than branching
bisimulation might be more or equally suitable. In the absence of silent moves the
only candidate appears to be tree equivalence (VAN GLABBEEK [82]), as even finer
equivalences, such as graph isomorphism, are clearly useless from the point of
view of practical applications. But tree semantics has the disadvantage that the
standard operational and denotational interpretations of CCS-like system
description languages do not coincide. Moreover the operational interpretation is
not compositional, and the most plausible fix requires an upgrade of the underlying
graph model into a multigraph model (allowing more than one equally labelled
edges between two nodes).

Thus it is more tempting to search for generalizations of bisimulation
equivalence to a setting with silent moves that are finer than branching bisimulation.
Such generalizations undoubtedly exists. But in many application we are interested
in three useful properties:
i) The equivalence is abstract in the sense that it satisfies at least atx=ax (Milner's

first t-law). This criterion was mentioned in the historical note in Section 1.
ii) It is a congruence for the operators of CCS and CSP.
iii) The merge or parallel composition satisfies the expansion theorem of MILNER

[134,135,137,138], i.e. interleaving semantics is employed, and also the other
laws of strong bisimulation are satisfied

In such circumstances branching bisimulation on finite closed terms is completely
axiomatized by the first t-law (atx=ax) and the laws of strong bisimulation, and
hence is the finest congruence possible (VAN GLABBEEK [80]).

Returning to tree equivalence, a similar argument as above applies: all
recursion-free closed instances of the law a(t(y+z)+y)=a(y+z) are derivable from
atx=ax and the laws for (strong) tree equivalence (which are the laws of strong
bisimulation without x+x=x). Thus, in applications where properties i-iii above are
desired, a 'weak' version of tree congruence would be needed, that satisfies
a(t(y+z)+y)=a(y+z). Such a weak tree-congruence would not have the intuitive
appeal of strong tree equivalence, and does not appear to have any advantages over
branching bisimulation congruence.

Conclusion 169

4. The crucial difference between branching bisimulation and weak bisimuJation is
that the first one better takes into account the intermediate states of two equivalent
processes as they progress through a computation. As argued already by
HENNESSY & Mll.NER [111] on the occasion of the introduction of the first version
of observation equivalence, it is useful to do so, "because different intermediate
states can be exploited in different program context to provide different overall
behaviour". Here we present an example of a. program context that exploits the
different intermediate states of two observation equivalent (i.e. weakly bisimilar)
processes to provide different overall behaviour. It is a context (operator) that
allows a process (its argument) to proceed normally, but in addition can report that
the process is ready to j>erform a visible action, without actually doing it. Thus the
states of this context are the same as the states of its argument, and the transitions
are the transitions of its argument, together with a transition labelled "can do 'a"'
form a state to itself, whenever the argument can do an 'a' from that state. Observe
that the two processes a+tb and a+'tb+b displayed in Figure 12 are 't-bisimilar.

Figure 12 An operator exploiting different intermediate states of weakly bisimilar processes.

They are even delay bisimilar, but not branching bisimilar. After placing them in the
described context (the results are displayed below them) they are no longer 't
bisimilar. In fact they even have different traces, as only the second one has a trace
"can do 'b"' followed by "a".

170 Ill. Branching time and abstraction in bisimu/ation semantics

In BLOOM [34] a class of operators is given for which rooted branching
bisimulation equivalence is a congruence. He also presents a class of operators for
which rooted weak bisimulation equivalence is a congruence. The latter class is a
subclass of the former, and the operator described above falls in the difference.
Also all equivalences in the linear time - branching time spectrum that are situated
between weak trace equivalence and delay bisimulation fail to be congruences for
this operator. On the other hand, we know of no useful operator for which some
abstract equivalence in the linear time - branching time spectrum is a congruence,
but rooted branching bisimulation is not.

5. As mentioned in the introduction, 't-bisimulation semantics is not adequate for a
modal logic with eventually operator. From the examples in the introduction one
can see that the problem originates from the circumstance that 't-bisimulation
equivalence does not preserve the branching structure of processes. They also
apply to all other semantic equivalences that do not preserve branching, and indeed
one can easily prove that such an operator would cause no problems in branching
bisimulation semantics, at least not in the variant with explicit divergence. In fact, a
much stronger result has been proved in DE NICOLA & VAANDRAGER [67].

The Computation Tree Logic CTL * (EMERSON & HALPERN [74]) is a very
powerful logic, combining both branching time and linear time operators. It is a
generalization of CTL (CLARKE & EMERSON [50]), that contains only branching
time operators. CTL * is interpreted on Kripke structures (directed graphs of which
the nodes are labelled with sets of atomic propositions). DE NICOLA &
V AANDRAGER [67] established a translation from process graphs to Kripke
structures, so that CTL * can also be regarded as a logic on process graphs. In fact,
in DE NICOLA & V AANDRAGER [68] they introduced a counterpart ACTL * of
CTL * on process graphs and supplied translations in both directions. One of the
operators of (A)CTL/CTL *, the nexttime operator X, makes it possible to see when
an (invisible) action takes place, and is therefore incompatible with abstraction.
This operator was also criticized by LAMPORT [124]. BROWNE, CLARKE &
GR0MBERG [43] found that CTL without X and CTL* without X induce the same
equivalence on Kripke structures, which they characterized as stuttering
equivalence. In DE NICOLA & V AANDRAGER [67] branching bisimulation, after
being translated to Kripke structures, is shown to coincide with stuttering
equivalence. (To be precise, they consider two variants of CTL *, that correspond
to two variants of stuttering equivalence and two variants of branching
bisimulation, namely divergence blind branching bisimulation (our notion with fair
abstraction) and divergence sensitive branching bisimulation (defined as branching
bisimulation with explicit divergence as in Section 7, but also considering endnodes
to be divergent). The stuttering equivalence of BROWNE, CLARKE & GR0MBERG
[43] is the divergence sensitive variant.) Hence (divergence sensitive) branching
bisimulation is adequate for (A)CTL *-X. Since the eventually operator of GRAF &
SIFAKIS [102] can be expressed in (A)CTL*, this implies that it causes no
problems in branching bisimulation semantics.

Conclusion 171

6. The extra identifications made in t-bisimulation semantics on top of branching
bisimulation semantics can be cumbersome in certain applications of the theory. An
example concerns the work of JONSSON & PARROW [119], mentioned in the
introduction. On the other hand we are not aware of a single application where t
bisimulation semantics can be successfully applied, but the extra distinctions made
in branching bisimulation semantics pose a problem.

In BOU ALI [36] an example is given were t-bisimulation semantics works better
than branching bisimulation semantics. The example concerns the minimization of
PETERSON's mutual exclusion algorithm [147]. Here minimization means finding
an equivalent process that is as small as possible. In branching bisimulation
semantics this yields a process with 17 states, whereas in weak bisimulation
semantics a process with only 14 states is obtained. (In fact, using the quasi
branching bisimulation mentioned in Sections 6 and 8 would bring the number of
states to 14 already.) It should be noted however, that weak bisimulation is still far
from optimal for this purpose. Coupled simulation, proposed by PARROW &
SJODIN [146], is a generalization of bisimulation semantics to a setting with silent
moves that is coarser than weak bisimulation. It is completely axiomatized by the
laws of weak bisimulation together with t(tx+y)=tx+y. Minimization of Peterson's
algorithm in coupled simulation semantics would yield a process with no more than
9 states, and using failure semantics (BROOKES, HOARE & ROSCOE [42], DE
NICOLA & HENNESSY [64]) would bring it down to 4.

We conjecture that this is illustrative for a general tendency. Coupled simulation
has distinct advantages over weak (and branching) bisimulation in applications
were the latter notions are too fine. Examples of such applications can be found in
PARROW & SJODIN [146] and Section 4.5 of Chapter II. However, whenever
weak bisimulation performs better than branching bisimulation, it turns out to be
the case that neither of the two notion are really suitable, and coupled simulation, or
an even coarser equivalence, is called for.

7. No abstract semantic equivalence used in concurrency theory is as easy to
decide as branching bisimulation congruence. For context-free process without
silent actions, i.e. processes that can be specified with recursive equations over the
language BPA of Section 2.1, bisimulation equivalence is the only equivalence in
the linear time - branching time spectrum of Chapter I that is decidable at all (cf.
GROOTE & HOTTEL [105] and CHRISTENSEN, HIRSHFELD & STIRLING [49]). For
finite-state processes, i.e. processes that can be specified with recursive equations
over the language BCCS of Section 2.1, bisimulation equivalence can be decided in
polynomial time, whereas most other equivalences in the linear time - branching
time spectrum are PSPACE-complete (cf. KANELLAKIS & SMOLKA [120]).

In GROOTE & VAANDRAGER [106] an algorithm is presented for deciding
branching bisimulation equivalence between finite-state processes, with (time)
complexity O(l+n-m). Here 1 is the size of Act, n is the number of nodes in the
investigated process graphs and m the number of edges. The fastest algorithm for
t-bisimulation equivalence up till then had time complexity O(l-n2-376). In general
n~m:,a-n2, so it depends on the density of edges in a graph which algorithm is

172 Ill. Branching time and abstraction in bisimulation semantics

faster. In a trial implementation of the scheduler of MILNER [134], reported in
GROOTE & V AANDRAGER [106], branching bisimulation turned out to be much
fasteL Furthermore, it turned out that in such automatic verifications the space
complexity was a much more serious handicap then the time complexity (the t
bisimulation tools suffered from lack of memory already when applied to processes
with 15.000 states). The space complexity of the algorithm of GROOTE &
V AANDRAGER [106] is O(n+m), which is less than the space complexity of the t
bisimulation algorithm. Recently, BOUALI [36] proposed another algorithm fort
bisimulation that has the same time complexity as the branching bisimulation
algorithm. An trial with Milner's scheduler shows that it is somewhat slower, but
with a constant factor only. The space complexity of BOUALI's algorithm is
O(n+m+), where m+ is the number of edges after taking the 1:+ transitive closure,
obtained by adding an edge p ➔ 't q whenever there is a nonempty path p = q. This
improves the space complexity of the old algorithm for t-bisimulation, but is not
quite as good as the branching bisimulation algorithm.

8. For sequential processes, branching bisimulation is preserved under refinement
of actions, whereas t-bisimulation is not. This was established in Section 6, which
appeared before as VAN GLABBEEK & WEIJLAND [95]. A proof can also be found
in DARONDEAU & DEGANO [56].

9. All *-bisimulations (* e{t,b,T1,d}) have relatively simple equational
characterizations (see Section 2). However, the listed axioms are in no way self
evident, but arise from the semantic presentation of the respective notions. In the
presence of the (plausible) axioms of strong equivalence, branching bisimulation
congruence on finite closed terms is completely axiomatized by the (equally
plausible) first t-law (atx=ax) alone (VAN GLABBEEK [80]). This means that the
algebra of branching bisimulation can be understood without appeal to semantic
notions at all.

10. The axiom system for branching bisimulation can easily be turned into a
complete term rewriting system, which is not the case for the other abstract
bisimulation semantics. Work in this direction has been done in AKKERMAN &
BAETEN [8] (in the framework of ACP) and DE NICOLA, INVERARDI & NESI [65]
(in the framework of CCS).

11. Branching bisimulation equivalence has a nice characterization as weak back-
and-forth bisimulation (see the end of Section 8). No matter whether the weak,
delay, Tl- or branching mode is selected, if it is required that moves in the one
process can be simulated by the other process, not only when going forward but
also when going back in history, these modified notions all coincide with branching
bisimulation (DE NICOLA, MONTANARI & V AANDRAGER [66]).

This argument is balanced however by a nice characterization of weak
bisimulation of which there is no analogy for branching bisimulation. Namely if
(root-unwound) process graphs are saturated by adding an edge s ➔a s' whenever
there is a paths= ➔a= s' (cf. Definition 4.8) and by adding at-loop in every
state except the root, then two graphs are weakly equivalent iff their saturated
graphs are strongly equivalent.

Chapter IV

Refinement of Actions in Causality Based
Models

Rob van Glabbeek & Ursula Goltz

173

In this chapter we consider an operator for refinement of actions to be used
in the design of concurrent systems. Actions on a given level of abstraction
are replaced by more complicated processes on a lower level. This is done in
such a way that the behaviour of the refined system may be inferred composi
tionally from the behaviour of the original system and from the behaviour of
the processes substituted for actions. We define this refinement operation for
causality based models like event structures and Petri nets. For Petri nets, we
relate it to other approaches for refining transitions.

Contents

Introduction .
1. Refinement of actions in prime event structures
2. Refinement of actions in flow event structures .
3. Configuration structures and refinement of actions
4. Refinement of transitions in Petri nets
Related work .

Introduction

173
181
186
193
197
211

In this chapter we consider the design of concurrent systems in the framework
of approaches where the basic building blocks are the actions which may occur
in a system. By an action we understand here any activity which is considered
as a conceptual entity on a chosen level of abstraction. This allows to design
systems in a top-down style, changing the level of abstraction by interpreting
actions on a higher level by more complicated processes on a lower level. We
refer to such a step in the design of a system as refinement of actions. An
action could be refined by the sequential execution of several sub-actions, or
by activities happening independently in parallel. One could also implement
an action by a set of alternatives, of which only one should be taken.

174 IV. Refinement of Actions in Causality Based Models

0.1 Example

Consider the design of a sender, repeatedly reading data and sending
them to a certain receiver. A first description of this system is given
by the Petri net shown below. An introduction to Petri nets and the
way they model concurrent systems can be found in REISIG [156]; the
refinement mechanism used in this example will be treated formally in
Section 4.

CQ~l ,ead data f-o-~se-nd-d-at-a~J
~ to receiver

On a slightly less abstract description level the action "send data to
receiver" might turn out to consist of two parts "prepare sending" and
"carry out sending", to be executed sequentially. This corresponds to the
following refined Petri net.

C :-----------------------------------J
0 B O , prepare Q carry out ,

--+- read data--+- -+-- d" --+- --+ di : : sen mg sen ng :
' '

Refinement by a sequential process

Then the action "prepare sending" may be decomposed in two indepen
dent activities "prepare data for transmission" and "get permission to
send", to be executed on different processors:

r-------------------•
' .--------, ' .i) : prepare data

c=J/'--"' T or transmissio

0---~ : ~ ~ _L get permission

U : to send
'

Refinement by a parallel process

carry out
sending

Furthermore it may turn out that there are two alternative channels for
sending messages. Each time the sender should choose one of them to send
a message, perhaps depending on which one is available at the moment.

Introduction

n prepare data
~/'-' - or transmissio

0-~
~,,--.... _ get permission

U to send

Refinement by alternative actions

175

~--------------· ' ,-----, '
,_J_.,_ send on
~ channel 1

L sendon
: channel 2
' ' .. ______________ .

On an even more concrete level of abstraction, channel 2 may happen to
be rather unreliable, and getting a message at the other end requires the
use of a communication protocol. On the other hand, channel 1 may be
found to be reliable, and does not need such a precaution .

. ------- --------- -------- ------ - - .

~-----------------~--------<cknowledge
ent

Refinement by an infinite process

Here we see that it may happen that the process we have substituted for
the action "send on channel 2" does not terminate. It may happen that
the attempt of sending data always fails and this prevents the system of
reaching its initial state again.

Our aim is to define an operator for refinement of actions, taking as arguments
a system description on a given level of abstraction and an interpretation of
(some of) the actions on this level by more complicated processes on a lower
level, and yielding a system description on the lower level. This should be done
in such a way that the behaviour of the refined system may be inferred com
positionally from the behaviour of the original system and from the behaviour
of the processes substituted for actions.

As illustrated above, we want to allow to substitute rather general kinds of
behaviours for actions. We even allow the refinement of an action by an infinite
behaviour. This contradicts a common assumption that an action takes only a
finite amount of time. It means that when regarding a sequential composition
a;b we can not be sure that b occurs under all circumstances; it can only occur
if the action a really terminates successfully.

176 IV. Refinement of Actions in Causality Based Models

There is one type of refinement that we do not want to allow, namely to "forget"
actions by replacing them with the empty process.

0.2 Example

Continuing Example 0.1 we could imagine that getting permission to send
turns out to be unnecessary and can be skipped. Hence we replace the
corresponding action by the empty behaviour, thus obtaining

- onnect wit
channel 1

Forgetful refinement

Even though this operation seems natural when applied as in the above ex
ample, it may cause drastic changes in the possible behaviours of a system.
It may happen that executing a certain action a prevents another action from
happening. This property should be preserved under refinement of a. However,
if a is completely removed, it cannot prevent anything any more, which can
remove a deadlock possibility from the system. Thus "forgetful" refinements
can not be explained by a change in the level of abstraction at which systems
are regarded. For this reason they will not be considered here.

0.3 Example

Consider the Petri net

N=

6
and the net obtained when refining a by the empty behaviour:

Introduction 177

N'=

6
In the first net it is possible to execute a and b, and by this reach a state
where no further action is possible. If we try to deduce the behaviour
after refinement from the behaviour of N, we would expect that the
refined system may reach a state, by executing b, where no more action
is possible. However, this is not the case for N'. After b, it is always
possible to execute c in N'.

In order to define a suitable refinement operator, one first has to select a model
for the description of concurrent systems. The models of concurrency found
in the literature can roughly be distinguished in two kinds: those in which the
independent execution of two processes is modelled by specifying the possible
interleavings of their (atomic) actions, and those in which the causal relations
between the actions of a system are represented explicitly. The interleaving
based models were devised to describe systems built from actions that are
assumed to be instantaneous or indivisible. Nevertheless, one might be tempted
to use them also for the description of systems built from actions that may
have a duration or structure. However, the following example shows that it is
not possible to define the desired compositional refinement operator on such
models of concurrency without imposing some restrictions (as already observed
in PRATT [154] and CASTELLANO, DE MICHELIS & POMELLO [46]).

178 IV. Refinement of Actions in Causality Based Models

0.4 Example

The systems P = a II b, executing the actions a and b independently, and
Q = a;b+b;a, executing either the sequence ab or the sequence ba, cannot
be distinguished in interleaving models; they are represented by the same
tree in the model of synchronisation trees (MILNER [134]).

tree (P) = tree (Q) =
ah:
bl \a

After refining a into the sequential composition of a1 and a2, thereby
obtaining the systems

their tree representations are different:

tree (P') = tree (Q') = a2

The two systems are even non-equivalent, according to any reasonable
semantic equivalence, since only P' can perform the sequence of actions
a1ba2 . Hence, in the model of synchronisation trees the semantic repre
sentation of the refined systems is not derivable from the semantic repre
sentation of the original systems. The same holds for other interleaving
models.

There are still ways left to define a compositional refinement operator on in
terleaving based models. First of all one could restrict the kind of refinements
that are allowed in such a way that situations as in Example 0.4 cannot occur.
Of course this would exclude the possibility of refining a in a1 ; a2 in either P
or Q (or both). This idea is investigated in CZAJA, VAN GLABBEEK & GOLTZ

[51]. Although we consider this to be an interesting option, in this thesis we
choose to allow rather general refinements, including at least the one of Exam
ple 0.4. Furthermore, some approaches have been proposed which are based
on a concept of "atomic" actions; refining an atomic action would then result
in an "atomic" process that cannot be "interrupted" by other activities (the
refinement of P in Example 0.4 would not have the execution a 1ba2). We will
comment on these approaches in the concluding section. In this work we choose

Introduction 179

not to assume action atomicity in any way, and to allow the parallel or inde
pendent execution of actions. Hence interleaving based models are unsuited for
our approach. On the other hand we will show that the desired compositional
refinement operator can be defined on causality based models of concurrency
without imposing such restrictions. We will do this for semantic models like
Petri nets and event structures. Since these models are being used as a seman
tics of languages like CCS, we hope that this will lead also to extending these
languages by a mechanism for refinement.

0.5 Example

The systems P = a II b and Q = a;b + b;a from Example 0.4 may be
represented by the (labelled) Petri nets

cp
~
0

and

The Petri net representations of the refined systems P' and Q', where a is
replaced by the sequence a 1a 2 , are then derivable by transition refinement
from the nets for the original systems. We obtain

cp cp /0~

~ 9
and ~ 9

9 0 9 9

' ' ~
0 9 9 ~,

0

180 IV. Refinement of Actions in Causality Based Models

We will use two kinds of semantic models. Both of them are based on the
idea of PETRI [149] to model causalities in concurrent systems explicitly and
thereby also representing independence of activities. Additionally, the models
we use represent the choice structure of systems; they show where decisions
between alternative behaviours are taken.

We will not distinguish external and internal actions here; we do not consider
abstraction by hiding of actions.

The more basic model, in particular when being concerned more with actions
than with states, are event structures. We will consider three types of event
structures here: prime event structures with a binary conflict relation [142],
flow event structures, which are particularly suited as a semantic model of
CCS [40], and, as a more abstract and general model, configuration structures
(families o{configurations [183]), where a system is represented by its subsets
of events which determine possible executions.

The models considered so far are usually not applied to model systems di
rectly, but rather as the underlying semantics of system description languages
like CCS. One of the reasons for this is that infinite behaviours can only be
represented by infinite structures (with an infinite set of events). So, finally, we
will consider Petri nets as a framework which is directly applicable in the de
sign process. Event structures may be derived from Petri nets as a particularly
simple case, but Petri nets are more powerful. For example, infinite behaviours
may be represented as finite net structures together with the "token game" .
However, causality is then no longer a basic notion but has to be derived. Petri
nets with their appealing graphical representation are being used extensively
for the - more or less formal - representation of systems and - mostly less
formal - during the design process. A disciplined way for developing net mod
els systematically by refinement is therefore very important.

We start in Section 1 by recalling the basic notions for prime event structures
and by showing how to refine actions by finite, conflict-free behaviours. We
show that, for refining actions with more general behaviours, it is convenient
to use more expressive models. In Section 2, we introduce flow event structures
and show how to refine actions also by (possibly infinite) behaviours with con
flicts. We show that, as for prime event structure refinement, the behaviour of
a refined flow event structure may be deduced compositionally. In Section 3,
we introduce configuration structures and a refinement operation for them. We
show that the more "syntactic" constructions in the previous sections are con
sistent with this general notion. Finally, we give an overview on the work on
refinement in Petri nets, and we suggest a rather general notion of refinement
of transitions which is still modular with respect to behaviour. Related work
is discussed in the concluding section.

1. Refinement of actions in prime event structures 181

1 Refinement of actions in prime event structures

In this section we show how to refine actions in the most simple form of event
structures, prime event structures with a binary conflict relation (NIELSEN,
PLOTKIN & WINSKEL [142]). Furthermore we motivate our move to more
general structures in the next two sections, because of the limitations of this
approach.

We consider systems that are capable of performing actions from a given set
Act of action names.

1.1 Definition

A (labelled) prime event structure (over an alphabet Act) is a 4-tuple
£ = (E, :S, #, l) where

- E is a set of events,

- :S ~ E x E is a partial order (the causality relation) satisfying the
principle of finite causes:

Ve E E : { d E E I d :S e} is finite,

- #~Ex Eis an irreflexive, symmetric relation (the conflict relation)
satisfying the principle of conflict heredity:

Vd, e, f EE: d :Se I\ d#f ⇒ e#f,

- l : E -+ Act is a labelling function.

The components of a prime event structure £ will be denoted by Ee, :Se, #e
and le. If clear from the context, the index £ will be omitted. As usual, we
write d < e for d :S e I\ d # e, etc.

A prime event structure represents a concurrent system in the following way:
action names a E Act represent actions the system might perform, an event
e E E labelled with a represents an occurrence of a during a possible run of
the system, d < e means that d is a prerequisite for e and d#e means that d
and e cannot happen both in the same run.

Causal independence (concurrency) of events is expressed by the derived rela
tion co~ Ex E: d co e iff -,(d < e Ve< dV d#e). By definition,<,>,# and
co form a partition of Ex E.

Throughout this work we assume a fixed set Act of action names as labelling
set. Let IE prime denote the domain of prime event structures labelled over Act.

182 IV. Refinement of Actions in Causality Based Models

A prime event structure £ is finite if Ee is finite; £ is conflict-free if #e = 0.
0 denotes the empty event structure (0, 0, 0, 0).

For X ~ Ee, the restriction of£ to X is defined as

£~X=(X, ::;n(XxX), #n(XxX), nx).

Two prime event structures £ and :F are isomorphic (£ ~ :F) iff there exists a
bijection between their sets of events preserving ::; , # and labelling. Generally,
we will not distinguish isomorphic event structures.

Isomorphism classes of conflict-free event structures are called pomsets (PRATT
[154)). They have been considered under the name partial words in GRABOWSKI
[101]. Pomsets generated by certain subsets of events may be considered as
possible "executions" of the system represented by the event structure. The
partial order between action occurrences then represents causal dependencies in
the execution. Subsets of events representing executions (called configurations)
have to be conflict-free; furthermore they must be left-closed with respect to ::;
(all prerequisites for any event occurring in the "execution" must also occur). It
is assumed that in a finite period only finitely many actions are performed. We
will consider only finite executions when describing the behaviour of systems.
So, unlike WINSKEL [183], we require configurations to be finite. We will
comment on this point in Section 3.

1.2 Definition

1. A subset X ~ E of events in a prime event structure £ is left-closed in
£ iff, for all d, e E E, e E XI\ d ::; e ⇒ d E X.
X is conflict-free in £ iff £ ~ X is conflict-free.

n. A subset X ~ E will be called a (finite) configuration of a prime event
structure £ iff X is finite, left-closed and conflict-free in£. Conj(£)
denotes the set of all configurations of£. A configuration X E Conj (£)
is called complete iff Vd EE: d r/: X ⇒ 3e EX with d#e.

Configurations may be considered as possible states of the system; they deter
mine the remaining behaviour of the system as being the set of all events which
have not yet occurred and are not excluded because of conflicts. Note that a
configuration X is complete iff it is maximal, i.e. X ~ Y E Conj(£) implies
X=Y.

1. Refinement of actions in prime event structures 183

1.3 Example

The system a II b + a; b, executing either a and b independently or a and
b sequentially, may be represented by the prime event structure

where the causality relation is represented by arcs.

The configurations of f are

corresponding to the pomsets

a 0, a, b, b and a --o--b.

a
b and a --o--b correspond to complete configurations.

In forthcoming graphical representations of prime event structures, only im
mediate conflicts-not the inherited conflicts-are indicated. The ::;-relation
is represented by arcs, omitting those derivable by reflexivity and transitivity.
Furthermore, instead of events only their labels are displayed; if a label occurs
twice it represents two different events. Thus these pictures determine event
structures only up to isomorphism.

We will now define a refinement operation substituting actions by non-empty,
finite, conflict-free event structures. As discussed in the introduction, we will
not allow forgetful refinements replacing actions by the empty event structure.
We will later explain why we have to restrict to finite and conflict-free refine
ments of actions.

A refinement function will be a function ref specifiying, for each action a, an
event structure ref (a) which is to be substituted for a. Interesting refinements
(and also the refinements in our examples) will mostly refine only certain ac
tions, hence replace most actions by themselves. However, for uniformity (and
for simplicity in proofs) we consider all actions to be refined.

184 IV. Refinement of Actions in Causality Based Models

Given an event structure & and a refinement function ref, we construct the
refined event structure ref(&) as follows. Each event e labelled by a is replaced
by a disjoint copy, &e, of re/(a). The causality and conflict structure is inherited
from&: every event which was causally before e will be causally before all events
of &e, all events which causally followed e will causally follow all the events of
&e, and all events in conflict with e will be in conflict with all the events of &e.

Graphically, the idea may be sketched as follows

□

□

1.4 Definition

(i) A function ref: Act ➔ E prime -{ 0} is called a refinement function (for
prime event structures) if'v'a E Act: ref (a) is finite and conflict-free.

(ii) Let & E E prime and let re/ be a refinement function.
Then ref(&) is the prime event structure defined by
- Eref(C) = {(e,e')le E Ec,e' E Eref(IE(e))},
- (d, d') SreJ(C) (e, e') iff d <c e or (d = e I\ d' $reJ(lE(d)) e'),
-(d,d')#reJ(C)(e,e') iff d#ce,
- lref(C) (e, e') = lrej(IE(e))(e').

We show that refinement is a well-defined operation on prime event structures,
even when isomorphic prime event structures are identified.

1.5 Proposition

(i) If & E E prime and re/ is a refinement function then re/(&) is a prime
event structure indeed.

(ii) If & E E prime and re/, ref' are refinement functions with re/(a) ~
re/'(a) for all a E Act then ref(&)~ ref'(&).

(iii) If & , :FE E prime and re/is a refinement function then ref(&) ~ ref (:F).

1. Refinement of actions in prime event structures

Proof Straightforward.

1.6 Example

185

■

We consider a simplified version of the sender (Example 0.1) from the
introduction. We assume that the sender reads and sends only once. We
may carry out the first two steps of the design in terms of prime event
structures as follows.

read data

read data

,ead data H send data

r---,
' ' ' ' prepare ' ' ' sending ' ' '

carry out
sending

' ' ' ' ' ' ' ' ' ' L---J

repare data fo
transmission

get permission
to send

carry out
sending

The next refinement step would require a refinement of an action by
conflicting behaviours. This is not possible in our framework up to now.

The reason that we can only refine actions by conflict-free event structures is
the axiom of conflict heredity and the notion of configuration in prime event
structures. They imply that any event will always occur with a unique history
(in terms of its causal predecessors) [183].

a
Now consider e.g. £ =-i. Replacing a by c#d would require to duplicate the

b
event labelled by b in some way, since b should then occur either caused by c or
by d. Since this would lead to a complicated definition, we will consider more
general forms of event structures that do not require duplication in Section 2
and 3.

The restriction to refinement of actions by finite event structures is necessary to
ensure that the resulting event structure will obey the axiom of finite causes. In

186 IV. Refinement of Actions in Causality Based Models

the more general models we will consider later, we will not assume this axiom,
and this will allow also refinements by infinite behaviours as discussed in the
introduction.

Finally, we show how the behaviour of the refined event structure ref(&) is
determined by the behaviour of£ and by the behaviour of the event structures
which are substituted for actions.

1. 7 Proposition

Let & E IE prime, let ref be a refinement function.

We call .X a refinement of configuration X E Conf (&} by ref iff

- X = LJ {e} x Xe where \le EX: Xe E Conf (ref (le(e))) - {0},
eEX

- e E busy(X) ==> e maximal in X with respect to :5:e
where busy (X) := {e EX I Xe not complete}.

Then Conf (ref(&)) = {.XI X is a refinement of a configuration X E
Conf (&)}.

Proof [84) or as a special case of Proposition 2.8. ■

Hence the configurations of ref(&) are exactly those configurations which are
refinements of configurations of & . A refinement of a configuration X of & is
obtained by replacing each event e in X by a non-empty configuration Xe of
ref (le(e)). Events which are causally necessary for other events in X may only
be replaced by complete configurations.

2 Refinement of actions in flow event structures

In the previous section, we have indicated that for refining actions by event
structures with conflicts more general models than prime event structures are
appropriate. In BoUDOL & CASTELLANI [40) a form of event structures, called
flow event structures, is suggested which is particularly suited for giving se
mantics to languages like CCS. Flow event structures are more general than
prime events in the following sense: they do not assume conflict heredity and
the axiom of finite causes, they allow inconsistent (self-conflicting) events and
the causality relation is not required to be transitive and may even contain
(syntactic) cycles. This makes it very easy to define operations like parallel
composition and restriction, and we will show here that they are also well
suited to deal with refinement of actions.

2. Refinement of actions in flow event structures 187

2.1 Definition

A (labelled) flow event structure (over an alphabet Act) is a 4-tuple £ =
(E, -<, #, l) where

- E is a set of events,
- -<~ E x Eis an irreflexive relation, the flow relation,
- # ~ E x E is a symmetric relation, the conflict relation,
- l : E -+ Act is the labelling function.

Let IE denote the domain of fl.ow event structures labelled over Act. The
components of £ E IE will be denoted by Ee, -<e, #e and le. The index £
will be omitted if clear from the context. £ is conflict-free if #e = 0. For
X ~ Ee, £~X = (X,-<e ~X,#e ~X,le ~X) is the restriction of£ to X.

Two fl.ow event structures £ and :F are isomorphic (£ ~ :F) iff there exists a
bijection between their sets of events preserving -<, # and labelling.

The interpretation of the conflict and the fl.ow relation is formalised by defining
configurations of flow event structures. Configurations must be conflict free; in
particular, self-conflicting events will never occur in any configuration. d -< e
will mean that dis a possible immediate cause fore. For an event to occur it is
necessary that a complete non-conflicting set of its causes has occurred. Here
a set of causes is complete if for any cause which is not contained there is a
conflicting event which is contained. Finally, no cycles with respect to causal
dependence may occur.

2.2 Definition Let £ E IE .

(i) X ~ E is left-closed in £ up to conflicts iff Vd, e E E : if e E X, d -< e
and d (/. X then there exists an f EX with f-< e and d#f.
X ~ E is conflict-free iff £ ~ X is conflict-free.

(ii) X ~ E is a (finite) configuration of £ iff X is finite, left-closed up
to conflicts and conflict-free and does not contain a causality cycle:
s;x := (-< n(X x X))* is an ordering. A configuration X is called
maximal iff X ~ Y E Conf (£) implies X = Y. A configuration X is
called complete iff Vd E E : d (/. X ⇒ :le E X with d#e. Conf (£)
denotes the set of all configurations of £.

The causal dependence between action occurrences in a configuration may
again, as for prime event structures, be represented by a pomset; for X E
Conf (£), we take the isomorphism class of (X, s;x, le~ X).

188 IV. Refinement of Actions in Causality Based Models

2.3 Example

The system ((a+b) II c); d may be represented by the flow event structure

a~
~d .

:7
(in graphical representations we omit names of events and represent -<
by arcs of the form -+-).

The pomsets :>d and !>d correspond to complete configurations.

Note that prime event structures are special flow event structures defining d -< e
iff d < e; the definition of configuration then coincides.

However, in contrast to prime event structures, not all maximal configurations
are complete. Partly this is due to the fact that, in flow event structures,
syntactic and semantic conflict not necessarily coincide, (two events are in se
mantic conflict if there is no configuration containing them both). Flow event
structures where syntactic and semantic conflict coincide are called faithful in
B00001 [38]. However, also in faithful flow event structures maximal configu
rations are not necessarily complete, either due to inconsistent events, but also
in flow event structures without inconsistent events, as shown by the following
example.

2.4 Example

Let£=

The configuration {c1, c2, cs} is maximal but not complete.

Maximal but incomplete configurations may be interpreted as deadlocking be
haviours. Assume that a semantic sequential composition is defined for flow
event structures by putting all events in the first component in -<-relation with
the events of the second component. Any incomplete maximal configuration of
the first component would then disable the second component. Thus, in flow
event structures, deadlock and termination may be distinguished.

2. Refinement of actions in flow event structures 189

2.5 Definition

A flow event structure £ is deadlock-free iff every maximal configuration
of £ is complete.

Refinement of actions in flow event structures may now be defined as follows.
We assume a refinement function ref: Act ➔ IE - {O} (where O denotes the
empty flow event structure) and replace each event labelled by a by a disjoint
copy of ref (a). The conflict and causality structure will just be inherited.

Hence, we rnay replace actions also by behaviours with conflicts and by infinite
behavio4rs.

2.6 Definition

(i) A function ref: Act ➔ IE - { O} is called a refinement function (for
flow event structures).

(ii) Let£ E IE and let ref be a refinement function.
Then the refinement of£ by ref, ref(£), is the flow event structure
defined by
- Eref(t:) = {(e, e')le E Ee, e' E Eref(le(e))},
- (d, d') -<reJ(t:) (e, e') iff d-< e or (d = e I\ d' -<reJ(le(d)) e'),
- (d, d')#reJ(t:) (e, e') iff d#ee or (d = e I\ d'#reJ(le(d))e'),

_-lref(t:)(e,e') = lref(le(e))(e').

As for prime event structures, we verify that ref(£) is well-defined, even when
isomorphic flow event structures are identified.

2. 7 Proposition

(i) If£ E IE and refis a refinement function then ref(£) is a flow event
structure indeed.

(ii) If£ E IE and ref, ref' are refinement functions with ref (a) e:! ref'(a)
for all a E Act then ref(£) e:! ref'(£).

(iii) If £,:FE IE and re/is a refinement function then ref(£) e:!ref (:F).

Proof Straightforward. ■

Finally, we show that, analogously to prime event structures, the behaviour of
a refined flow event structure ref(£) may be deduced compositionally from the
behaviour of£ and the behaviour of the refinements of actions.

190 IV. Refinement of Actions in Causality Based Models

2.8 Proposition

Let £ E IE, let ref be a refinement function for flow event structures.

We call X a refinement of configuration X E Conf {£) by ref iff

- X = LJ {e} X Xe where Ve EX: Xe E Conf(ref(le(e))) -{0},
eEX

- e E busy(X) ===> e maximal in X with respect to ~x

where busy (X) := { e E X I Xe not complete}.

Then Conf(re/(£)) ={.XI.Xis a refinement of a configuration XE Con/(£)}.

Proof

~
"~" Let XE Conf (ref(£)).

First we show that X :=pr1(X) E Con/(£).
X is finite since X is finite.

X is left-closed in £ up to conflicts:
Let e EX, d E Ee with d -<e e and d f/:. X.
We have to show that there exists an f EX with f -<e e and !#ed.
Since e EX there must be some (e, e') EX.
There exists (d, d') E Eref(t:), (d, d') ff:. X since ref (d) -::/- 0 and d f/:. X.
Furthermore (d, d') -<ref(£) (e, e') since d -<e e.

So 3(/, f') EX with (!, /') -<ref(£) (e, e') and (!, !')#ref(£) (d, d').
f-::/- d since f EX, d f/:. X; hencef#ed.
If / -::/- e we have / -<e e and we are done.
Assume f = e then (d, d') -<ref(£) (!, f').

Then 3(g,g') EX with (g,g') -<ref(£)(!,/')= (e,f') and (g,g')#ref(t:)(d,d').
g#ed since g-::/- d. Furthermore g EX.
If g -::/- f = e then g -<e e and we are done. Since X is finite, we will find (by
repeating this), after finitely many steps, (f, J1) E .X with J#ed and f -<e e.
Hence X is left-closed up to conflicts.

(1,11)-+- -+- (g,g') -+- (f,f') -+- (e,e')

2. Refinement of actions in flow event structures

X is conflict-free:
Assume d, e EX with d#t:e.
Then there exist (d, d'), (e, e') _E X, (d, d')#reJ(e) (e, e').

This is a contradiction since X is conflict-free.

Finally we have to show that X does not contain a causality-cycle.
Assume d,eEX, d-:pe, d':5,xe and e':5,xd (where ':5:x is derived from -<e).

191

It is straightforward to verify that this implies :3(d, d'), (e, e') E X with (d, d') -:p
(e,e'), (d,d') ':5:.x(e,e') and (e,e') ':5:.x(d,d'). This is in contradiction with the

cyclefreeness of X.

Hence X = pr1 (X) E Conf (£). We will show that X is a refinement of X.
Let e EX and Xe := {e' I (e, e') EX}. By construction Xe -:p 0.
Let &e := ref (le(e)). We want to show that Xe E Conf (&e)-

Obviously Xe ~ Eee.
Xe is finite, conflict-free and cycle-free since X is finite, conflict-free and cycle
free. So it only remains to be shown that Xe is left-closed up to conflicts.

Let d' E £e, d' -<ee e' E Xe, d' ft Xe.
Then (e, d') E Eref(e), (e, d') -<reJ(e) (e, e') E X and (e, d') ft X.
So there exists (f, f') EX with (f, f') -<reJ(e) (e, e') and (f, f')#ref(e) (e, d').
f, e EX==> •U#t:e) ==> f = e I\ f'#t:.d' ==> f' E Xe and/' -<e. e'.
Hence Xe E Conf (&e)-

From what we have shown by now it follows that X = LJ { e} x Xe
eEX

with XE Con/(£) and, for all eEX, XeE Conf(ref(le(e)))- {0}.

Now let e E busy (X). We have to show that e is maximal in X w.r.t. ':5:x.

Suppose e is not maximal in X.
Then there exists f EX with e -<e f, and there exists (f, f') E X.
Since Xe is not complete there exists d' E Et:. - Xe with

(*) Ve' E Xe : ,(d'#t:.e').

We have (e, d') -<reJ (e) (f, f'), (e, d') rt X.
Since Xis a configuration, there then exists (g,g') EX
with (g, g') -<reJ (e) (f, f') and (g, g')#reJ (e) (e, d').
Since g,e EX, we have ,(g#t:e).
Hence g = e and g' E Xe, g'#t:.d'.
However this contradicts (*).

";2" Let X be a refinement of XE Con/(£). We show that XE Conf(ref(&)).

192 IV. Refinement of Actions in Causality Based Models

It follows in a strai_ghtforward manner from the corresponding properties of X
and the Xe's that X is finite and conflict-free and contains no causality cycles.
Hence it suffices to show that X is left-closed up to conflicts.

So let (e,e') EX, let (d,d') E EreJ(f) -X with (d,d') -<reJ(f) (e,e').

We have to show that there exists (!, f') E X with (!, f') -<reJ(f) (e, e') and
(!, f')#reJ(t:) (d, d').

First assume d = e. Then this follows immediately from the corresponding
property of Xe.

Now let d f:. e.
If d f/:. X then the requirement follows from the corresponding property of X.
So we now consider the remaining case that d f:. e and d E X. Then d' f/:. Xd.
Since d f:. e we have d -<t: e, hence dis not maximal in X.
Thus Xd must be complete.
Sod' f/:. xd implies 3f' E xd with !'#reJ(lt:(d))d'.

Hence (d,f') EX, (d,f') -<reJ(f) (e,e') and (d,f')#reJ(t:)(d,d'). ■

We end this section with a lemma that will be useful later on.

2.9 Lemma Let£ E IE, XE Con/(£) and busy~ X.

Then 'efe E busy: e maximal in X with respect to :Sx
-<==> 'efY ~busy: X - YE Con/(£).

Proof
" =} " Let £ E IE, X E Con/(£), Y ~ X and 'efe E Y : e maximal in X
w.r.t. :Sx- It suffices to prove that X - Y E Con/(£). X - Y is finite and
conflict-free and does not contain causality cycles since X has these properties.
It remains to be shown that X - Y is left-closed up to conflicts.
Suppose e E X - Y, d -<t: e and d f/:. X - Y. If d E Y then d would be maximal
in X w .r. t. :Sx , contradicting d -<t: e. Thus d f/:. X. Hence there is an f E X
with f -<t: e and d#t:f- Since f -<t: e, f is not maximal in X w.r.t. :Sx, so
f E X - Y, which had to be proven.

"¢="Let£ E IE, XE Con/(£), d EX and X - {d} E Conf (e). It suffices
to proof that dis maximal w.r.t. :Sx.
Suppose it is not, then 3e E X with d -<t: e. Since X - { d} E Con/(£), there
exists an f E X -{ d} with f -<t: e and d#t: f, contradicting the conflict-freeness
of X. ■

This means that, in Proposition 2.8, the condition "e E busy(X) =} e maximal
in X w.r.t. :Sx" can be replaced by "for all Y ~ busy(X), X -Y E Con/(£)".

3. Configuration structures and refinement of actions 193

3 Configuration structures and refinement of actions

In the previous section we have shown that flow event structures may be used
for refinement of actions, even when substituting actions by behaviours with
conflicts or by infinite behaviours. However, the refinement operation we have
defined depends on the particular "syntax" of flow event structures. In this
section, our aim is to define a refinement operation for a very general model of
concurrent systems, such that refinement operations for particular representa
tions, as flow event structures, are obtained as a special case.

We will consider a modei where a system is represented by its set of config
urations. As in the previous sections, occurrences of actions are represented
by events labelled by the corresponding action names. A configuration is a
set of events representing a state of the system where exactly its elements
have happened. We only consider finite configurations here. Following ideas of
WINSKEL [183] we represent a system by a family of configurations satisfying
certain consistency requirements.

3.1 Definition

A (labelled) configuration structure (over an alphabet Act) is a pair C =
(C, l) where C is a family of finite sets (configurations) such that
-0 EC,
- X, Y, Z EC, XU Y ~ Z ==>XU YE C,
-XE Ct-.d,e E X,d -:j:. e ==> :lY E Cwith Y ~ X and (d E Y <=> e (/. Y),
and l : LJ X ➔ Act is a labelling function.

XEC

The requirements for a family of sets of events to form a configuration structure
may be explained as follows. The initial state of a system is the state where
no action has been performed yet. Hence 0 is always a configuration. Now, if
two configurations X, Y are contained in a third configuration Z then X U Y
is consistent or conflict-free; e.g. all its elements can happen together in one
run. Since both X and Y represent already possible runs, it should then also
be possible to execute just the events in X and Y, hence X U Y should be a
configuration. If we consider two distinct events occurring in some run, then
there must be an intermediate state where already one of them has occurred
whereas the other has not yet occurred (coincidence can not be enforced). This
is guaranteed by the third requirement.

Finally, a remark on our requirement that configurations should be finite. As
usual, we assume that in a finite period only finitely many actions may be
performed. Now the requirement says that we only consider states that are
reachable in a finite period of time. WINSKEL [183] allows configurations to be
infinite, thus representing also those states which can be reached in an infinite
period of time. However, his infinite configurations are completely determined

194 IV. Refinement of Actions in Causality Based Models

by the finite ones. Hence configuration structures as defined here are equally
expressive as Winskel's families of configurations.

Convention We will denote the components of a configuration structure C
by Cc and le respectively. By abuse of language, Cc will also be denoted by C.
Furthermore the set Ee of events of C is defined by Ee = LJ X.

XEC

Let (J; denote the domain of configuration structures labelled over Act.

3.2 Example

We consider the example referred to as a "parallel switch" in [183].

We have two actions O and 1 interpreted as closing switch O and closing
switch 1, respectively, in an electric circuit. As soon as at least one of
the switches is closed, a bulb lights up; this is represented as an action b.

This may be represented by the following configuration structure (with a
unique correspondence between actions and events):

{0,1,b}

{O,b} (? {1,b} {0,1}

{O} {1}

0

The b-event may occur here without a unique "causal history"; in the
configuration {O, 1, b} it is not clear whether bis caused by O or by 1.

Usually, the names of events are not important; hence we will not distinguish
configuration structures which are isomorphic in the sense that they only differ
with respect to names of events.

3.3 Definition

A configuration structure isomorphism between two configuration struc
tures C, 'D E (J; is a bijective mapping f : Ee --+ E'D such that
- X E C ¢::::::> f (X) E 'D for X ~ Ee,
- and l'D(f(e)) = lc(e) fore E Ee.
C and 'D are isomorphic - notation C ~ 'D - if there exists a configura
tion structure isomorphism between them.

3. Configuration structures and refinement of actions 195

In configuration structures, completeness and maximality of configurations co
incide. Deadlock and termination may not be distinguished.

3.4 Definition

A configuration X of a configuration structure C is called complete iff
there is no Y f=. X in C containing X.

We may now associate a configuration structure with each flow event structure
(and via this also with each prime event structure).

3.5 Definition Let£ E IE.

The configuration structure of£, C(&), is defined as

C(£) = (Con/(£), le~ u X).
XEConf(f)

There is no unique correspondence in general: different flow event structures
may have the same configuration structure (but not vice versa). In particular,
the distinction between deadlock and termination is lost.

Next, we define refinement of actions for configuration structures. A refinement
will be specified by a function ref specifying for each action a a configuration
structure ref (a) which is to be substituted for a. Again we only consider non
forgetful refinements here, hence ref (a) f=. 0 for all a E Act where O denotes
the empty configuration structure with Co= {0}. Apart from this restriction,
we may replace an action by any configuration structure.

3.6 Definition

(i) A function ref: Act ➔ (/) - {O} is called a refinement function (for
configuration structures).

(ii) Let C be a configuration structure and let ref be a refinement function.
~ We call X a refinement of a configuration X E C by ref iff

- X= LJ {e} X Xe where Ve EX: Xe E ref (lc(e)) - {0},
eEX

~ - for all Y ~ busy (X), X - Y EC,

where busy (X) = {e EX I Xe not complete}.

The refinement of C by ref is defined as ref (C) = (Cref(C),lref(C)) with

Cref(C) :={.XI.Xis a refinement of some XE C by ref}

and

lref(C) (e, e') = lref(lc (e)(e') for all (e, e') E u x.
XECre/(C)

196 IV. Refinement of Actions in Causality Based Models

Intuitively, this definition may be explained as follows.

The configuration structure ref (C) is obtained by taking all possible refinements
of configurations of C. A refinement of a configuration X of C is obtained by
replacing each event e in X by a non-empty configuration Xe of ref (lc(e)).
Events which are causally necessary for other events in X may only be replaced
by complete configurations, hence it must be possible to take any subset of
"uncompleted" or busy events out of X, again obtaining a configuration.

Next we show that refinement is a well-defined operation on configuration
structures, even when isomorphic configuration structures are identified.

3. 7 Proposition

(i) If C E (/) and ref is a refinement function then also ref (C) is a config
uration structure.

(ii) IfC E (/) and ref, ref' are refinement functions with ref(a) ==' ref'(a)
for all a E Act then ref (C) ==' ref' (C).

(iii) If C, 1) E <t, ref is a refinement function and C=:!.1) then ref (C) == ref(1J).

Proof (i) cumbersome and omitted here, (ii) and (iii) straightforward. ■

Finally, we want to show that the easier syntactic refinement operation for
flow event structures defined in section 2 is consistent with the refinement
operation for configuration structures. However, since the distinction between
deadlock and termination is lost in configuration structures, this is only true
for deadlock-free refinements.

3.8 Theorem

Let £ E E , let ref be a refinement function for flow event structures
with Va E Act: ref(a) deadlock-free.

Then C(ref (£)) = ref'(C(£))
where ref'(a) = C(ref (a)) for all a E Act.

Proof

It has to be shown that Cc(re/(£)) = Cre/'(C(£)) and lc(re/(£)) = lre/'(C(£)). The
first requirement translates to

Conf (ref(£)) = {XIX is refinement of some XE Conf (£) by ref'}.

From Proposition 2.8 we know

Conf(ref(£)) = {XIX is a refinement of some XE Con/(£) by ref}.

4. Refinement of transitions in Petri nets 197

So it suffices to establish that a refinement by ref ' is the same as a refine
ment by ref This follows immediately from Proposition 2.8 and Lemma 2.9 in
combination with Definition 3.6, provided that for a E Act : X is a complete
configuration of ref (a) iff Xis complete in ref'(a) = C(ref(a)). This is the
case if ref is deadlock-free.

The second requirement is straightforward. ■

4 Refinement of transitions in Petri nets

We start by giving some basic definitions and notations for Petri nets; for
explanations and concepts we refer to introductory texts on nets, such as REISIG

[156] or PETERSON [148].

For simplicity we assume that there is a one to one correspondence between
the transitions in the net and the actions that the system modelled by the net
can perform; we do not consider nets with labelled transitions. However, we
will show later that our approach can easily be extended to this case.

4.1 Definition

N = (S, T, F) is called a net structure iff
- S is a set (of places),

- Tis a set (of transitions), Sn T = 0,

- F ~ (S x T) U (T x S) such that
Vt ET: :ls, s' with sFt and tFs' (transitions have non-empty pre
and postsets)
and Vs ES: sFt ==>-, tFs (no self-loops).

The restrictions we have made here-non-empty pre- and postsets of transitions
and no self-loops-will be needed for our refinement construction.

Two nets N = (S, T, F) and N' = (S', T', F') are isomorphic - notation
N ~ N' - if T = T' and there exists a bijective mapping f : S ➔ S' satisfying
sFt-¢::::::> f(s)F't and tFs-¢::::::> tF' f(s).

Generally, we will not distinguish isomorphic net structures.

As usual, we use the following notations.
For x ES UT, let •x := {y ES U TlyFx} (preset of x),
x• := {y ES U TlxFy} (postset of x).
Let ON:= {x ES U Tl•x = 0} (initial places of N),
N° := { x E SU Tix•= 0} (final places of N).
Note that O N, N° ~ S.

198 IV. Refinement of Actions in Causality Based Models

The components of a net N will be denoted by SN, TN, FN (the index is omitted
when clear from the context). We will sometimes use the characteristic mapping
of Fas a function F: (S x T) U (T x S)----+ {O, 1}.

A concurrent system may be modelled by a net structure where the places
carry tokens, indicating the state of the system. The dynamic behaviour of the
system is derived by the so called firing rule. We assume that all places have
unbounded capacities; any mapping M : SN ----+ N will be called a marking
of the net N. However, we will restrict our considerations to one-safe nets
here. We will illustrate later why refinement in non-one-safe nets may lead to
problems.

4.2 Definition

(N, M 0) is called a P /T-system or a marked net iff N is a net structure
and M 0 : S ➔ IN (initial marking).

By abuse of notation, we will use N both for (N, M 0) (when M 0 is clear from
the context) and for the underlying net structure.

4.3 Definition Let (N, M 0) be a marked net, let M, M': S ➔ N and t ET.

(i) tis enabled by Miff \fs E •t : M(s) > 0.

(ii) M' is reached from M by firing t (M[t > M') iff
t is enabled by M and
\fs ES: M'(s) = M(s) - F(s, t) + F(t, s).

The marking class [N, M 0 > of a marked net (N, M 0) is then defined as the
set of all markings reachable from M0 by finitely many transition firings. A
marked net is one-safe if\fM E [N, M 0 > , \fs ES: M(s) ::; 1. In one-safe nets,
we may use set notations for markings: M ~ S is the marking where exactly
the places in M carry a token.

Whenever referring to a marked net in the following, we assume it to be one
safe.

A conceptual framework for refinement in Petri nets are net morphisms [75].
A net morphism is a mapping between the elements of two net structures such
that the distinction between places and transitions is observed to some extent.
It is possible to map, for example, a place to a transition, but only if this place
is surrounded by transitions with the same image.

4.4 Definition Let N = (S, T, F), N' = (S', T', F') be net structures.

(i) A mapping f: SU T ➔ S' UT' is called a net morphism iff
\fx, y ES UT with f(x) f:. f(y) and (x, y) E F: [(f(x),J(y)) E F' and
x ES{:} f(x) ES'].

4. Refinement of transitions in Petri nets 199

(ii) A net morphism f : SUT-+ S' UT' is called a quotient iff f is surjective
and (x',y') E F' ===} 3(x,y) E F with f(x) = x',f(y) = y' (surjectivity
also with respect to arcs) .

A quotient can be thought of as a factorisation. The net is partitioned such that
sorts are preserved: each subset of elements forming a class in this partition
must have a boarder consisting just of places or just of transitions and is then
considered as one place or one transition, respectively. A quotient N1 of a net
N2 is considered as an abstraction of N2 (REISIG [157]). Conversely, N2 is then
called a refinement of N1 . In this framework, transitions as well as places may
be refined.

However, behavioural aspects are not taken precisely into account and this may
lead to problems.

4.5 Example

Consider

The net N1 is an abstraction of

o-□-o+□-o ! o : ~□/
I ~

o-□-o+o-o/ :o
by the quotient mapping all elements inside the broken line to r (and
otherwise the identity). Conversely, N2 is considered as a refinement of
N1. However, consider the slightly enlarged systems

and

N' 1

200

N' 2

IV. Refinement of Actions in Causality Based Models
t

I /-=~
o-□-o+□-o"' ! o

: "□/
: t' / ~

o-□-o+□-o i
2 ~--------------------~

□
Again, N{ is a quotient of N~, hence N~ may be considered as a refinement
of Nf.
Assuming that places 1 and 2 are initially marked, we find that the net
Nf is deadlock-free in the sense that it is possible to fire transitions until
the two final places are both marked. However, even though the part of
N~ corresponding tor is also deadlock-free (namely N2 is deadlock-free),
N~ may reach a deadlock situation by firing t and t'.

This shows that the notion of a net morphism or quotient is in general not
strong enough to reason about the behaviour of refinements in a compositional
way. An attempt to restrict it in such a way that behavioural aspects are
taken more strongly into account has been made in DESEL & MERCERON
(70]. They identify a subclass of morphisms they call vicinity respecting. The
essential idea is that those net morphisms respect the impact of elements on
their environment.

4.6 Definition

A net morphism f: N ➔ N' is said to be vicinity respectingiff'v'x E SUT:

- J(0x) = {f(x)} V /(0x) =0 f(x), and

- f(x 8) = {f(x)} V /(x8) = /(x)0,

where 8 x := {x}u•x, x0 := {x}ux•, respectively.

The morphisms considered in Example 4.5 are not vicinity respecting. We will
discuss later to what extent this notion does indeed characterise the refinements
we are interested in.

In order to avoid confusion, we have to mention here another notion of mor
phism suggested for Petri nets by WINSKEL [183]. This notion is particularly
tailored to take behavioural aspects into account, however it does not allow
to contract for example a line of two transitions into one transition. So it is
not suited for treating refinement. More recent approaches in the categorical
framework [131, 122] have not yet been evaluated under this aspect.

4. Refinement of transitions in Petri nets 201

For the case of refining transitions, which we are interested in here, also more
constructive approaches are being considered explaining how to replace a tran
sition in a net by a "refinement net". The problem is to specify how to connect
the "refinement net" to the environment of the refined transition, and to in
vestigate what restrictions on refinement nets are then necessary for a sensible
refinement operation.

One possibility is to require a one to one correspondence between "input/output
places" of the refinement net and the surrounding places of the refined transi
tion. In VOGLER [174], a construction for this case is proposed, and it is shown
that it is then necessary to impose certain restrictions on refinement nets, in
particular disallowing initial concurrency (otherwise a situation as in Example
4.5 might occur).

Most constructions for refining transitions are based on distinguishing initial
and final transitions in a refinement net and connecting them to the preset and
postset, respectively, of the refined transition (VALETTE [173) and subsequently
SUZUKI & MURATA [164], VOGLER [175) and BEST, DEVILLERS, KIEHN &
PO MELLO [33)).

In these approaches, the main idea is that a transition may only be replaced by
a net behaving like a transition with respect to its effect on the environment:

- it cannot move without being activated by the environment,
- it has the same possible behaviours whenever it is activated,
- it may not deadlock,
- it consumes and produces tokens in a coincident manner.

The final condition ensures that the problematic situation explained in Example
4.5 may not occur. VALETTE [173] and others ensure this property by allowing
only refinements for transitions with at most one initial and at most one final
transition. VOGLER [175) generalises this by allowing several initial transitions
which must be in conflict (and, symmetrically, the same for final transitions).
This means that we may not have initial or final concurrency in refinement
nets.

The other requirements are usually ensured by extending the net which is
supposed to be substituted for a transition by a new place supplying a token to
the initial transition(s) and receiving a token from the final transition(s) and
then analysing the behaviour of this net. This is illustrated on the next page.

The interesting problem discussed in Example 4.5 was to refine a transition by
some behaviour exhibiting initial concurrency. Symmetrically, we also want to
allow refinements with final concurrency. This may not be handled in these
approaches (VOGLER [174) excludes only initial concurrency). A possibility to
get rid of this restriction which has not yet been pursued further is to restrict
the environment of transitions which are refined.

202 IV. Refinement of Actions in Causality Based Models

start

~---------·---------~

Here we propose a construction which generalises the approach of VALETTE

[I 73) and VOGLER [175) for the class of one-safe nets without self-loops, and
which offers the possibility of refining transitions also with initial and final con
currency. This will be achieved by extending these approaches by specifying
explicitly which initial transitions should be concurrent or in conflict (addition
ally to constraints already imposed by the internal structure of the refinement
net). For this, we extend the refinement net with initial places in the preset
of initial transitions. Similarly, we add end places specifying the relationship
between final transitions. Clearly, in the refinement net, initial places have
no ingoing arcs and final places have no outgoing arcs. When analysing the
behaviour of a refinement net, we assume that all initial places (and no final
places) carry tokens. As in [173), we allow that also other places in a refinement
net carry initial tokens. The approaches of [173) and [175) may be seen as a
special case of our approach by splitting the start-place considered above into
two places: one initial and one final place. Since we will require as [173) that
a refinement net has the same possible behaviour whenever it is activated, it
is reasonable to assume that the initial places are just those places without
ingoing arcs and the final places just those without outgoing arcs. The initial
and final places will then be used in the embedding construction to ensure that
causal dependencies are preserved by the refinement operation.

4.7 Example

Consider again the net N{ of Example 4.5.

N' 1

4. Refinement of transitions in Petri nets 203

We tried to refine r by two concurrent transitions followed by another
transition which causally depends on both of them. This refinement of r
may be represented as

7

R

8

Places 7 and 8 are initial places, place 9 is the final place.

Now R is inserted into N{ for the transition r by taking the cartesian
product of the preplaces of r with the initial places of R and of the
postplaces of r with the final places of R. We obtain

N" 2

1

o--□

o--□
2

3

(3,7)

Or
5

-----------------04)\
□

o-ol

--□ 6

4

Nr is a again a quotient of N{, however the mapping between places is
no longer the identity. We see that, even though tokens are not removed
coincidently by the refinement of r, we have ensured that either both
transitions in the refinement of r will fire or none of them, hence N~' will
not deadlock. This has been achieved by preserving precisely the conflict
and causality structure.

204 IV. Refinement of Actions in Causality Based Models

In contrast to the approaches similar to VALETTE [173], we do allow to refine
transitions by deadlocking behaviours (where we use the word deadlock in the
usual intuitive meaning rather than in the net theoretic sense). The reason
is that we do not expect that the properties of the original net, like deadlock
freeness, are preserved by refinement. We only require that the properties of the
resulting net are derivable in a compositional way. Whether or not a net to be
inserted deadlocks is specified by its behaviour with respect to its final places.
A refinement net deadlocks if it may reach a situation where no transition may
fire but not all its final places are marked. This may be explained by putting
the refinement net in a context by connecting its final and its initial places by
a transition.

--...-
initial places

t

0

0

0
--..-,

final places

The refinement net deadlocks iff t may not occur.

4.8 Example

Let N

Let R

1 r 2 t

0-□-0-□-o
n-o

0-□-O/L_j
~-0

R will deadlock since not all its final places can get a token.

When replacing R for r, we get

r
,---------------------, 2
I I
I I

1 I t

0+-0-0 □-0

4. Refinement of transitions in Petri nets

where t will never occur.

However, replacing r by

R'

gives
r r---------------------,

1 I

0~
I

where t will occur.

205

t

---□---0

The next example shows that it is not possible to consider places which have
ingoing arcs as initial places of a refinement net.

4.9 Example

Let N and

consider the net

R

If we would replace R for r, we would obtain

206 IV. Refinement of Actions in Causality Based Models

which has not the expected behaviour, since once the refined r has been
chosen, no a should be possible any more.

This problem can be solved by using labelled nets and unfolding R into

~~
R' 0--{[J

Inserting R' into N yields

which has indeed the expected behaviour.

Next, we will define our construction formally and, in particular, describe for
mally the requirements on nets which may be inserted for transitions. We will
then relate our construction to the notion of vicinity respecting net morphisms
and to our approach for refinement in event structures.

4.10 Definition

(N, M 0) with N = (S, T, F) is a refinement net iff

- 0 N =p 0 and N° =p 0,

- 0 N ~ M0 and N° n Mo = 0,

- not ET is enabled by M 0 - 0 N,

- for any ME [N,M0 > with N° ~ M we have M - N° = M0 - 0 N,
(N will exhibit identical behaviour when reactivated).

4.11 Definition Let (N, M0) be a marked net and r E TN.

Let (R, Mf!) be a refinement net, w.l.o.g. TN n TR = 0, SN n SR = 0.

4. Refinement of transitions in Petri nets

Then N[R/r] := (S, T, F) is defined by

S := (SN - (•r Ur•)) U (SR - (0 RU R0))U Int
where Int:= (•r x 0 R) U (r• x R0),

T := (TN - {r}) U TR,
F := (FN u FR) ~(S X Tu TX S)

u{((sN,SR),t)i(sN,SR) E Int,

207

(t E TN\ {r} /\ (sN,t) E FN) V (t E TR I\ (sR,t) E FR)}
u{(t,(sN,SR))i(sN,SR) E Int,

(t E TN\ {r} /\ (t,sN) E FN) V (t E TR I\ (t,sR) E FR)}

and (N, M0)[R/r] = (N[R/r], M!Rfr]) with

M!Rfr](s) = M0 (s) iff s E SN, M!Rfr](s) = Mf(s) iff s E SR,
M!Rfr](s) = M0 (sN) iff s = (sN,sR) E Int.

It is straightforward to verify that N[R/r] is again a one-safe net.

The following example illustrates why we restrict ourselves to one-safe nets (a
similar example is given in BEST, DEVILLERS, KIEHN & Po MELLO [33]).

4.12 Example

Consider the net and the

refinement for r .

R=

When replacing r by R, we would obtain

208 IV. Refinement of Actions in Causality Based Models

However, this net has not the expected behaviour, since the two inde
pendent occurrences of the refined r-transition may now cooperate and
executed. As remarked in VALETTE [173), this problem can only occur
if in N the refined transition can be "two-enabled".

Next we show that the order in which transitions are replaced does not mat
ter. In particular, this means (at least for finite nets) that we can extend our
approach to non-injective labellings of transitions by action names by refining
all transitions labelled by the same action one by one by disjoint copies of the
corresponding refinement net.

4.13 Proposition

Let (N,Mo) be a marked net, r1,r2 E TN, r1 -:f:. r2, and let R1,R2 be
refinement nets. Then N1 = ((N, M0)[Ri/r1])[R2/r2] is isomorphic to
N2 = ((N, Mo)[R2/r2])[Ri/r1].

Proof Straightforward. ■

We now show that, for any refinement N[R/r], there exists a canonical vicinity
respecting net morphism from N[R/r] to N.

4.14 Proposition

Let (N, Mo) be a marked net, let r E TN, let R be a refinement net.

Then f : N[R/r] ----+ N with

{
:,; iff xE(SN-(•rur•))U(TN-{r}),

f(x) = r iff :,; E (SR - (0 RU R0)) UTR,
SN iff x=(sN,SR)Elnt

is a vicinity respecting morphism, in particular a quotient.

4. Refinement of transitions in Petri nets

Proof Straightforward

209

■

We have shown that our construction may be understood in terms of vicinity
respecting quotients. However, one could now pose the converse question. May
any vicinity respecting quotient which refines only transitions, that is never
maps a transition to a place, be generated by our construction? The answer
is no, as shown in the following example. However, we would not consider the
morphism in this example as a sensible transition refinement.

4.15 Example

Consider

and

The broken lines in N2 indicate a quotient from N2 to N1 which is vicinity
respecting and maps no transition to a place. However, we would not like
to consider this as a transition refinement. To execute both transitions
corresponding tor, an intermediate occurrence of u is necessary. N 2 may
not be generated as a refinement of N1 with our construction.

An interesting problem is to find a further restriction to obtain a class of net
morphisms characterising refinement.

Finally, we would like to show that the construction for refinement of transi
tions we have presented is consistent with the refinement operation on event

210 IV. Refinement of Actions in Causality Based Models

structures. This would mean in particular, that this construction for nets in
deed preserves precisely the conflict- and causality structure. We will show
this for the special case of occurrence nets, nets with acyclic flow relation and
only forward branched places. These nets correspond directly to prime event
structures as defined in Section 1. As refinement nets, we will consider spe
cial (finite) occurrence nets, called causal nets, with only unbranched places.
Causal nets correspond to conflict-free prime event structures. This yields
precisely the class of refinements which we have considered in Section 1.

4.16 Definition

(i) A net structure N is an occurrence net iff

- the transitive closure of F is irreflexive,
- Vs E SN : 1 •s I ~ 1,
- #N is irreflexive, where for x, y ES UT,

x#NY {::::::} 3t, t' E TN with t =/= t', t•n•t1 =/= 0, tF*x and t' F*y,
- Vt E TN : {t' E TN It' F*t} finite (axiom of finite causes).

(ii) A net structure N is a causal net iff N is an occurrence net and Vs E
SN:is•j~l.

4.17 Definition Let N be an occurrence net.

The (prime} event structure of N, Ev(N), is defined as
Ev(N) := (TN, F* ~TN, #N, idTN).

It is straightforward to verify that Ev(N) is indeed a prime event structure
[142].

Using these notions, we may now show the consistency of transition refine
ment in this class of nets with prime event structure refinement as defined in
Section 1.

4.18 Theorem

Let N be an occurrence net, let r E TN; let R be a finite causal net.
Then Ev(N[R/r]) ~ ref(Ev(N)) where

Proof Omitted.

ref(r)
ref(t)

Ev(R),
({ t}, { (t, t)}, 0, { (t, t)}) for t =/= r
(identical refinement).

■

More general consistency results, by unfolding marked nets or associating con
figuration structures with marked nets and relating with our refinement notion
in Section 3, have to be left for further research.

Related work 211

Related work

In this chapter we defined a compositional refinement operator on three kinds
of event structures and on Petri nets. Our operator on nets can be regarded
as a generalisation of the refinement operators of VALETTE [173], SUZUKI &
MURATA (164], BEST, DEVILLERS, KIEHN & POMELLO [33] and VOGLER [175]
(although we use a less general kind of nets), and we have compared it with
the notions of net morphism (REISIG [157]) and vicinity respecting quotients
(DESEL & MERCERON (70]). The operator on prime event structures was
introduced in VAN GLABBEEK & GOLTZ [84]. It has been defined on sets
of pomsets-a linear time variant of the model of prime event structures-in
GISCHER [76] and on process graphs modelling only sequential processes in
VAN GLABBEEK & WEIJLAND [95] (Section 6 of the previous chapter). The
operator is also defined on causal trees [53, 54] and on yet another kind of
event structures in DARONDEAU & DEGANO [55, 57]. Operational definitions
of action refinement can be found in DEG ANO & GORRIERI [62], RENSINK [158]
and Busi, VAN GLABBEEK & GoRRIERI [45].

In principle there are two ways to treat "syntactic" action refinement in sys
tem description languages like CCS. One of them is to use the CCS-actions for
modelling the refinable actions of this thesis. In the absence of communication
(or synchronisation) refinement can simply be defined as syntactic substitution
of an action by a process expression. This approach has been taken in ACETO
& HENNESSY [5] and NIELSEN, ENGBERG & LARSEN [141], and has also been
mentioned in CASTELLANO, DE MICHELIS & POMELLO [46]. In the presence
of communication defining such a refinement operator is much more difficult.
A first proposal, for the simple case of an operator only splitting actions in two
parts to be executed sequentially, can be found in VAN GLABBEEK & VAAN
DRAGER [91]. A more general approach is undertaken in ACETO & HENNESSY
[6] and ACETO [3].

An alternative is to use the actions of CCS for modelling "atomic" or instanta
neous actions that cannot be refined, and representing our refinable actions by
means of variables or parameters. This approach requires a general sequential
composition operator and has been carried out in BERGSTRA & TUCKER [32] in
the setting of ACP. In particular [32] shows that there is no problem in defining
a refinement operator while working in interleaving semantics: atomic actions
a, b cannot be refined, so the equation a II b = a; b+b; a is harmless; parameters
x, y can be refined, but there is no equation x II y = x; y + y; x. Of course the
refinement operator, ordinary substitution, is defined in the language (that still
contains all information about causal dependence) and not in the associated
interleaving model (which would be impossible according to Example 0.4).

A completely different approach is taken in GoRRIERI, MARCHETTI & MON
TANARI [100] and BoUDOL [37], see also GORRIERI [98] and DEGANO & GoR
RIERI (61]. There all actions are assumed to be "atomic", and this property

212 IV. Refinement of Actions in Causality Based Models

should be preserved if they are refined. In [37] even two kinds of atomicity
are proposed, corresponding with two kinds of refinement. In [100, 98, 61] this
kind of refinement is carried out in an interleaving based model, as mentioned
in the introduction.

Refinement in more concrete programming languages is treated in GRIBOMONT

[103].

It is often argued that a concurrent system should not be represented just by
a Petri net or an event structure, but rather by an equivalence class of such
objects. Action refinement is only well-defined on a quotient domain induced
by a semantic equivalence if this equivalence is a congruence for refinement, i.e.
P = Q ==> ref(P) = ref(Q). (Actually, we like to regard action refinement as
a binary operator, rather then a family of unary operators. Doing so means
that being a congruence for action refinement is an even stronger property,
namely P = QI\ Va E Act(ref(a) = re/'(a)) ==> ref(P) = re/'(Q).) The
search for suitable equivalences will be the topic of the remaining chapters of
this thesis.

Chapter V

Partial Order Semantics for Refinement of
Actions

neither necessary nor always sufficient
but appropriate when used with care

Rob van Glabbeek & Ursula Goltz

Note: This chapter appeared originally in Bulletin of the EATCS 38, pp.
154-163. Here it serves as an informal summary of the remaining two
chapters of this thesis. It uses Petri nets rather then event structures
and contains no technicalities like definitions and proofs. Instead more
attention has been paid to the examples.

213

Originally this chapter was written in continuation of a series of papers in the
Bulletin of the EATCS about the relative merits of partial order semantics and
interleaving semantics, starting with CASTELLANO, DE MICHELIS & POMELLO

[46]. That paper pointed out a significant advantage of partial order semantics,
by formulating a desirable property of semantic equivalences that is not met
by interleaving equivalences. This property is preservation under refinement
of actions. A semantic equivalence is preserved under action refinement if two
equivalent processes remain equivalent after replacing all occurrences of an ac
tion a by a more complicated process r(a). For example, r(a) may be a sequence
of two actions a1 and a2. This property may be desirable in applications where
concurrent systems are modelled at different levels of abstraction, and where
the actions on an abstract level turn out to represent complex processes on a
more concrete level. Therefore for example PRATT [154] and LAMPORT [125]
already advocate the use of semantic equivalences that are not based on action
atomicity.

CASTELLANO, DE MICHELIS & PoMELLO [46] showed by means of a simple
example that none of the interleaving equivalences - not even bisimulation - is
preserved under action refinement. Furthermore they claim that 'on the other
hand, the approaches based on partial order are not constrained to the assump
tion of atomicity'. Indeed, they give a proof that "linear time" partial order
semantics, where a system is identified with the set of its possible (partially
ordered) runs, is preserved by refinement. They conclude that 'interleaving

214 V. Partial Order Semantics for Refinement of Actions

semantics is adequate only if the abstraction level at which the atomic actions
are defined is fixed. Otherwise, partial oi:der semantics should be considered'.

In this chapter we would like to point out that this conclusion is not so obvious.
In particular we will argue

• that there are several equivalences based on partial orders which are not
preserved by refinement (namely when taking the choice structure of sys
tems into account);

• that nevertheless a "branching time" partial order equivalence can be
found that is preserved under refinement;

• but that, in order to achieve preservation under refinement it is not nec
essary to employ partial order semantics: there exist equivalences that
abstract from the causal structure of concurrent systems and are still
preserved under refinement.

In interleaving semantics, the possible runs of a system are represented as
sequences of action occurrences, modelling parallelism by arbitrary interleaving
of actions. The example of [46] consisted of the two systems M and N which
may not be distinguished in this kind of semantics:

M = a llb (two actions a and b, executed independently);
N = a;b+b;a (either the sequence ab or the sequence ba is executed).

They have the following Petri net representations (labelling transitions by ac
tion names):

M N

neither necessary nor sufficient but appropriate when used with care 215

It was shown that after refining a into the sequential composition of a1 and a2,
thereby obtaining the systems

M' can perform the sequence of actions a1ba2, while N' cannot do this.
Hence M' and N' are not equivalent in interleaving semantics.

A first attempt to capture parallelism more precisely is made by so called step
semantics. Here it is specified that in a run of a parallel system several in
dependent actions may occur together in one step. We can think of a system
having a global clock where at each clock tick several actions occur simultane
ously. This view is taken in calculi like SCCS [136), CIRCAL [137] and MEIJE

[10]. Step semantics also have been given to CCS in [59] and to TCSP in [165].

It is easy to see that the two systems M and N considered above are already
distinguished in step semantics: In M it is possible to execute the step { a, b}
whereas in N it is not. So the example in [46] is not well chosen to advocate
partial order semantics; already step semantics would be sufficient in this case.
Therefore, we will now give a slightly more elaborate example. Consider the
following two systems:

P = (a;b) II c,
Q = a; (b II c) + (a II c); b.

In both of these systems the actions a, band care executed, and b occurs after
completion of a. However, in P the c action occurs independently of both a
and b whereas in Q c may only occur either "causally behind" a or "causally
before" b. P and Q may be represented by the following Petri nets (using a
construction explained for instance in [91] for implementing+).

p a

216 V. Partial Order Semantics for Refinement of Actions

P and Q are identified when considering their possible sequences of steps.
Both of them take into account the five possibilities for c: occurring before a,
simultaneous with a, between a and b, simultaneous with b, or after b. However,
after substituting (c1; c2) for c only the first system can perform the sequence
of actions c1abc2 . Thus also this semantics is not preserved under refinement.

On the other hand, P and Q can be distinguished by considering the partial or
ders of action occurrences they allow (the order indicating causal dependence).

a ➔ b
C

(a followed by b and
independently c)

is a computation of P but not of Q. In [46) it was shown that partial order
semantics-when identifying a system with its set of possible (partially ordered)
runs-is preserved under action refinement.

However, when taking the choice structure of systems into account, the situa
tion becomes less obvious.

Before discussing the problem in detail, we would like to give an overview,
by classifying the equivalences being currently investigated (without claiming
completeness). They may be positioned in a two dimensional diagram as shown
below, distinguishing them firstly with respect to the preserved level of detail in
runs of systems (as discussed above) and secondly with respect to the preserved
level of detail of the choice structure of systems (we do not consider abstraction
from internal actions here).

runs sequences sequences partial orders
of actions of steps

branching
structure

interleaving step pomset
paths trace trace trace

equivalence equivalence equivalence

: e.g. testing

interleaving step e.g. pomset
bisimulation bisimulation bisimulation bisimulation

equivalence equivalence equivalence

In trace semantics ("linear time" semantics), a system is fully determined by
its set of possible runs, thereby completely neglecting the branching structure.

neither necessary nor sufficient but appropriate when used with care 217

On the other end, bisimulation semantics preserve the information where two
different courses of action diverge (although branching of identical courses of
action is still neglected). In between there are several "decorated trace se
mantics", where part of the branching structure is taken into account. Mostly
these are motivated by the observable behaviour of processes, according to
some testing scenario (see Chapter I).

Up to now we have only considered the trace equivalences in the upper row of
the diagram. We recalled from [46] that pomset trace equivalence is preserved
under action refinement, while interleaving trace equivalence is not. More
over we have shown that also step trace equivalence is not preserved under
refinement. Next we will try to establish similar results for the corresponding
branching time equivalences and for the testing equivalences in between.

In interleaving semantics this generalisation is quite simple. As observed in [46],
the systems M and N are identified even in interleaving bisimulation semantics
while the refined systems M' and N' are not even identified in interleaving trace
semantics. So there is one single example showing that neither interleaving
bisimulation equivalence nor interleaving trace equivalence is preserved under
refinement. As a consequence, also none of the decorated trace equivalences
based on interleaving, which are more discriminating then interleaving trace
equivalence, but less discriminating then interleaving bisimulation equivalence,
is preserved under refinement; in each of the decorated trace semantics based
on interleaving, M and N are identified, while M' and N' are distinguished.

Our example against step trace equivalence however cannot be used to show
that also step bisimulation equivalence is not preserved under refinement; the
systems P and Q happen to be different in step bisimulation semantics already:
after performing an a-action the system P is always able to continue with a
b-action, whereas Q can perform an a-action and reach a state where it is not
possible to continue with b. Nevertheless, the following example shows that
also step bisimulation semantics is not preserved under refinement. Consider
the two systems Mand L which may not be distinguished in step bisimulation
semantics:

M=allb
L = a II b+ a;b

(two actions a and b, executed independently);
(either a and b are executed independently or
the sequence ab is executed).

They have the following Petri net representations:

218 V. Partial Order Semantics for Refinement of Actions

M L

The systems M' = (a1; a2) II b and L' = (a1; a2) II b + (a1; a2); b which are
obtained by substituting a 1 ; a2 for a are no longer step bisimulation equivalent;
only L' can perform a 1 , and reach a state where it is not possible to continue
with b.

Hence, neither step trace nor step bisimulation equivalence is preserved under
refinement. However, M' and L' happen to be step trace equivalent, so none
of the previous two examples is adequate for both equivalences. In order to
tackle the whole range of equivalences included between step trace and step
bisimulation equivalence we need yet another example, which simultaneously
shows that both step trace and step bisimulation equivalence are not preserved
under refinement. Consider the systems

Q=a;(bllc)+(allc);b and
R = Q + P = a; (b II c) + (a II c); b + (a; b) II c.

The Petri net associated to Q has been shown before, and the net for R is
drawn in [91], where it was also pointed out that Q and Rare step bisimulation
equivalent. However, after refining c into c1 ; c2 the two systems are not even
interleaving trace equivalent; only the second system can perform the sequence
of actions c1abc2 . As a consequence, none of the decorated trace equivalences
based on steps, such as the step failure semantics of [165], is preserved under
refinement.

A rather straightforward combination of the ideas of bisimulation and of cap
turing causal dependencies by partial orders has been proposed in BouooL &
CASTELLANI [39]. They suggest to consider transition systems as for the usual
interleaving bisimulation, but to label the arcs in these transition systems by
pomsets (partially ordered multisets of action occurrences) instead of single
actions. However, it turns out that the obtained equivalence, usually called

neither necessary nor sufficient but appropriate when used with care 219

pomset bisimulation, is not preserved by refinement of actions.

Consider the two systems I{ and L below.

K L

In both systems either a and b are executed independently or the sequence ab
is executed. However, in L the choice between these two options is made at
the beginning, while in I{ this choice can be postponed until the execution of
a has been completed.
The system J{ can behave as follows:

- it performs the single action a and the remaining behaviour is b+b, which
is identified with b;

- it performs the single action b and the remaining behaviour is a;

- it performs the pomset ~ (a and b executed independently) and there

is no remaining behaviour;

- or it performs the pomset a ➔ b (a followed by b) and again there is no
remaining behaviour.

The behaviour of L can be described in exactly the same way and for this
reason the two systems are pomset bisimulation equivalent.

Now let us imagine that a is refined into a1; a2. The systems J{' and L' which
are obtained in this way can be distinguished in pomset bisimulation semantics,
and even in interleaving bisimulation: only L' can refuse to do a b-action after
execution of a1 .

Hence pomset bisimulation semantics is not preserved under refinement of ac-

220 V. Partial Order Semantics for Refinement of Actions

tions. Another example for this are the two terms

a;(b+c)+(allb) and a;(b+c)+(allb)+(a;b)

(again refining a into a 1 ; a2). However the example given before can also be used
to show that even the notion of generalised pomset bisimulation, as discussed
in VAN GLABBEEK & VAANDRAGER [91], is not preserved under refinement.
Of course we cannot find an example tackling the whole range of equivalences
included between pomset trace and pomset bisimulation semantics, since we
already observed that pomset trace equivalence is preserved under refinement.
However, the systems K' and L' can already be distinguished in interleaving
failure semantics, as employed in [42, 64]. Thus no equivalence that is at least
as discriminating as interleaving failure equivalence but less discriminating then
pomset bisimulation equivalence can be preserved under refinement.

The interplay of equivalence notions and refinement of actions as discussed
up to now is investigated in detail in Chapter VI. There all the equivalence
notions and examples presented so far are given formally in the framework of
event structures; refinement of actions is performed by replacing actions by non
empty pomsets. That paper concludes by showing that another "partial order
bisimulation" is indeed preserved by refinement. In order to avoid technical
details, we just ouline these results here.

After we realised that pomset bisimulation is not preserved by refinement, an
other equivalence was considered, hoping that it would solve the problem (see
e.g. DEVILLERS [71]). This equivalence had been considered before under the
name NMS partial ordering equivalence in DEGANO, DE NICOLA & MONTA
NARI [58]. The main idea is to bisimulate transition systems where the states
are labelled by their (partially ordered) histories. In the next chapter it is
shown that this equivalence is indeed preserved by refinement when we restrict
ourselves to systems without autoconcurrency, that is to systems which do not
allow concurrent occurrences of the same action like in a II a. However, for
systems with autoconcurrency it turns out that NMS po equivalence is not
preserved by refinement. Even more, it does not even respect pomset bisim
ulation equivalence in this case. The example showing both these facts was
suggested to us by Alex Rabinovich who used it to show that this equivalence
is not a congruence with respect to a TCSP-like parallel composition. To ob
tain a congruence, a stronger version of NMS po equivalence was suggested in
RABINOVICH & TRAKHTENBROT [155] In the next chapter it is shown that this
"partial order bisimulation equivalence" is indeed always preserved by refine
ment.

So we have shown that it is not automatically sufficient to move to partial order
semantics for refinement of actions. When considering the choice structure, this
has to been done with care. In the remaining part of this note, we argue that
on the other hand it is not even necessary to move to partial orders (as one
may conclude from [46]).

neither necessary nor sufficient but appropriate when used with care 221

A branching time semantics lying strictly between step semantics and partial
order semantics has been proposed in VAN GLABBEEK & VAANDRAGER [91).
This ST-bisimulation semantics is based on the idea that actions have a dura
tion, and may overlap in time. Contrary to step semantics, it recognises the
possibility that, in P = (a; b) II c, action c may have an overlap with both a
and b, while b can only occur after completion of a. However when in a run of
a system an action b happens after completion of a, it is not taken into account
whether or not there is a causal link between the two actions.

Compare for instance the systems M and K that have been presented before.
Both systems perform an a-action and a b-action. In M these actions are
always independent, whereas in K it is possible to perform a b-action which
causally depends on a: so Mand Kare distinguished in partial order semantics.
However, in ST-bisimulation semantics the only execution of K which is not
possible in M (first a and then the b which is causally dependent on this a)
can not be distinguished from another execution of K (and of M), namely:
first a and then the b which is independent of this a. In K, the choice between
both runs is only made after completion of a, and in that state the remaining
part of both executions is the same: just b. Hence M and K are identified in
ST-bisimulation semantics.

So ST-bisimulation equivalence abstracts from the causal structure of concur
rent systems. Nevertheless it is preserved under refinement, as will be shown
in Chapter VII. A similar result can be proved for linear time semantics as
well. A variant of this can be found in NIELSEN, ENGBERG & LARSEN [141).
Furthermore a variant of failure semantics, based on the same ideas that un
derly ST-bisimulation semantics has been proposed in VOGLER [175]. There it
is proven that also this equivalence respects refinement.

This shows that indeed partial order semantics (in the strong sense1) are not
necessary for the type of refinement we have considered. Nevertheless, we need
partial order bisimulation semantics when it is required to model the interplay
of causality and branching in full detail.

We hope that this note, and the formal versions of it in the next chapters,
help to clarify the relationship between various equivalences being currently
considered. However, we do not intend to advocate any particular type of
equivalence here. We just want to illustrate that the appropriate equivalence
notion has to be chosen carefully with regard to the considered questions.

1 We refer here to semantics that use partial orders for representing causal dependence.
Interleaving semantics can also be described by means of partial orders (that happen to be
total), and ST-bisimulation semantics, although its original definition did not manifestate
partial orders, can be described by means of so-called interval orders (176, 178]. As interval
orders are truly partial, WALTER VOGLER (176, 178] argues that ST-bisimulation semantics
counts as a partial order semantics. His conclusion that partial order semantics is necessary
for refinement of actions is, apart from the chosen terminology, consistent with ours.

223

Chapter VI

Equivalence Notions for Concurrent Systems
and Refinement of Actions

Rob van Glabbeek & Ursula Goltz

In this chapter we investigate equivalence notions for concurrent systems. We
consider "linear time" approaches where the system behaviour is characterised
as the set of possible runs as well as "branching time" approaches where the
conflict structure of systems is taken into account. We show that the usual
interleaving equivalences, and also the equivalences based on steps (multisets
of concurrently executed actions) are not preserved by refinement of actions.
We prove that linear time partial order semantics, where causality in runs is
explicit, is invariant under refinement. Finally, we consider various bisimulation
equivalences based on partial orders and show that the strongest one of them
is preserved by refinement whereas the others are not.

Notes: This chapter is based on our paper [84]. However, the introduc
tion of prime event structures and the refinement operator as well as the
proof of its compositionality has been omitted since this is covered by Sec
tion 1 of Chapter IV already. Furthermore our results are reformulated
in such a way that they are not only valid for prime event structures but
also for flow event structures, as presented in Section 2 of Chapter IV. On
flow event structures, infinite refinements and refinements with conflicts
are no longer excluded, which strengthens our refinement theorems.

Contents

Introduction
1. Interleaving semantics
2. Step semantics
3. "Linear time" partial order semantics .
4. "Branching time" partial order semantics

4.1. Pomset bisimulation equivalence
4.2. History preserving bisimulation .

Conclusion

224
225
227
230
231
232
233
238

224 VI. Equivalence notions for concurrent systems and refinement of actions

Introduction

A large body of research is devoted to equivalence notions for concurrent sys
tems. Most of the equivalence notions currently being considered are based on
a semantics where concurrency is modelled by arbitrary interleaving of atomic
actions. In PRATT [154) and in CASTELLANO, DE MICHELIS & PoMELLO [46)
it is pointed out that this approach has a severe drawback. It leads to complica
tions when changing the level of atomicity of events; " ... we would like a theory
of processes to be just as usable for events having a duration or structure, where
a single event can be atomic from one point of view and compound from an
other" ([154)). In [46), an example is given, showing that the usual interleaving
equivalence is not invariant under refinement of actions when this is simply
modelled by textual replacement. Both [154) and [46) claim that modelling
concurrency by expressing causal dependencies explicitly using partial orders
could help to solve this problem. However, the two systems considered in [46)
can already be distinguished by considering interleavings of "steps" (multisets
of concurrently executable actions). So their example does not show that it is
indeed necessary to consider partially ordered executions. Furthermore, their
proof of the claim that partial order equivalence is preserved by refinement is
only valid for "linear time" partial order semantics, where the set of all pos
sible executions of a system is considered, without taking into account where
conflicts are resolved. This is also the model considered by Pratt.

In this chapter, we will consider various equivalence notions based on steps
and on partial orders. We will discuss linear time semantics, but we will also
take the conflict structure of systems into account by considering various forms
of bisimulation ("branching time" semantics). We will show that the known
equivalences based on steps are not invariant under action refinement. We will
rephrase in our framework the proof of [46), showing that linear time partial
order semantics is indeed robust against changing the level of atomicity. Then
we consider several equivalence notions based on branching time partial order
semantics. We give examples, showing that pomset bisimulation equivalence of
BOUDOL & CASTELLANI [39) and also the NMS partial ordering equivalence
suggested in DEGANO, DE NICOLA & MONTANARI [58), are not preserved by
refinement of actions. An equivalence notion for Petri nets which coincides with
the notion of NMS partial ordering equivalence was suggested in DEVILLERS
[71) where the refinement problem has also been discussed. We also show that
NMS partial ordering equivalence does not imply pomset bisimulation and vice
versa; these notions are incomparable. Finally we show that a finer equivalence
notion, proposed in RABINOVICH & TRAKHTENBROT [155) under the name BS
bisimulation, is indeed preserved by refinement. This equivalence does respect
pomset bisimulation.

We do not intend to advocate any particular equivalence notion here, the pur
pose of this investigation is to find out about the consequences of the different

1. Interleaving semantics 225

approaches. There will certainly be a tradeoff between simplicity and distin
guishing power. We just want to illustrate that the appropriate notion has to
be chosen carefully with regard to the questions considered.

1 Interleaving semantics

In this paper, concurrent systems are represented by event structures. It is
written in such a way that the text applies both to prime event structures as to
flow event structures (but in case of prime event structures ::;x should be read
as :::;). The reader is refered to Section 1-for prime event structures-or Sec
tion 2--for flow event structures-of Chapter IV, for an introduction to event
structures and action refinement. There it is also explained how configurations
model the states of a concurrent system.

We may now ask which actions may occur in a configuration and which con
figuration is then obtained.

Definition Let £ be an event structure.

1. X --+e X' iff X, X' E Con/(£) and X ~ X'.

2. X ~ X' iff a E Act, X --+e X' and X' \X = {e} with l(e) = a.

Note that X --+e X' implies that £ ~(X' \ X) is finite and conflict-free.

Here X ~ X' says that if £ is in the state represented by X, then it may
perform an action a and reach a state represented by X'. Likewise, X --+ e X'
says that £ may evolve from X to X'.

Considering transitions X ~ X' only, one can define the usual interleaving
semantics. The simplest form is that of comparing just the possible sequences
of action occurrences.

Definition

w = a1 · · · an E Act* is a {sequential) trace of an event structure£ iff there
exist configurations X 0 , • • ·, Xn of£ such that X 0 = 0 and X;-1 ~ X;
(i= 1,···,n).
SeqTraces (£) denotes the set of all sequential traces of£.
Two event structures £, :F are called interleaving trace equivalent
(£ r:::J;1 :F) iff SeqTraces (£) = SeqTraces (:F).

With the concept of labelled transition systems, we obtain a stronger equiv
alence notion based on the idea of bisimulation [145, 134]. For example, the
systems a(b + c) and ab + ac have the same traces but are distinguished by
bisimulation equivalence.

226 VI. Equivalence notions for concurrent systems and refinement of actions

Definition Let E, :F be event structures.

A relation R ~ Conf(E) x Conf(:F) is called an interleaving bisimulation
between E and :F iff (0, 0) E R and if (X, Y) E R then
- X ~ X' ⇒ 3Y' with Y ~ Y' and (X', Y') ER,
- X ~ Y' ⇒ 3X' with X ~ X' and (X', Y') E R.
E and :Fare interleaving bisimulation equivalent (E ~ib :F) iffthere exists
an interleaving bisimulation between E and :F.

Clearly, E ~ib :F implies E ~it :F.

Example 1.1

We now recall the example of [46], showing that both ~it and ~ib

are not preserved by refinement.
They considered the two systems P = allb and Q = a;b + b;a,
representable by the following event structures.

a b a-#-b

.i .i
b a

In all known interleaving semantics, P and Q are considered equiv
alent, we have Ep ~ib Eq. However, if we allow to refine the action
a into the pomset a 1 ➔ a 2 , this gives rise to the two systems

Ep, a1 b Eq, a1-#-b

.i .i .i
a2 a2 a1

.i .i
b a2

and they are not interleaving equivalent; indeed they are not even
interleaving trace equivalent: Ep, allows for the sequence a1 b a2

whereas Eq, doesn't.

This shows that both interleaving trace equivalence and interleaving bisimula
tion equivalence are not preserved by action refinement. Even more, the same
can be said for all equivalences identifying P and Q and respecting interleaving
trace equivalence, e.g. failure equivalence [42], testing equivalence [64].

As an event structure equivalence which is indeed preserved by refinement one
could consider event structure isomorphism (cf. Proposition l.5(iii)/2.7(iii) of
Chapter IV). However, the main purpose of introducing an equivalence notion
is to abstract from certain details in a system representation. For example, we

2. Step semantics 227

would like to express that the processes a and a+a exhibit the same behaviour.
Furthermore, we would like to identify processes like

(all(b + c)) + (allb) +((a+ c)llb) and (all(b + c)) +((a+ c)llb)

(absorption law, see [39]). This is not possible when using event structure
isomorphism.

Hence, in the sequel we will consider various equivalence notions in between
these two extremes (interleaving trace equivalence and event structure iso
morphism), taking into account the concurrency and the conflict structure
("branching-time" semantics) in more and more detail.

2 Step semantics

A more discriminating view of concurrent systems than that offered by in
terleaving semantics is obtained by modelling concurrency as either arbitrary
interleaving or simultaneous execution. This view is taken in calculi like SCCS
[136], CIRCAL [133] and MEIJE [10]. In TAUBNER & VOGLER [165], this idea
is applied to give a non-interleaving semantics to theoretical CSP, called step
failure semantics. The word step originates from Petri net theory where it
denotes a set (or multiset) of concurrently executable transitions. Recently, a
step semantics for CCS has been defined [59], inspired by [10]. Step semantics
give a more precise account of concurrency than interleaving semantics, e.g. the
systems ailb and a;b+b;a are distinguished. This means that the example given
in [46] constitutes an argument against interleaving semantics but not against
step semantics. We will formalise some step equivalence notions and then dis
cuss examples which show that even these equivalences are not preserved by
refinement.

Step semantics are defined by generalising the single action transitions X ~ X'
from Section 1 to transitions of the form X ~ X' where A is a multiset over
Act, representing actions occurring concurrently. In particular, we allow actions
to occur concurrently with themselves ("autoconcurrency"). Using this new
kind of transitions, step trace equivalence and step bisimulation equivalence are
straightforward generalisations of the corresponding interleaving equivalences,
see e.g. POMELLO [153].

Definition Let £ be an event structure.

X ~ X' iff A E ffVAct (A is a multiset over Act), X --+t: X' and
X' \X = G such that Ve,e' E Ge co e' and l(G) = A
where l(G)(a) = l{e E GI l(e) = a}I.

228 VI. Equivalence notions for concurrent systems and refinement of actions

Definition

W = A1 •••An where A; E JNAct (i = l, · · •,n) is a step trace of an
event structure & iff there exist configurations X 0 , • • ·, Xn of & such that

Xo = 0 and X;-1 ~ X; (i = 1, · · ·, n).
StepTraces (&) denotes the set of all step traces of an event structure&.
Two event structures &, :Fare called step trace equivalent (& ~.t :F) iff
StepTraces (&) = StepTraces (F).

Definition Let £, :F be event structures.

A relation R ~ Conj(&) x Conf(F) is called a step bisimulation between
& and :F iff (0, 0) E Rand if {X, Y) E R then

- X ~ X' ==} 3Y' with Y ~ Y' and {X, Y) E R,

- Y ~ Y' ==} 3X' with X ~ X' and {X, Y) E R.
£ and :Fare step bisimulation equivalent (& ~.b F) iff there exists a step
bisimulation between £ and F.

As for interleaving semantics, & ~sb :F implies£ ~.t :F. Moreover (as far as we
know) all other interesting step equivalence notions are positioned somewhere
in between {recall that we do not consider abstraction from internal actions).

Considering the two systems P = allb and Q = a;b + b;a from [46), represented
as event structures &p and &Q in Example 1.1, we find that &p and &Q are
not equivalent in step semantics. The step { a, b} is possible in &p but not in
&Q. So the example in [46] is not adequate for step semantics. Here we give
examples showing that both ~.t and ~sb are not invariant under refinement
of actions, as well as all equivalences included between them, e.g. step failure
equivalence.

The following example shows that step trace semantics is in general not invari
ant under refinement.

Example 2.1

We consider the two systems P = (a;b)llc and Q = (allc);b+a;(bllc):
a a C a

£p = ..j. C and + ✓ ":.t
b b C

The +-sign in the second system is supposed to indicate that this
a

system either behaves like ":.t ✓
b

C

or like
a

✓ ":.t
b

, that is
C

either performs a and c in parallel and then b, or first a and then
b and c in parallel. The +-sign may easily be "implemented" by

2. Step semantics

indicating that all events in the first component are in conflict with
all events in the second component and vice versa.

These two systems are step trace equivalent. However, when refin
ing c into Ct -+ c2, the resulting systems

a Ct Ct a
£pi _j. _j. and £Q' = a _j. + ✓~

b C2
\;2

b Ct
_j.

b C2

are not step trace equivalent (not even interleaving trace equiva
lent).

229

This example shows that ~st is not preserved by refinement. However, the
example is not adequate for step bisimulation equivalence since P and Q are
not step bisimulation equivalent (after performing a, the bis always possible in
P but not always in Q). The next example shows that also ~sb is not preserved
by refinement.

Example 2.2

Consider P = allb and Q = (allb) + a;b,

£p = a b £Q = a-#-a-#- b
_j.
b

It is easy to verify that £p ~sb £Q. However, refining a into at -+ a2
yields

£Q' = at-#-at- #-b
_j. _j.

After the step { at}, the step {b} is always possible in £p,. However,
in £Q, it may be the case that the step { b} is impossible after execut
ing at (choosing the branch at -+ a2 -+ b). Hence £p, and £Q' are
not step bisimulation equivalent (not even interleaving bisimulation
equivalent).

However, this example is still- not suitable for disqualifying the whole range of
equivalence notions included between ~st and ~sb, as the example of [46] does
in the interleaving case (see Example 1.1), since the refined systems £p, and
£Q' turn out to be step trace equivalent. A slightly more complicated example
may be given, disqualifying all equivalence notions between ~sb and ~st·

230 VI. Equivalence notions for concurrent systems and refinement of actions

Example 2.3

First consider the following three systems:

a a C

✓\..
b C

Now we consider the two composed systems

a

[3 = + C

b

We have£ ~sb :F [91]. However, when refining c into Ct ➔ c2 only
the refinement of :F may perform the sequence of actions Ct a b c2.

The resulting systems £' and :F' are not even interleaving trace
equivalent.
So let ~ be an equivalence included between ~st and ~sb, then also
£ ~ :F, but£' ,;f, :F'.

Thus we have shown that all the currently known versions of step equivalence
are not preserved by refinement.

3 "Linear time" partial order semantics

In [46] it was claimed that equivalence based on considering partially ordered
executions is preserved by refinement. In this section we will make this claim
more precise. We will show that this is indeed true when considering the set
of all possible executions of systems (traces), formalising the proof sketch from
[46] in terms of event structures. However, in the next section, we will consider
equivalence notions taking account of the timing of choices, based on the idea
of bisimulation, and we will show that in this case this claim is not so obvious.

In Chapter IV, we discussed that the possible executions of a system may be
represented as isomorphism classes of labelled partial orders (pomsets), thus
taking full account of the causality relation for event occurrences.

Definition

(i) Let X = (X, ~x, lx) and Y = (Y, ~Y, ly) be partial orders which are
labelled over Act. X and Y are isomorphic (X ~ Y) iff there exists a
bijection between X and Y respecting the ordering and the labelling.
The isomorphism class of a partial order labelled over Act is called a
pomset over Act.

(ii) Let £ be an event structure.
Pomsets (£) := { [(X,~x,le ~X)]~ IX E Conj(£)}.

4. "Branching time" partial order semantics 231

(iii) Two event structures £, and :Fare pomset trace equivalent (£ ';::jpt :F) if
Pomsets (£) = Pomsets (:F).

Clearly, pomset trace equivalence implies step trace equivalence. Example 2.1
shows that pomset trace equivalence is strictly finer than step trace equiva
lence. On the other hand, pomset trace equivalence and step (or interleaving)

bisimulation equivalence are incomparable: a;(b + c) :pt a;b + a;c and for £,p
'7"sb

Theorem Let £,, :F be flow event structures.

Then£, ';::jpt :F implies ref(£) ';::jpt ref(:F) for any refinement function ref

Proof
Let £, ';::jpt :F and let ref be a refinement function. We have to show

Pomsets (ref(£)) =Pomsets (ref (:F)).

" ~" Let u E Pomsets (ref(£)).
Then u = [(X,::; X, lref(e) ~ X)]~ where X E Conf (ref(£)).

With Proposition 1.7 or 2.8 from Chapter IV, we have that X is a refinement
of some configuration X of£,. Since Pomsets (£) = Pomsets (:F), there exists
Y E Conf(:F) such that (X, ::;x, td X) and (Y, :=;y, lJ' ~Y) are isomorphic.
Since isomorphism preserves labelling, we can refine Y to a configuration Y
(by choosing identical refinements for corresponding events) such that

hence u E Pomsets (ref (:F)).

" :J " by symmetry. ■

4 "Branching time" partial order semantics

In this section, we discuss several suggestions to define equivalence notions
based on partial orders and recording where choices are made. We show that
most of these fail in general to be preserved by refinement. Finally we show that
the last and strongest notion is indeed invariant with respect to refinement.

232 VI. Equivalence notions for concurrent systems and refinement of actions

4.1 Pomset bisimulation equivalence

In BOUDOL & CASTELLANI [39] it was suggested to generalise the idea of
bisimulation by considering transitions labelled by pomsets. So we now consider
transitions X ~ X' where u is a pomset over Act.

Definition Let £ be an event structure.

X ~ X' iff X --+e X' and u is the isomorphism class of£ ~(X' \ X).

Definition Let £, :F be event structures.

A relation R ~ Con/(£) x Conf(:F) is called a pomset bisimulation
between£ and :F iff (0, 0) E R and if (X, Y) E R then

X ~ X' ⇒ 3Y' with Y ~ Y' and (X', Y') ER,
- Y ~ Y' ⇒ 3X' with X ~ X' and (X', Y') E R.
£ and :F are pomset bisimulation equivalent (£ ,::::,pb :F) iff there
exists a pomset bisimulation between £ and :F.

This equivalence notion is clearly finer than both step bisimulation equiva
lence and pomset trace equivalence: £ ,::::,pb :F implies £ ,::::,sb :F and £ ,:::,pt :F;
moreover, the processes ailb and (allb) + a;b considered in Example 2.2 are
sb-equivalent but not pb-equivalent; a;(b + c) and a;b + a;c are pomset trace
equivalent but not pb-equivalent.

However, pb-equivalence is not preserved by refinement.

Example 4.1

Consider P = a;(b + c) + (allb) and a;(b + c) + (allb) + a;b. We have
P ,::::,pb Q. However, when refining a into a1 -+ a2 and executing a1,
we may arrive in a situation in the second system where a2 and b
may only be executed sequentially and where c is excluded. This is
not possible in the first system.

In VAN GLABBEEK & VAANDRAGER [91], the pomset bisimulation was crit
icized for violating "the real combination of causality and branching time".
The criticism is that only the first system of Example 4.1 has the property that
any action a that is causally preceding b is also preceding the choice between b
and c. Therefore they suggested a generalised pomset bisimulation equivalence,
that is finer then pomset bisimulation equivalence, does not identify the two
systems of Example 4.1, and still satisfies a= a+ a and the absorption law of
Section 1.

However, generalised pomset bisimulation equivalence is also not preserved by
refinement.

4. "Branching time" partial order semantics

Example 4.2

a a a

£ = -1- :F= .), + .),
b # b b # b b

These two systems are generalised pomset bisimulation equivalent
[91]. However, when refining a into a1 ➔ a2 , the resulting systems

a1 a1 a1

-1- -1- -1-
£'= a2 and :F'= a2 + a2

-1- -1- -1-
b-#-b b-#-b b

are not even interleaving bisimulation equivalent. After the action
a1 the action bis always possible in £'. However in :F' it may be
the case that b is impossible after executing a1 (choosing the branch
a1 ➔ a2 ➔ b).

4.2 History preserving bisimulation

233

Another equivalence notion based on the idea of bisimulation with partial or
ders that might be preserved by refinement was suggested independently by
Devillers and Van Glabbeek at the workshop on "Combining Compositionality
and Concurrency" [143, 71]. It turned out that this notion coincides with the
NMS partial ordering equivalence suggested earlier in DEGANO, DE NICOLA &
MONTANARI [58]. We rephrase the definition here in terms of event structures
as follows.

Definition Let £, :F be event structures.

• A relation R ~ Con/(£) x Conf(:F) is called a weak history preserving
bisimulation between£ and :F iff (0, 0) E Rand if (X, Y) E R then

there is an isomorphism between (X, Sx, le~ X) and (Y, SY, l:F ~Y),
X --+c X' ⇒ 3Y' with Y --+:F Y' and (X', Y') E R,
Y --+:FY' ⇒ 3X' with X --+e X' and (X', Y') ER.

£ and :F are weakly history preserving equivalent (£ ~wh :F) iff there
exists a weak history preserving bisimulation between £ and :F.

Note that the isomorphism requirement guarantees that the labels of the events
in X' \ X and Y' \ Y correspond as well.

As observed in [71], it is sufficient to consider only those transitions X --+c X'
(resp. Y --+:FY') where X'(Y') is obtained from X(Y) by executing exactly
one event.

234 VI. Equivalence notions for concurrent systems and refinement of actions

The two systems considered in Example 4.1 are pomset bisimulation equivalent
but not weakly history preserving equivalent. However, wh-equivalence is not
stronger than pomset bisimulation, as shown by the following example; the two
notions are in general incomparable. We will show later that wh-equivalence
does respect pomset bisimulation for systems without autoconcurrency.

The following example will also show that wh-equivalence is in general not
preserved by refinement. This example was suggested to us by Rabinovich. He
used it for showing that ~wh is not a congruence with respect to a TCSP-like
parallel composition.

Example 4.3

a-#-a a
Let£= ,I.. ,I..

b-#-b
and :F =

It is straightforward to check that £ ~wh :F. However, £ and :F
are not pomset bisimulation equivalent. After executing a, it is
alway possible to execute a ➔ b in £, in :F it may be impossible
to execute a ➔ b after a. When refining a into a1 ➔ a2, the
resulting systems are no longer wh-equivalent, not even interleaving
bisimulation equivalent. This can be proven by providing a formula
in Hennessy-Milner logic (Section 1.13 of Chapter I) that is satisfied
by the refinement of :F, but not by the refinement of£. Such a
formula is:

An equivalence respecting both pomset bisimulation and wh-equivalence may
be considered by extending the definition of pomset bisimulation with the first
requirement in the definition of wh-bisimulation (the other two requirements in
the definition of wh-bisimulation are then redundant). However, the following
example shows that also this equivalence would not preserve refinement.·

Example 4.4

C= :F=

As is quite difficult to check, £ and :F are equivalent according to
the equivalence notion proposed above, but after refining a into
a1 ➔ a2 they are not even bisimulation equivalent. The formula
a1 a1 -,a2 -,b Tis satisfied by £, but not by :F.

4. "Branching time" partial order semantics 235

We finally define a finer version of history preserving equivalence which will
respect pomset bisimulation. This notion was first suggested by Trakhtenbrot,
Rabinovich & Hirshfeld in terms of behaviour structures (see [155]). We will
show that this equivalence is preserved by refinement. For systems without au
toconcurrency, this equivalence coincides with ';::jwh. This will imply the result
that ';::jwh is invariant under refinement for systems without autoconcurrency.

Definition Let £,, :F be event structures.

A relation R ~ Con/(£) x Conf(:F) x P(Ee x E:F) is called a
history preserving bisimulation between £, and :F if (0, 0, 0) E R
and whenever (X, Y, f) ER then

f is an isomorphism between (X, ::;x, le~ X) and (Y, :=;y, le ~Y),
- X -+e X' ⇒ 3Y', f' with Y -+:FY', (X', Y', f') ER and f'~ X=f,
- Y-+:F Y' ⇒ 3X', f' with X -+eX', (X', Y', f')ER and/' ~X=f.
£, and :F are history preserving equivalent (£. ,;:jh :F) if£ there exists
a history preserving bisimulation between £, and :F.

Clearly, we have£, ';::jh :F ⇒ £, ';::jwh :F. However the two systems of Example
4.3 are not h-equivalent.

Proposition £. ';::jh :F ⇒ £. ';::jpb :F.

Proof
We show that any history preserving bisimulation between £, and :F is also
a pomset bisimulation between £, and :F (after leaving out the isomorphism
component). Let R be an h-bisimulation, and suppose (X, Y, f) E R and
X ~ X'. Then X --te X', thus 3Y', f' with Y --+:FY', (X', Y', f') E R
and f' ~ X = f. Since/' is an isomorphism and/'~ X = f, range(!' ~(X' \ X))
= range(!')\ range(!)= Y' \ Y, so f' ~(X' \ X) is an isomorphism between
X' \ X and Y' \ Y. Hence Y ~ Y', so R satisfies the first clause of a pomset
bisimulation. The second clause follows by symmetry. ■

From this proof we learn that h-bisimulation not only respects pomset bisimu
lation but even the previous proposal combining weak history preserving equiv
alence and pomset bisimulation. Thus ';::jh is the strongest equivalence consid
ered so far (except for event structure isomorphism of course). Nevertheless it
is possible to abstract from certain details in a system representation: we have
a ';::jh a+ a and (all(b + c)) + (allb) +((a+ c)llb) ';::jh (all(b + c)) +((a+ c)llb)
(absorption law).

We now show that considering only those transitions X -+e X', Y -+:F Y',
respectively, where X'(Y') is obtained from X(Y) by executing exactly one
event yields the same equivalence. We write X t>e X' for X -+e X' and
IX'\ XI = l. Let ';::joh be the equivalence notion obtained by replacing -+ by
t> in the definition of ';::jh.

236 VI. Equivalence notions for concurrent systems and refinement of actions

Proposition For event structures &, :F: £ r:::ih :F iff & r:::i 0 h :F.

Proof
The implication & r:::ih :F => & r:::i 0 h :F is trivial. The implication £ r:::i 0 h :F =>
& r:::ih :F immediately follows from the observation that whenever X ➔e X',
there exist configurations X 1, ... , Xn (n E JN) such that X = X 1 I> e .. . I> e
Xn =X'. ■

Next we show that r:::ih is preserved by refinement.

Theorem Let £, :F E IE and let ref be a refinement function.

Then & r:::ih j: ==> ref(&) r:::ih ref (:F).

Proof
Let R ~ Con/(£) x Conf(:F) x P(Ee x E:F) be a history preserving bisimulation
between £ and :F. Define the relation R by:

R = {(X, Y,f) E Conf(ref(£)) X Conf(ref(:F)) X P(Eref(E) X Eref(:F)) I
3(X, Y, /)ER such that
- X is a refinement of X,
- Y is a refinement of Y
- and j: X -t Y is a bijection, satisfying f(e, e') = (f(e), e')}.

We show that Risa history preserving bisimulation between re/(£) and ref(:F).

i. (0, 0, 0) E R since (0, 0, 0) E R.

ii. Suppose (X, Y, f) ER. Take (X, Y, /) ER such that
- X is a refinement of X,
- Y is a refinement of Y
- and j: X -t Y is bijection, satisfying f(e,e') = (f(e),e').
Now three things have to be established:

1. 1 satisfies (d,d') :5:x (e,e') <==> f(d,d') :5:y f(e,e') and

lref(:F) (f(e, e')) = lref(£) (e, e').

2. X -+ref(£) X' ==> 3Y' ,f' such that Y -+ref(:F) Y', f' ~ X = f and
(X', Y', 11) ER.

3. Y -+ref(:F) Y' ==> 3X', 7, such that X -+ref(£) X', 7, ~ X = f and
(X', Y', f') ER.

ad 1. Straightforward.

ad 2. Suppose X -+ref(£) X', i.e. X' E Conf(ref(&)) and X ~ X'.

We have X' = U { e} x x: where X' E Con/(&) and
eEX'

4. "Branching time" partial order semantics 237

Ve EX': X~ E Con/ (ref (lt:(e))) - {0}.
Then X = pr1(X) and X' = pr1(X'), so X ---+e X'.

Since R is a history preserving bisimulation,
3Y', f' with Y ---+:FY', f' tX = f and (X', Y', f') ER.
Let Y' = {(f'(e),e') I (e,e') EX'}
and I'= {((e,e'),(f'(e),e')) I (e,e') EX'}.
It now suffices to show that Y' is a refinement of Y', since then it
follows immediately with Proposition 1.7 or 2.8 from Chapter IV that
Y' E Conf(ref(:F)), Y ---+reJ(:F) Y' (using that f' tX = !), f' ~X =
f (likewise) and (X', Y', I') E R.

- By construction Y' = LJ {f'(e)} x X~ = LJ {e} x Y: where
eEX' eEY'

Ve E Y': Y; = XJ'-'(e) E Conf (ref(le(f'- 1(e)))) - {0} =
Conf (ref (l:F(e))) - {0}.

- e E busy(Y') = {e E Y' I Y; not complete}<=}
r- 1 (e) E busy(X') = {e E X'IX~ not complete} by construc
tion.
Furthermore, e maximal in Y' <=} f'- 1(e) maximal in X',
since f' is an isomorphism.
Hence e E busy(Y') implies e maximal in Y', since X' is a
refinement of X'.

From this it follows that Y' is a refinement of Y'.

ad 3. By symmetry. ■

Finally we show that ';:jwh and ';:jh coincide for event structures where concur
rent events may not carry the same label. As a corollary we then have that also
';:jwh is preserved by refinement in this case and respects pomset bisimulation.

Definition & is an event structure without autoconcurrency iff

Vd, e E Ee : d co e and l(d) = l(e) ⇒ d = e.

Theorem For event structures £, :F without autoconcurrency,

Proof
First note that a wh-bisimulation can be regarded as a h-bisimulation without
the requirements that f' ~ X = f.
Now "~" is trivial.
In order to establish "⇒" we will show that any wh-bisimulation between event
structures&, :F without autoconcurrency is also a h-bisimulation. So let R be a
h-bisimulation between such£ and :F, without the requirements f' t X = f. We

238 VI. Equivalence notions for concurrent systems and refinement of actions

proof that these requirements are met nevertheless. Assume that (X, Y, f) E R
and X ➔e X'. Then there exists (X', Y', f') E R with Y ➔FY'. Suppose
f' ~X =pf. Then there exists an e EX with f'(e) =p f(e).

Now observe that if g is an isomorphism between two arbitrary partial orders
(X,~x,lx) and (Y,~y,ly), and g(ei) = e2 then

l{e' EX I e' ~x ei}I = l{e' E YI e' ~Y e2}I

Hence we cannot have f'(e) < f(e) or f(e) < f'(e).
Since Y' is conflict-free we conclude f' (e) co f (e).
Moreover, f' and f preserve labelling, so l:F(f'(e)) = lt:(e) = l:F(f(e)).
This is a contradiction since :F was assumed to have no autoconcurrency. ■

Corollary

Let £, :F be event structures without autoconcurrency
and let ref be a refinement.

Then£ ~wh :F ⇒ ref(£) ~wh ref (:F).

Conclusion

In this chapter we have shown that equivalences based on interleaving of actions
or of steps (multisets of concurrently executable actions) are not preserved when
changing the level of atomicity of actions. However, we could show that certain
equivalences based on modelling causal relations explicitly by partial orders
are indeed preserved by refinement of actions. We considered "linear time"
approaches, where the behaviour of a system is equated to the set of its possible
runs, and "branching time" approaches, where the conflict structure of systems
is taken into account. We could show the negative results about the interleaving
approaches regardless of the level of detail in modelling conflict behaviour.
However, for the positive results about the partial order approaches, the conflict
structure turned out to be crucial. It turned out that linear time partial order
semantics is preserved under action refinement, but the existing approaches
to branching time partial order semantics are not. However, we found that
a new and finer branching time partial order semantics due to RABINOVICH
& TRAKHTENBROT [155)-which we call history preserving bisimulation-is
robust under refinement. Subsequently, DEGANO, DE NICOLA & MONTANARI
[60) show that this equivalence fits smoothly in their NMS framework [58)
by combining totally and partially ordered observations into mixed orders, and
VAANDRAGER [170) shows that the new equivalence coincides with bisimulation
equivalence on causal trees [53, 54). BEST, DEVILLERS, KIEHN & POMELLO
[33) define this equivalence on Petri nets and also prove a preservation result
for action refinement. In DEVILLERS [72, 73) this work is generalised to a
setting with internal moves, whereas such a generalisation of our work appears

Conclusion 239

in VOGLER [179, 178]. Furthermore, VOGLER settles the decidability of history
preserving bisimulation on finite safe nets in [177] and generalises this result to
a setting with internal actions in [180].

A seemingly different equivalence, defined on a syntactical level on a subset
of CCS, is proposed by HENNESSY [109]. In ACETO & HENNESSY [5] it is
established that this timed equivalence is preserved by action refinement on
this subset. In the next chapter of this thesis it is argued that timed equiva
lence coincides with history preserving equivalence on that subset. However,
on the class of systems considered here, or on full CCS, timed equivalence
is not preserved under refinement, as shown in VAN GLABBEEK & VAAN
DRAGER [94] and ACETO & HENNESSY [6]. Therefore a finer equivalence, that
is still coarser than history preserving bisimulation, is proposed in [6], see also
ACETO [3]. This refine equivalence turns out to coincide (for r-free systems)
with the ST-bisimulation introduced in the next chapter. The relations be
tween timed and refine equivalence-or in the terminology of [94] split- and
ST-bisimulation equivalence-are further explored in GORRIERI & LANEVE
[99]. A linear time variant of timed/refine equivalence is proven robust under
refinement in NIELSEN, ENGBERG & LARSEN [141], also on a simple language
where the difference between the two versions does not show up. An overview
on refinement theorems in the setting of Petri nets appears in BROUWER, GOLD
& VOGLER [41].

For an overview of our results consider the following diagram:

runs sequences sequences pomsets
conflict of actions of steps .
structure

paths

: e.g. testing

bi simulation

- means: not preserved by refinement

240 VI. Equivalence notions for concurrent systems and refinement of actions

This diagram is not at all complete. A naturally arising question is to what
extent it is actually necessary to move to partial orders to achieve invariance
of equivalence under refinement (here we have only shown that steps are not
sufficient). This question will be addressed in the last chapter of this thesis.

An interesting topic for further research (that has in the meantime been pur
sued in VOGLER [175, 178], HENNESSY [110] and JATEGAONKAR & MEYER
[117]) is to investigate testing equivalences based on partial orders, taking the
conflict structure in a weaker form into account. In each case, since the systems
£' and :F' of Example 4.2 are not even interleaving failure equivalent, no equiv
alence that is included between interleaving failure and pomset bisimulation
equivalence, such as the partial order equivalence of ACETO, DE NICOLA &
FANTECHI [4], can be preserved under action refinement.

When the text of this chapter was written (as part of [84]) it referred to conflict
free and finitary refinements using prime event structures as our system model.
Here we have applied the same text to refinements with conflicts and with
possibly infinite behaviours. For this it was convenient to use a more expressive
model. We have chosen here flow event structures which are also very suited
for giving semantics to CCS-like languages. We could have used simpler forms
of event structures where just the axiom of finite causes is dropped, and the
axiom of conflict heredity is dropped [39] or weakened [55, 57]. These forms of
event structures may be seen-like prime event structures-as special cases of
flow event structures. On two such models DARONDEAU & DEGANO [55, 57]
also state a refinement theorem for history preserving bisimulation and the
same class of refinements as considered here.

The refinement operation we have considered replaced actions by arbitrary non
empty event structures. As remarked in Chapter IV, it is debatable whether
one should consider refinements where replacing actions by the empty event
structure is allowed (forgetful refinements). Such refinements can drastically
change the structure of processes; they can not be explained by a change in
the level of abstraction at which processes are regarded. Nevertheless, in the
setting of prime event structures our results hold also for forgetful refinements
(with slightly more complicated proofs).

A problem which we have not adressed in detail is the treatment of deadlocks
by our equivalences. Since the notion of configuration does not distinguish
deadlock and termination and the equivalences considered here are based on
this notion, these equivalences will not be congruences for sequential compo
sition and for refinement (when viewed as a binary operation). For example,
we may have Va E Act : ref(a) ,;::;:,h ref'(a), however ref(£) ~h ref'(£). This
problem is solved in VAN GLABBEEK & GOLTZ [88], where a deadlock sensitive
variant of history preserving bisimulation is proposed.

Finally we would like to address the question whether history preserving bisim
ulation as defined here is the coarsest equivalence respecting pomset bisimu-

Conclusion 241

lation and being preserved by refinement. We conjecture that this is not the
case, in particular, that for

£= and :F=

£ ¢h :F, but for any refinement ref, ref(£) ~pb ref(:F). This conjecture has in
the meantime be proven in VOGLER [179], using an equivalence that combines
the concept of ST-bisimulation, as proposed in the next chapter, with pomset
bisimulation.

Nevertheless, if it is required to model the interplay of causality and branching
in full detail, history preserving bisimulation seems to be the coarsest suitable
equivalence.

243

Chapter VII

The Refinement Theorem for ST-bisimulation Semantics

Rob van Glabbeek

In this chapter I prove that ST-bisimulation equivalence, as introduced in [91],
is preserved under refinement of actions. This implies that it is possible to
abstract from the causal structure of concurrent systems without assuming
action atomicity.

TABLE OF CONTENTS

Introduction
1. Concurrent systems and refinement of actions
2. The behaviour of concurrent systems I
3. Equivalence notions for concurrent systems I
4. The behaviour of concurrent systems II
5. Equivalence notions for concurrent systems II
6. The refinement theorems
Concluding remarks

INTRODUCTION

243
247
249
250
255
257
265
268

Virtually all semantic equivalences employed in theories of concurrency are
defined in terms of actions that concurrent systems may perform. Mostly,
these actions are taken to be atomic, meaning that they are considered not to
be divisible into smaller parts. In this case, the defined equivalences are said
to be based on action atomicity.

However, in the top-down design of distributed systems it might be fruitful
to model processes at different levels of abstraction. The actions on an
abstract level then tum out to represent complex processes on a more concrete
level. This methodology does not seem to be compatible with non-divisibility
of actions and for this reason PRATT [154], LAMPORT [125] and others plead for
the use of semantic equivalences that are not based on action atomicity.

244 VII. The refinement theorem tor ST-bisimulation semantics

As indicated in CASTELLANO, DE MICHELIS & POMELLO [46], the concept of
action atomicity can be formalized by means of the notion of refinement of
actions. A semantic equivalence is preserved under action refinement if two
equivalent processes remain equivalent after replacing all occurrences of an
action a by a more complicated process r(a). In particular, r(a) may be a
sequence of two actions a 1 and a 2 . An equivalence is strictly based on action
atomicity if it is not preserved under refinement.

Most semantic equivalences can be positioned in a two dimensional
classification diagram, such as the one of Figure 1. On the x-axis equivalences
are ordered with respect to the preserved level of detail of runs of processes.
Three well-known points on this axis are interleaving semantics, where runs are
represented by sequences of action occurrences, step semantics, where runs are
represented by sequences of multisets of action occurrences - the multisets (or
steps) representing simultaneous occurrences - and partial order semantics, in
which all causal dependencies between action occurrences in runs of processes
are preserved. On the y-axis the equivalences are ordered with respect to the
preserved level of detail of the branching structure of these runs. Two well
known points on this axis are trace semantics, where a process is fully deter
mined by the set of its possible (partial) runs, thereby completely neglecting
the branching structure of processes, and bisimulation semantics, where also the
information is preserved where two different courses of action diverge
(although branching of identical courses of action is still neglected). In
between there are several decorated trace semantics, where part of the branch
ing structure is taken into account. Mostly these are motivated by the observ
able behaviour of processes, according to some testing scenario. In Figure 1
the equivalences become finer, or more discriminating, when moving upwards
or to the right.

In [46], CASTELLANO, DE MICHELIS & PoMELLO show by means of a simple
example that none of the interleaving equivalences - not even bisimulation - is
preserved under action refinement. Furthermore they claim that 'on the other
hand, the approaches based on partial order are not constrained to the
assumption of atomicity'. Therefore they conclude that 'interleaving semantics
is adequate only if the abstraction level at which the atomic actions are defined
is fixed. Otherwise, partial order semantics should be considered'.

In [84] (the previous chapter of this book), URSULA GOLTZ & I elaborated
on this argument by providing examples, showing that also none of the step
equivalences is preserved under refinement, and by formalizing the proof
sketch of [46] that trace equivalence based on partial orders is invariant under
refinement. We also wanted to prove this for bisimulation equivalence based
on partial orders, but surprisingly we found that none of the partial order
bisimulation equivalences proposed before publication of [46] is preserved
under action refinement. However, we did prove a refinement theorem for a
new notion of bisimulation equivalence based on partial orders, proposed
recently by Hirshfeld, RABINOVICH & TRAKHTENBROT [155]. We chose to call

Introduction 245

bisimulation semantics ,;::;;ib-E-------',!::;;;sb-E-------',!::;;;h

decorated trace semantics

trace semantics ,;:::::jit -E-------~st-E-------~pt

interleaving
semantics

step
semantics

FIGURE 1. Semantic equivalences

partial order
semantics

this equivalence history preserving bisimulation equivalence, notation ,;::;;h·

Hence, even in bisimulation semantics, the requirements of preservation under
action refinement and capturing causal dependencies in processes by means of
partial orders can be conciliated. But of course, this still does not show that in
case preservation under refinement is required, it is necessary to employ partial
order semantics. In this chapter I will show that it is not. 1

Event structures and Petri nets have been established as suitable domains for
modelling (both branching and causal aspects of) concurrent systems. Usually
a state of a concurrent system is represented by a configuration of the associ
ated event structure, or by a marking of the associated net. In this chapter I
argue that when events or transitions are considered to have a duration or
structure, configurations or markings do not properly represent all the states of
concurrent systems. Instead I propose to use so-called ST-configurations or
ST-markings. The idea to model a state in a safe labelled marked net as the
set of places (Stellen) containing a token, together with the set of transitions
(Transitionen) which are currently firing (an ST-marking) originates from VAN

GLABBEEK & VAANDRAGER [91]. In this chapter I translate this idea to the
realm of event structures by introducing ST-configurations.

All interleaving, step and partial order equivalences on event structures or
Petri nets considered so far, have been defined in terms of configurations or
markings. If the constructions from interleaving semantics are applied on ST
configurations instead of ordinary configurations two new points on the x-axis
of Figure 1 emerge. Split-semantics is just interleaving semantics, but based on

I. WALTER VOGLER [176, 179] reads in the text of this chapter a claim that a purely interleaving
semantics gives a congruence for action refinement. No such claim is made. A reaction to
Vogler's position that partial order semantics is necessary for action refinement is added to the
concluding remarks.

246 VII. The refinement theorem for ST-bisimulation semantics

interleaving of beginnings and ends of events, instead of entire events; ST
semantics is a refinement of split semantics where in addition a link is required
between the beginning and the end of any event. Split semantics is more
discriminating than step semantics, whereas ST-semantics is as least as discrim
inating as split semantics. Furthermore ST-trace semantics is less discriminat
ing than trace semantics based on partial orders and ST-bisimulation seman
tics is less discriminating than history preserving bisimulation semantics (but
incomparable with the other bisimulation semantics based on partial orders
proposed so far). Hence the situation is as indicated in Figure 2.

,;:::jib-E-----~sb..,,._ ____ ~2b-E-----;-.~-=,sT,----- ~h

l
~it-E-----~st-E-----~2,...,...---...-~.;:;s'£',E-----~pt

interleaving
semantics

step
semantics

split
semantics

ST
semantics

FIGURE 2. More semantic equivalences

partial order
semantics

ST-bisimulation equivalence was introduced by FRITS V AANDRAGER & ME in
[91]. In the same paper we observed that for systems without autoconcurrency
ST-bisimulation equivalence coincides with split bisimulation equivalence and
provided a complete axiomatization on closed ACP-terms for the latter notion.
Split bisimulation equivalence was proposed in HENNESSY [109] for a subset of
CCS. ACETO & HENNESSY [5] proved that on this subset split bisimulation
equivalence is preserved under action refinement. HENNESSY [109] also pro
vided a complete axiomatization for split bisimulation equivalence on this sub
set. Since - if one forgets about T-moves - this proof system is sound for ST
bisimulation equivalence, and even for history preserving bisimulation
equivalence, it follows that on the domain considered in [109] the three
equivalences coincide. In, combination with the refinement theorem for history
preserving bisimulation equivalence of the previous chapter this yields an alter
native proof of Aceto & Hennessy's refinement theorem. Split trace
equivalence has been considered in V AANDRAGER [172]. In a joint paper with
FRITS V AANDRAGER [94] we will show that on the domain of labelled event
structures (prime event structures with binary conflict), or on full CCS, split
semantics is not proof against refinement. In fact the equivalences obtained by
splitting an event into two parts (its beginning and its end) turned out to be
different from the equivalences obtainable by splitting an event into three
parts. This was established by means of a rather complicated example (the owl

1. Concurrent systems and refinement of actions 247

example), that also shows that split semantics is strictly less discriminating
than ST-semantics. By means of even more complicated examples we esta
blished that for each n E~ split-n semantics is also different from split-n + I
semantics.

The result contributed by the present chapter is that ST-bisimulation seman
tics as well as ST-trace semantics are preserved under action refinement. In
[91] it was shown that these semantics do not respect causality. It follows that
it is possible to abstract from the causal structure of concurrent systems
without assuming action atomicity.

1. CONCURRENT SYSTEMS AND REFINEMENT OF ACTIONS
Also in this chapter I consider systems that are capable of performing actions
from a given set Act of action names. Following [84], as my model for this
kind of systems I have chosen labelled prime event structures with a binary
conflict relation as introduced in NIELSEN, PLOTKIN & WINSKEL [142]; l could
have chosen other models like Petri nets or behaviour structures [155] as well.
In this chapter I will not distinguish external and internal actions; I do not
consider abstraction by hiding of actions.

DEFINITION. A (labelled) event structure (over an alphabet Act) is a 4-tuple
S=(E, <, #, 1), where

E is a set of events;
< c; E XE is a partial order (the causality relation) satisfying the principle
of finite causes:

LACe'EEVSTe'<eRAC is finite for eEE;

#C:EXE is an irreflexive, symmetric relation (the conflict relation) satisfy
ing the principle of conflict heredity:

e1#e2<e3 ~ e1#e3;

l: E-Act is a labelling function.

An event structure represents a concurrent system in the following way: action
names a EAct represent actions the system may perform, an event e EE
labelled with a represents an occurrence of a during a possible run of the sys
tem, e' <e means that e' 1s a prerequisite for e and e'#e means that e' and e
cannot happen both in the same run.

One usually writes e'~e for e'<e V e'=e, > for <- 1 and ;;;a for ~- 1•

Causal independence (concurrency) of events is expressed by the derived rela
tion vc;EXE defined by: e've iff -,(e'#e V e'<e V e'>e V e'=e). By
definition<, =, >,#and v form a partition of EXE. The concurrency rela
tion co c;E XE, originating from Petri net theory, is defined slightly different
from v: e' co e iff e've V e' = e.

The components of an event structure S will be denoted by respectively

248 VII. The refinement theorem for ST-bisimulation semantics

Es, <s, #& and 11;. The derived relations will be denoted v&, CO&, ,;;;;&, >s
and ;;..&·

Throughout the chapter, I assume a fixed set Act of action names as labelling
set. Let IE denote the domain of event structures labelled over Act.

DEFINITION. An event structure isomorphism between two event structures
&,§"EIE is a bijective mapping/: Es-E'ff such that

f(e) <'!J f(e') <'9 e <s e',
f(e) #'!I f(e') <'9 e #& e' and
l,fl(e)) = l1;(e).

& and §" are isomorphic - notation &~§" - if there exists an event structure iso
morphism between them. Generally, one does not distinguish isomorphic
event structures.

DEFINITION. The restriction of an event structure & to a set X<:;;;._E1; of events
is the event structure & t X=(X, <s n(XXX), #& n(XXX), ls t X).

An event structure & is finite if E & is finite; & is conflict free if #& = 0.
0 denotes the empty event structure (0, 0, 0, 0).

In [46] it is shown that equivalence notions based on interleaving are not
preserved when replacing an action in a system by a sequence of two actions.
In section 1 of Chapter IV we considered a more general version of this opera
tion, which I will also use in the present chapter: replacing actions by finite,
conflict-free, non-empty event structures. Replacing actions by infinite event
structures could in general invalidate the principle of finite causes. As
explained in Chapter IV, replacing actions by event structures containing
conflicts would require a more sophisticated notion of refinement or, alterna
tively, a more general form of event structures where the axiom of conflict
heredity is dropped, e.g. flow event structures as in Section 2 of Chapter IV.
The generalization of the results of this chapter to flow event structures seems
to be completely straightforward, but has still to be carried out. Finally,
replacing actions by the empty event structure can drastically change the struc
ture of processes; it can not be explained by a change in the level of abstrac
tion at which processes are regarded (Chapter IV). In the concluding section I
will discuss possible extensions of my result to these cases.

A refinement will be a function r specifying for each action a an event struc
ture r(a) which is to be substituted for a. Interesting refinements will mostly
refine only certain actions, hence replace most actions by themselves. How
ever, for uniformity (and for simplicity in proofs) I consider all actions to be
refined.

Given an event structure & and a refinement r, the refined event structure
r(&) is constructed as follows. Each event e labelled by a is replaced by a dis
joint copy, r(e), of r(a). The causality and conflict structure is inherited from
&: every event which was causally before e will be causally before all events of

2. The behaviour of concurrent systems I 249

r(e), all events which causally followed e will causally follow all the events of
r(e), and all events in conflict with e will be in conflict with all the events of
r(e).

DEFINITION. A refinement r :Act-IE - {O} is a function that takes any action
a EAct into a finite, conflict-free, non-empty event structure r(a)EIE. If 0EIE
and r is a refinement, then r(t;) is the event structure defined by:

E,(&) = { (e,e') \ e EE r;,, e' EE,(l.(e))};

(e 1,e 1') <,(&) (e 2,e2') iff e 1 <r;, e2 or (e 1 =e2 I\ e 1' <,(l.(e,)) e/);
(e 1 ,e 1 ') #,(&) (e2,e2') iff e 1 #& e2;
!,(&)(e,e') = 1,(1.(e))(e').

PROPOSITION 1:
i. Jf 0EIE and r is a refinement then r(0) is an event structure indeed.
ii. If 0EIE and r,r' are refinements with r(a):::.r'(a) for a EAct, then

r (t;)~r'(0).
111. If 0,6.fEIE, r is a refinement and 0~§; then r(t;)~r(§).
PROOF: Straightforward. □

This proposition says that refinement is a well-defined operation on event
structures, even when isomorphic event structures are identified.

2. THE BEHAVIOUR OF CONCURRENT SYSTEMS I
Let 0 be an event structure, modelling the behaviour of a concurrent system P.
Classically, a state S of P is given by a set of events from 0. Such a set is
called a configuration. Its elements represent the occurrences of actions that
happened before P reached the state S. If two events e' and e cannot happen
both in the same run (e'#r;e) then they also cannot occur in the same
configuration. So configurations have to be conflictjree. Furthermore, if e
occurs in a configuration C and e' is a prerequisite for e (e' <r;,e) then also e'
must occur in C. Hence configurations must be left-closed with respect to <r;,.
Finally, as is usual, in this book it is assumed that in a finite period only
finitely many actions are performed. Therefore, unlike in many other papers,
configurations are required to be finite here.

DEFINITION. A set Xc;;,_Er;, of events in an event structure 0 is left-closed in 0
if for all e,e' EE r;,

e'<r;,eEX =? e'EX

X is conflictfree in 0 if 0 t X is conflict-free. A configuration of 0 is a finite,
left-closed, conflict-free subset of Er;. Let <?(0) be the set of configurations of

0. Write X➔ r;,X' if X,X'E<?(0) and Xc;;,_X'.

X ➔ r;,X' says that both X and X' represent states of the concurrent system

250 VII. The refinement theorem tor ST-bisimulation semantics

represented by 0, and that this system may evolve from the state represented
by X to the one represented by X'.

As the lemma below will show, the behaviour of a refined event structurer(&)
may be deduced from the behaviour of & and from the behaviour of the event
structures which are substituted for actions. On the other hand, one may
derive information about the behaviour of 0 from the behaviour of r(0).

Let r(e) abbreviate r(li;;(e)) and let pr 1 denote projection to the first com
ponent.

LEMMA 2: Let 0 be an event structure and r a refinement.

1. C c;;,_E,(s) is a configuration of r(&) i.ff

C ={(e,e')leEC, e'ECe} where

C is a configuration of 0,
Ce is a configuration of r (e) for e EC,
Ce= E,(e) if e is not maximal in C with respect to < 0.

ii. If C ➔ r(S) C' then pr1(C)➔ 0 pr1(C').
PROOF: See [84]. A similar lemma has been proved in Chapter IV. D

3. EQUIVALENCE NOTIONS FOR CONCURRENT SYSTEMS I
In this section the semantic equivalences of Figure I are defined in terms of
configurations.
The interleaving equivalences can be defined by means of the single action

transition relations ~i;; r;;,_2(0)Xe(&) for a EAct and 0EIE.

DEFINITION. C ~i;;C' iffC➔ 0C' and C'-C={e} with li;;(e)=a.

Here C ~i;;C' says that if the system represented by & is in the state
represented by C, then it may perform an action a and reach the state
represented by C'.

DEFINITION. A sequence a 1 • • • an EAct* is a (sequential) trace of an event
structure 0 if there exist c_pnfigurations C0 , · · · ,Cn of 0 such that C0 = 0 and

a.
C;-1 ~i;;C; (i=l, · · · ,n).
SeqTraces (0) denotes the set of all sequential traces of 0.
Two event structures 0 and 'if are interleaving trace equivalent - notation 0~;,'if
- if Seq Traces(&)= SeqTraces ('!J).

DEFINITION. Let 0,'!fEIE. A relation R c;;,_e(&)Xe('!J) is called a (sequential)
bisimulation between 0 and 'if if (0,0)ER and whenever (C,D)ER then for
a EAct:

C ~i;;C' =;, 3D' with D ~'!ID' and (C',D')ER;

3. Equivalence notions for concurrent systems I 251

D 4qsD' ~ 3C' with C 4r;C' and (C',D')ER.
iij and §'" are interleaving bisimulation equivalent - [ijR;;b §'" - if there exists a
sequential bisimulation between them.

Step equivalences can be defined by generalizing the single action transition

relations 4 s C (?.(t;) X (?.(t;) to step transition relations 4 0 C 8([;) X (?.(t;),
where A is a multiset over Act.

DEFINITION. Let iij be an event structure and A :Act-~ a multiset over Act.
For XCEr; let lr;(X)E~Act be the multiset of labels of the events from X,
defined by l0(X)(a)= I { e EX I l0(e)=a} I-
Then C 4 0 C' iff C➔ r;C' and C'-C=GCEr; such that "i/e,e'EG:
e cor; e' and l0 (G)=A.

Here C 4r;C' says that if the system represented by iij is in the state
represented by C, then it may concurrently perform the multiset of actions A
and reach the state represented by C'. Since A is a multiset rather than a set,
actions may occur concurrently with themselves ('autoconcurrency').

DEFINITION. A sequence A 1 · · · An of multisets A; E~Act (i = l, ... ,n) is a step
trace of an event structure iij if there exist configurations C0, · · · ,Cn of[; such

A
thatC0 =0 andC;-i 4 0 C;(i=l, ... ,n).
Step Traces (t;) denotes the set of all step traces of t;.
Two event structures iij and §'" are step trace equivalent - [;R;,1§'° - if
Step Traces (t;) = Step Traces ('!J}.

DEFINITION. Let t;,<!J'"EIE. A relation R C(?.(t;)X(?.('!J) is called a step bisimula
tion between[; and §'"if (0, 0)ER and whenever (C,D)ER then for A E~Act:

C 4 C' ~ 3D' with D 4 D' and (C' D')ER· & qf ' '

D 4qsD' ~ 3C' with C 4sC' and (C',D')ER.
t; and §'" are step bisimulation equivalent - [ijR; sb §'" - if there exists a step bisimu
lation between them.

A trace equivalence prese.rving causal dependencies between action occurrences
in runs of processes is the pomset trace equivalence as implicitly employed, for
instance, in PRATT [154].

DEFINITION. A partially ordered multiset (pomset) is an isomorphism class of
conflict-free event structures. A pomset u is a pomset trace of an event struc
ture iij if u is the isomorphism class of t; t C for some configuration C E(?.([ij).
Pomsets(t;) denotes the set of all pomset traces oft;_
Two event structures iij and <ff are pomset trace equivalent - [ijR;P1§'° - if
Pomsets (t;) = Pomsets ('!J}.

252 VII. The refinement theorem for ST-bisimutation semantics

Sequential traces, step traces as well as pomset traces of an event structure 0
represent possible (partial) runs of the system represented by 0. A trace of
each of these three types specifies a multiset of actions, executed during such a
run. However, whereas sequential and step traces in addition only specify a
possible order in which these actions may occur (with and without the possibil
ity of simultaneous occurrences), a pomset trace specifies all causal dependen
cies between the occurrences of these actions, through the partial order inher
ited from 0. From this information all the possible orders in which the actions
may occur can be derived.

Like pomset trace equivalence, most of the equivalences that preserve causal
dependencies between occurrences of actions are defined by means of partial
orders. Therefore, such equivalences are called partial order equivalences. It
happens that on IE there is only one reasonable trace equivalence based on par
tial orders - namely ;:::,;jpt - and the same can be said about trace equivalences
based on steps and on interleaving and about bisimulation equivalences based
on steps and on interleaving. However, of late years several bisimulation
equivalences based on partial orders have been defined on IE:
1986: the NMS partial ordering equivalence of DEGANO, DE NICOLA & MON

TANARI [58],
1986: the pomset bisimulation equivalence or equipollence of BouooL &

CASTELLANI [39],
1987: the generalized pomset bisimulation equivalence of VAN GLABBEEK &

VAANDRAGER[9l]and
1988: the behaviour structure bisimulation equivalence of RABINOVICH & TRA-

KHTENBROT [155].
In my opinion only the last - and finest - one fully captures the interplay of
causality and branching and is most worthy of filling up the right upper comer
of Figure 1. Originally it was defined on behaviour structures [155], but in [84]
(Chapter VI of this book) the notion was defined on event structures as well,
under the name history preserving bisimulation equivalence.

DEFINITION. Let 0,'!fEIE. A relation R ~e(0)Xe(<§)X<:J>(E0 XE'f) is called a his
tory preserving bisimulation between 0 and '!f if (0 , 0 , 0) ER and whenever
(C,D,f) ER then:

f :C-D is an isomorphism between 0 t C and '!ft D;

C➔ 0 C' =a> 3D',f with D➔ 'fD', (C',D',f)ER andf tC=f;

D➔ 'fD' =a> 3C',f with C➔ 0 C', (C',D',f)ER andf tC=f
0 and '!fare history preserving bisimulation equivalent - /!j;:::,;jh '!f - if there exists a
history preserving bisimulation between them.

PROPOSITION 3: For all equivalences ;:::,;j 1 and ;:::,;j 2 defined in this section, the for
mula

'7'0,'!fEIE: 0;:;:,j1'!f =a> 0;:;:,j2'!f

holds iff there is a path ;:::,;j 1 - · · · - ;:::,;j 2 in Figure 1.

3_ Equivalence notions for concurrent systems I 253

PROOF: The implications follow directly from the definitions; in order to prove
the absence of other implications, it suffices to provide counterexamples
against ~pt - ~ib, ~ib - ~st and ~sb - ~pt·

COUNTEREXAMPLES. In the graphical representations of event structures below,
the conventions of [172] are followed: the conflict relation is denoted by means
of dotted lines, only immediate conflicts - not the inherited ones - are indi
cated; the causality relation is represented by arrows, omiting those derivable
by transitivity; and instead of events only their labels are displayed, if a label
occurs twice it represents two different events. Thus these pictures determine
event structures only up to isomorphism.

a a----- a

I\ +
b-------c b C

FIGURE 3. Pomset trace equivalent but not interleaving bisimulation equivalent
(standard example)

The two event structures of Figure 3 are pomset trace equivalent: their pomset
traces are a-b, a-c, a and the empty pomset. However, they are not inter
leaving bisimulation equivalent: both systems represented perform first the
action a and then either b or c, but the first system makes the choice between b
and c after the execution of a whereas the second one starts with making this
choice.

a b a----- b

+ +
b a

FIGURE 4_ Interleaving bisimulation equivalent but not step trace equivalent
(standard example)

The first system represented in Figure 4 performs two actions a and b con
currently. The second one either performs b after completion of a or vice
versa. In interleaving semantics these systems are identified. However, they
are not step trace equivalent: only the first system can perform a and b simul
taneously.

254 VII. The refinement theorem for ST-bisimulation semantics

a

a

• C

b

..
C

FIGURE 5. Step bisimulation equivalent but not pomset trace equivalent (new)

The two systems represented in Figure 5 are step bisimulation equivalent: both
systems perform the actions a, b and c exactly once; in both cases a is a prere
quisite for b, and c can happen before a, simultaneous with a, between a and
b, simultaneous with b, or after b; and in both cases all choices between alter
native courses of action are made only when one of the alternatives actually
occurs. However, they are not pomset trace equivalent: the pomset resembling
the first event structure of Figure 5 is a pomset trace of this first event struc
ture, but not of the second one. □

THEOREM: Of all equivalences mentioned in this section, only ~pt and ~" are
preserved under action refinement.
PROOF: The two event structures of Figure 5 are step bisimulation equivalent.
However, after refining c in c 1-c2 the resulting event structures (below) are
not even interleaving trace equivalent.

a

a C1 Ir\ • • b C2
b.

C2 _cl

· .. ___ t __ .. ··•

FIGURE 6. Refined event structures

Only the first one has a trace c I a b c2 . This shows that no equivalence that
is at least as fine as interleaving trace equivalence and at least as coarse as step
bisimulation equivalence is preserved under refinement of actions. More coun
terexamples and the refinement theorems for ~pt and ~" can be found in
Chapter VI. □

4. The behaviour of concurrent systems II 255

4. THE BEHAVIOUR OF CONCURRENT SYSTEMS II
A configuration of an event structure 0 represents a state S of the system
represented by 0 by considering two kinds of events with respect to S: those
that happened before the system reached this state and those that did not hap
pen (yet). I argue that when events or transitions are considered to have a
duration or structure, such configurations do not properly represent all the
states of the represented system. Instead I propose to consider a third kind of
events with respect to S: those that are currently happening when the system is
in state S. This gives rise to the introduction of ST-configurations (a name
explained in the introduction).

DEFINITION. An ST-configuration of 0 is a pair (C,P) of subsets of E 0 , such
that P <;;; C, C is finite and conflict-free and

e'<0 eEC => e'EP.

Thus both P and C are configurations and C - P contains only maximal ele
ments in C. An ST-configuration (C,P) represents the state of a concurrent
system where C is the set of events whose execution has been started and P
(the past) is the set of events whose execution has been completed. An ordi
nary configuration can be regarded as an ST-configuration with P = C. Let

~(0) be the set of ST-configurations of 0. Write (C,P)➔ 0(C',P') if
(C,P),(C',P')E~(&;), C <;;;C' and P <;;;P'.

As in Section 2, the behaviour of a refined event structure r(0) may be
deduced from the behaviour of 0 and from the behaviour of the event struc
tures which are substituted for actions.

NOTATION. For each pair (C, P)E0'(E,c&J)X0'(E,c&J) with P <;;; C, there are

unique sets Ce,P e <;;; E,(e) for every e Epr 1 (C) such that

C ={(e,e')leEpr 1(C), e'ECe} and j, ={(e,e')leEpr 1(C), e'EPe}- In fact

Ce= { e' I (e,e')E C} and Pe= { e' I (e,e')E P }. Now r- 1(C, P) denotes the

unique pair (C,P)E0'(E0)X0'(E0) such that C=pr 1(C) and

P = { e EC I Pe =Er(e)}-

LEMMA 4: Let 0 be an event structure and r a refinement.

i. (C, P)E0'(E,c&J)X0'(E,c0i) is an ST-configuration of r(0) if.f

ii.

C ={(e,e')leEC, e'ECe} and P ={(e,e')leEC, e'EPe} where

(C,P) is an ST-configuration of 0,
(Ce,Pe) is an ST-configuration ofr(e)for eEC,
Pe =Er(e) if.[e EP.
-- - - 1-- 1- -

If (C , P)➔ r(&J(C' , P') then r - (C , P)➔ 0 r - (C' , P').

256 VII. The refinement theorem for ST-bisimulation semantics

PROOF: 1. "==:;,". Let (C, P)ESi(r(&i)). First I show that

(C,P): =r- 1(C 'p)ESi(&i).

Pc;;; C by definition.
C is finite and conflict-free since C is finite and conflict-free.

Suppose d<tf,eEC. I have to show that dEP.
Since e EC= pr 1 (C) there exists (e,e') E C ;
since r(d) is non-empty there exists (d,d')EE,(/f,J;
since d<lf,e one has (d,d')<,(lf,i(e,e')E C;

and since (C, P) is an ST-configuration it follows that (d,d')E P c;;; C.

Thus dEC. So it remains to be proven that Pd=Er(d)· Obviously
Pd<;;;Er(d)·
Now let d'EEr(d)· Then (d,d')EE,(lf,J• Exactly as above one obtains
(d,d')E P, and hence d'EPd. Thus Pd=Er(d) and dEP.

Next let eEC. Put Ce={e'l(e,e')E C} and Pe={e'l(e,e')EP }. I show that

(Ce,Pe)ESi(r(e)).

Pe<:Ce since P <;;; C.

Ce is finite since C is finite.

Ce is conflict-free since r(e) is conflict-free.

Suppose e'<r(e)e"ECe. Then (e,e')<,(lf,)(e,e")E C. Hence (e,e')E P

and e'EPe.
Finally the third requirement is met by construction.

";.=.". Let (C,P)ESi(&i) and (Ce,Pe)ESi(r(e)) for eEC. Suppose

Pe=Er(e) ~eEP for eEC. Put C ={(e,e')leEC, e'ECe} and

P = {(e,e') I e EC, e' EPe }. I show that (C, P)ESi(r(&;)).

P <;;;C sincePe<:CeforeEC.

C is finite since C and Ce are finite.

C is conflict-free since C =pr 1(C) is conflict-free.

Suppose (d,d')<,(lf,J(e,e')E C. Then d<lf,e or d=e/\d'<r(e)e'.

If d<lf,e then dEP, since eEC and (C,P)ESi(&i). Thus dEC and

Pd= E,(d)· Since d' EEr(d) =Pd= { d' I (d,d') E P } it follows that (d,d') E P .

If d=e then d'EPe=Pd, since d'<r(e)e'ECe and (Ce,Pe)ESi(r(e)). So
also in this case one has (d,d')E P, which had to be proved.

ii. Suppose (C, P)➔ r(lf,)(C', P'), i.e. (C, P),(C', P')ESi(r(&i)), C c;;; C'

and P<;;;P'. Then r- 1(C,P),r- 1(C',P')ESi(0) (by i.) and

□

5. Equivalence notions for concurrent systems II 257

I will end this section with a proposition saying that the ST-configurations of
an event structure & describe the behaviour of the represented concurrent sys
tem in the same way as the ordinary configurations of the split event structure
split(&), obtained from & by splitting every action a into the sequence of
actions a + and a - , representing the beginning and the end of a.

DEFINITION. For A a set of labels, let IE(A) denote the domain of event struc
tures labelled over A. So IE=IE(Act).
A A-refinement r :Act➔IE(A)-{0} is a function that takes any action a EAct
into a finite, conflict-free, non-empty event structure r(a)EIE(A). So a
refinement as defined in Section 1 is an Act-refinement. If &EIE and r is a A
refinement, then r(&)EIE(A) is defined exactly as in Section 1.

DEFINITION. Put Act±={a+ laEAct}U{a- laEAct}. Let
split:Act➔IE(Act±) be the Act±-refinement defined by Esplit(a)={a+,a-},
a+<split(a)a- and lsplit(a)(a+)=a+, lsplit(a)(a-)=a-. It induces a function
split :IE(Act)➔IE(Act±). This function was introduced on Petri nets in [91], and
on event structures in [172].

PROPOSITION 4: For each event structure &EIE, there exists a bijective mapping
i 0 :~(&)➔e<..split(f£)), such that for SE~(&):

S➔ 0 S' ~ i0(S)➔ split(t;,Ji0(S').

PROOF: i0(C,P)= {(e, (/0 (e))+) I e EC} U {(e, (/0 (e))-) I e EP}.
all requirements is straightforward.

5. EQUIVALENCE NOTIONS FOR CONCURRENT SYSTEMS II

Verification of
D

In this section the remaining equivalences of Figure 2 are defined in terms of
ST-configurations.
The most straightforward generalization of interleaving semantics to the setting
of ST-configurations yields split semantics. Split equivalences can be defined

by generalizing the single action transition relations ~ 0 ce<..&)Xe<,.&) to split
+ -

transition relations ~ 0 , ~ 0 c:;;;(&)X~(&), for aEAct and &EIE.

DEFINITION. (C,P) 4 0(C',P') iff(C,P)➔ 0(C',P'), P'=P and C'-C={e}
with l0(e)=a.

(C,P) ~ 0(C',P') iff (C,P)➔ 0(C',P'), C'=C and P'-P ={e}
with l0 (e)=a.

Here (C,P) 4 0 (C',P') says that if the system represented by & is in the state
represented by (C,P), then it may start performing an action a and reach the
state represented by (C',P').

Furthermore (C,P) ~t;,(C',P') says that if the system is in the state

258 VII. The refinement theorem for ST-bisimulation semantics

represented by (C,P), then it may end performing an action a and reach the
state represented by (C',P').

DEFINITION. A sequence a 1 · · · an E(Act±)* is a split trace of an event struc
ture 0 if there exist ST-configurations (C0 ,P0), · · · ,(Cn,Pn) of 0 such that

a-
(Co,Po)=(0, 0) and (Ci-I,Pi-I) ➔i;(Ci,Pi) (i=l, · · · ,n). SplitTraces(&)
denotes the set of all split traces of 0.
Two event structures 0 and §'" are split trace equivalent - $~ 21 '5° - if
Split Traces($)= SplitTraces (§).

DEFINITION. Let 0,'B'"EIE. A relation R C~(&)X~('!J) is called a split bisimula
tion between ii; and §'" if ((0, 0),(0, 0))ER and whenever ((C,P),(D,Q))ER
then for a EA ct± :

(C,P) ~i;(C',P') =? 3D',Q' with (D,Q) ~<j(_D',Q') and
((C',P'),(D', Q')) ER;

(D,Q) ~<j(_D',Q') =? 3C',P' with (C,P) ~i;(C',P') and
((C',P'),(D', Q'))ER.

$ and §'" are split bisimulation equivalent - &~2b §'" - if there exists a split bisimu
lation between them.

Alternatively, split equivalences can be defined as ordinary interleaving
equivalences on split event structures, and even as step equivalences on split
event structures. The following proposition says that this yields the same trace
and bisimulation equivalences as the definitions above.

PROPOSITION 5.1: 0 ~ 21 '5" ¢-? split(&) ~it split(§) ¢-? split(&) ~st split(§)
$ ~2b '5" ¢-? split($) ~ib split(§) ¢-? split($) ~ sb split(§).

PROOF: Let ii;:~(0)-e(sp/it(&)) be the bijection from the previous proposition,

then for SE~(&) and aEAct±: S ~i;S' ¢-? ii;(S) ~split(&iii;(S'). Further
more, if C,C'Ee(split(&)) and A is a multiset over Act± consisting of the
actions at, · · · ,a;:- ,Vi-, · · · ,b;, then

A , a; a+ b1
C ➔split(&) C ¢-? C ➔split(&) · · · 4 split(&) ➔split(&)

From this the proposition follows immediately. □

Split-semantics is just interleaving semantics, but based on interleaving of
beginnings and ends of action occurrences, instead of entire action
occurrences. However, since different occurrences of the same action can not
be distinguished, it is in general not possible to tell when an occurrence of a+
and an occurrence of a - originate from to the same occurrence of a. ST
semantics is a refinement of split semantics, where occurrences of a+ and a -
are explicitly connected if they represent the beginning and end of the same
occurrence of a.

5. Equivalence notions for concurrent systems II 259

DEFINITION. A pre-interval sequence is a triple (E,l, a) with E a set, /: E ➔Act

a labelling function and a a sequence over E± = { e + I e EE} U { e - I e EE}
whose elements are all different, and which can contain e - only after e + (for
eEE). For /: E➔Act define t±: E±➔Act± by /(e+)=(/(e))+ and
/(e-)=(/(e))-. Let (E,l,a) with a=a1 ···an E(E±)* be a pre-interval
sequence and let 1,s:;;;i <J,e;;;n. a; and a1 are connected, notation a;-<.a1, if
a;=e+ and a1=e- for certain eEE. Now two pre-interval sequences
(E,l,a 1 ···an) and (E',l',/31 • • • /3m) are isomorphic if n =m, t±(a;)=t'±(/3;)
for l,s:;;;;i,;;;;n, and a;-<.a1 # /3;-<./31 for I,e;;;i<J,e;;;n. An interval sequence is an
isomorphism class of pre-interval sequences.

EXAMPLE: Let E = { e0 ,e 1 ,e 2, e3,e4 }, l(e 0)=l(e4)=b and
/(e 1)=/(e 2)=/(e 3)=a. Figure 7 shows a pre-interval sequence over E,
together with its associated interval sequence. The connectedness relation -<. is
represented by arcs.

FIGURE 7. Pre-interval sequence and interval sequence

DEFINITION. (C,P) 4 0(C',P') iff (C,P)➔ 0(C',P'), P'=P and
C'-C ={e}.

(C,P) -40(C',P') iff (C,P)➔ 0 (C',P'), C'=C and
P'-P={e}.

A structure (E 0 ,l0 ,a1 ···an) is a pre-ST-trace of an event structure 0 if there
exist ST-configurations (C0 ,P 0), · · · ,(Cn,P,,) of 0 such that (C0 ,P0)=(0, 0)

and (C;- 1,P;- 1) ➔0(C;,P;) (i = 1, · · · ,n). An ST-trace of 0 is an interval
sequence which is the isomorphism class of a pre-ST-trace of 0.
ST-Traces(0) denotes the set of all ST-traces of 0.
Two event structures 0 and <if are ST-trace equivalent - 0,;::::;sTt<!f - if ST
Traces (0) = ST-Traces ('if).-

Next I propose another characterization of ST-trace equivalence that will be
more convenient later on.

DEFINITION. 0 -::5sr1 <if iff for every chain of ST-configurations

in 0 there is a chain

260 VII. The refinement theorem for ST-bisimulation semantics

(0, 0)➔ <:J{D1,Qi)➔ g · · · ➔ <J{Dn,Qn)

in 'lf and a bijection f :Cn-Dn, satisfying /'[f(.f(e)) = /0(e), f(C;)=D; and
j(P;)= Q; for i = 1, · · · ,n.

PROPOSITION 5.2: &,;::,jsTt'lf ~ (&::5sTt'lf I\ 'lf::5sr1&).
PROOF: Write & ;S~Tt §' iff for every chain

a1 0'.2 an
(0, 0) ➔0(C1,Pi) ➔0 · · · ➔0(Cn,Pn)

in & (with a; EEf) there is a chain

() P, __j P1 P. __j
0, 0 ➔~J\D1,Q1) ➔<J • · • ➔'!J,Dn,Qn)

in §' and a bijection f :Cn-Dn, satisfying /'[f(.f(e)) = /0(e), j(C;)=D; and
f (P;)= Q; for i = 1, · · · ,n.
Furthermore write & ;:5 ~~1 §' iff for every chain

a1 a2 an
(0, 0) ➔0(C1,P1) ➔0 · · · ➔0(Cn,Pn)

in & (with a; EEf) there is a chain

P, P1 P.
(0, 0) ➔<:J{D1,Q1) ➔ <J • • • ➔<J{Dn,Qn)

m 'lf such that If (a;)=lf (/3;) for I.;;;i,;;;n, and a;-<a1 ~ /3;-<./31 for
1 ,;;; i <j,;;; n.
CLAIM 1: &::5srt'lf ~ &;S~Tt§:
CLAIM 2: fi>;S~Ttqf ~ fi>;S~~t§:
CLAIM 3: &;:5~~1§' ~ ST-Traces(&)r;;,ST-Traces(6J).
Now the proposition follows by combination of these claims.
Proof of claim 1: "⇒". Suppose & ;:5 sTt §' and

() ➔a1 (C) a 2 a.) . h . . c- • h + 0,0 0 1,P1 ➔0 · · · ➔0(Cn,Pn IS a cam m (9 wit a;EE"[f;.

Then there must be a chain (0, 0)➔ <:J(D 1 ,Q 1)➔ g · · · ➔ '!J-(Dn,Qn)
in 'lf and a bijectionf :cn-Dn, satisfying /'[f(.f(e)) = /0(e), f(C;)=D; and
f(P;)=Q; for i=l, · · · ,n. Because of this bijection - only considering
the 'sizes' of D; and Q; - there must be /3; EE"# for i = 1, · · · ,n such that

/J;
(C;- 1,P;_i) ➔0(C;,P;).
"¢=". This follows from the observation that whenever in an event struc-

ture & (C,P)➔ 0(C',P'), there exist ST-configurations
(Co,Po), · · · ,(Ck,Pk) of & and a sequence a 1 • • • ak E(Ef)* such that

a.
(C 0 ,P0)=(C,P), (C;- 1,P;- 1) ~ 0 (C;,P;) (i = 1, · · · ,k), and
(Ck,Pk)=(C',P').

f 1 . a 1 a.
Proof o c rum 2: "⇒". Let (0, 0) ➔0 · · · ➔0(Cn,Pn) and

(0, 0) 4<J • • • ~<J{Dn,Q11) be chains of ST-configurations in & and§'
with a; EEf and /3; EE"# for i = 1, · · · ,n and let f: Cn-Dn be a bijec
tion, satisfying /'[f(.f(e)) = /0 (e), f (C;)=D; and j(P;)=Q; for

5. Equivalence notions for concurrent systems II 261

i = 1, · · · ,n. Since f (Ci)=Di and f (Pi)=Q; it follows that
ai=e+ <.:=?/3i=f(e)+ and ai=e- <.:=?/3;=f(e)- for i=1, · · ·,n. Hence
l't'(ai)=ff(/3i) for J,s;;i,;;;;n, and ai-<.a1 ¢:=? /3i-<.f31 for J,s;;i<j,s;;n.

a1 a2 an
"<=". Let (0,0) ➔0(C1,P1) ➔0 · · · ➔0(Cn,Pn) and

(0, 0) 4':f · · · ~frt.Dn,Qn) be chains of ST-configurations in Sand§"
with aiEE't' and /3iEEif for i=1, ···,n such that l't'(a;)=lf(/3J for
J,s;;i,;;;;n, and a;-<.a1 <.:=?/3;-<./31 for J,s;;i<j,s;;n. Note that
Ci={eEEsl3j,s;;i: a1=e+} and Pi={eEEsl3j,s;;i: a1=e-} and simi-
larly for Di and Qi- Define f :Cn-Dn by
f(e)=d ¢:=? 3i,s;;n: (ai=e+ I\ /3;=d+). Since l't'(ai)=/if(/3i) for
J,s;;i,;;;;n, f is well-defined and bijective, and satisfies /g(f(e)) = /0(e) and
f (Ci)=Di for i = 1, · · · ,n. Finally
eEP; ¢:=? 3k<j,s;;i: (ak=e+ I\ a1=e-) ¢:=? 3k<j,;;;;i: (/3k=f(e)+ I\
(using ak-<.a1 ¢:=? /3k-<.f31) f31=J(e)-) ¢:=? f(e)EQi so f(P;)=Q;
for i =1, · · · ,n.

Finally claim 3 follows directly from the definitions. □

ST-bisimulation equivalence will be defined in the same style as the alternative
characterization of ST-trace equivalence. The connection of occurrences of a+
and a - that represent the beginning and end of the same occurrence of a is
implemented by means of a bijection between related ST-configurations.

DEFINITION. Let 0,§"EIE. A relation R ~~(0)X~('?J')X':P(E0 XE':f) is called an
ST-bisimulation between S and §" if ((0,0),(0,0),0)ER and whenever
((C,P),(D,Q),f)ER then:

f :C-D is a bijection, satisfying /g(f(e)) = /0(e) and f (P)= Q;

(C,P)➔ 0(C',P') =? 3D',Q',f with (D,Q)➔ ':f(D',Q'),
((C',P'),(D',Q'),f)ER and ft C= f,
(D,Q)➔ ':f(D',Q') =? 3C',P',f
((C',P'),(D',Q'),f)ER andf tC=f

S and §" are ST-bisimulation equivalent -
bisimulation between them.

with (C,P)➔ 0(C',P'),

S/:-::jsTb§" - if there exists an ST-

Remark that the same equivalence is obtained if in the definition above the

general transition relations ➔ are replaced by the split transition relations

~ for a EAct±. One direction follows from the requirements for the bijec
tion f, the other one follows as in the proof of Proposition 5.2. Analogously,
in the previous chapter it was shown that the definition of history preserving
bisimulation equivalence is invariant under replacement of the general transi-

tion relations ➔ by the single action transition relations ~ for a EAct.
Now it is not difficult to show that if in this version of the definition of ST
bisimulation equivalence the requirement f (P) = Q would be skipped, the
resulting equivalence would be split bisimulation equivalence again. This

262 VII. The refinement theorem for ST-bisimulation semantics

requirement ensures the connection of occurrences of a+ and a - originating
from the same occurrence of a.

As for split equivalences, the ST-equivalences can be defined alternatively by
means of split event structures. First some preliminary definitions.

DEFINITION. For 0EIE(Act±), define the connectedness relation -<i; c;;;,Ei; XEi;
by

DEFINITION. Write C ➔i;C' iff C➔ 0 C' and C'-C = { e }. A sequence
0:1 • • • O:nEEs is a pre-trace of an event structure 0EIE(Act±) if there exist

Ci·

configurations C0 , · · · ,Cn of 0 such that C0 = 0 and C;- 1 ➔0C;
(i = 1, · · · ,n). Two pre-traces o:1 • • • an and /3 1 • • • /Jm of 0 and '!f are -<
isomorphic if n =m, li;(a;)=l'fl_/3;) for 1,;;;;i,;;;;n, and o:;-<0 0:1 <=? /3;-<'§fJJ for
1,;;;;i<j,;;;;n. A -<-trace of 0 is the isomorphism class of a pre-trace of 0. -<
Traces(0) denotes the set of all -<-traces of 0. Two event structures 0 and
'JEIE(Act±) are -<-trace equivalent - 0~-<1§" - if -<-Traces(0)= -<-Traces(<ff).

DEFINITION. Let 0,'JEIE(Act±). A relation R c;;;,(~(.0)Xe(_<ff)X<:Y(Ei; XE'§) is
called a -< -bisimulation between 0 and '!f if (0, 0, 0) ER and whenever
(C,D,f)ER then:

f :C-D is a bijection, satisfying l'J(f(e)) = li;(e) and
f(e) -<'§ J(e') <=? e -<i; e';

C➔ i;C' ==> 3D',f with D➔ '§D', (C',D',f)ER andf tC=/;

D➔ '§D' ==> 3C',f with C➔ t;C', (C',D',f)ER and ft C= f
0 and '!f are -<-bisimulation equivalent - 0~ -<b '!f - if there exists a -<
bisimulation between them.

PROPOSITION 5.3: 0 ~STt '!f <=? split(0) ~-<t split(<ff)
0 ~ STb '!f <=? split (0) ~ -<b split (<ff).

PROOF: For 0EIE define i :Er, -Esplit(&) by i (e +)=(e, (/0(e))+) and
i(e-)=(e, (li;(e))-). Now the bijections ii;:'2Y(0)-e<.,split(0)) from Proposition
4 satisfy for SE'2J(0) and ff-EE'tf:

S ➔i;S' <=? i0(S) ;~sptit(&)ii;(S').

Hence o: 1 • • • an E(Etf)* (actually (E i;,l i;,a) with a= o: 1 • • • an) is a pre-ST
trace of an event structure 0 iff i(o: 1) • • • i(o:n)EE;plit(f,) is a pre-trace of
split(t;). Furthermore two pre-ST-traces o:1 • • • an and /3 1 • • • /Jm of 0 are iso
morphic iff i(o:i) · · · i(o:n) and i(/Ji) · · · i(/Jm) are -<-isomorphic. Thus -<
Traces(split(t;)) is derivable from ST-Traces(0) and vice versa. From this the
first statement of the proposition follows.

As for the second statement, let 0, 'JEIE.

5. Equivalence notions for concurrent systems II 263

c:H,(li;,':J) = {((C,P),(D,Q),f)E~(&)X~(':J)XC!J'(E& XE'J) I
f :C-D is a bijection, satisfying l'J(f(e)) = l0(e)andf(P)=Q}.

For (S,T,f) and (S',T',f)Ec:H,(0,':J) write (S,T,f)➔ (S',T',f) if S➔ 0S',

T➔ 'IT', andf tC=f

~pur(&, ':J) = { (C,D,f) E2{split(&)) X 2{split(':J)) X C!J'(Esplit(&) X Esplit('!f'J) I
f :C-D is a bijection, satisfying l'J(f(e)) = l0(e)andf(e) -<'I f(e')

~ e -< 0 e'}.

For (C,D,f) and (C',D',f)E~plit(&,':J) write (C,D,f)➔ (C',D',f) if

C➔ split(&)C', D➔ split(§'JD', and f tC=f Define i:c:H,(&,':J)-0tsplir(&,':J) by
i(S,T,f)=(i&(S),iOJ(T),i(j)) where i0 and i'I are the bijections from Proposi
tion 4 and i(j):i&(S)-iOJ(T) is defined by i(j)(e,a+)=(j(e),a+) and
i(j)(e,a-)=(j(e),a-). Now it is not difficult to establish that i is a bijection,
satisfying

(S,T,f)➔ (S',T',f) ~ i(S,T,f)➔ i(S',T',f).

From this it follows that R \;;;;c:H,(&,':J) is an ST-bisimulation between & and '!.fiff
i(R)={i(S,T,f)l(S,T,f)ER}\;;;;~plir(&,':J) is a -<-bisimulation between split(&)
and split (':J). □

PROPOSITION 5.4: For all equivalences :=::; 1 and :=::;2 on IE defined so far, the for
mula

'v'&,'!.fEIE: &:::::;1'!.f ~ f;;:::::;2'!.f

holds iff there is a path :=::; 1 - • • · - :::::;2 in Figure 2.

PROOF: In order to prove the announced implications, it suffices to restrict
attention to the ones corresponding with an arrow :::::; 1 - :::::;2 in Figure 2.
Five of them are dealt with in Proposition 3 already. In order to prove the
implications :::::; 21 - :=::;st and :::::; 2b - :=::;sb, consider, for 0EIE, the mapping
j :2{&)-~(&) defined by j (C) = (C, C). Nate that j is a well-defined injection
with range(j)= {(C,P)E~(&) j C =P}. Now for C E2{0), A a multiset over act,
and a 1 · · · an EAct an arbitrary enumeration of A, it is easily obtained that

3C': C 4 0 C' /\ j(C')=(S,T) ~ j(C) ~& · · · ~& ~& · · · !5::►0 (S,T).
From this the required implications follow immediately. In order to prove the
remaining six implications, first consider the implications between equivalences
on IE(Act±) displayed in Figure 8. These implications follow immediately
from the definitions. The proofs in Chapter VI that :=::;pt and :::::;h are preserved
under refinement can be trivially extended to a setting with A-refinements for
any labelling set A. So it follows that

264 VII. The refinement theorem for ST-bisimulation semantics

FIGURE 8. Some semantic equivalences on IE(Act±)

& P:;;p1 ':I' =9 split(&) P:;;pt split(§"') and & P:;;h ':I' =9 split(&) P:;;h split(§"').

Now the remaining six implications on IE(Act) follow from Propositions 5.1
and 5.3.

In order to prove the absence of other implications, it suffices to provide
counterexamples against P:;;pt ➔ P:;;;b, P:;;ib ➔ P:;;s1, P:;;sb ➔ P:;;21, P:;;2b ➔ P:;;ST1

and P:;;STb ➔ P:;;pt· The first two counterexamples where given already in Sec
tion 3. For the third counterexample consider the two event structures of Fig
ure 5. In Section 3 it was established already that they are step bisimulation
equivalent. Furthermore they are not split trace equivalent, since
a+ c + a - b + c - b - is a split trace of the first one but not of the second
one.

a b a

• b b

FIGURE 9. ST-bisimulation equivalent but not pomset trace equivalent
(A variant of Example 7.1.2.a.ii of [91]).

The fourth counterexample will be provided in [94]. For the last counterexam
ple consider the two systems represented in Figure 9. Both systems perform
the actions a and b exactly once. In the first system these actions can only be
independent, whereas in the second one b can be executed either dependent or
independent of a. The difference between the two systems does not occur
before (and unless) they reach a state where the execution of a is completed
and the execution of b is not yet begun. However, in this state both systems
have exactly the same future, consisting of exactly one occurrence of b. Hence
they are identified in ST-bisimulation semantics. On the other hand the porn
set a➔b is a pomset trace of the second system, but not of the first. So the
two systems are not pomset trace equivalent. This example also shows that
ST-semantics does not respect causality. □

6. The refinement theorems 265

6. THE REFINEMENT THEOREMS

Finally I will prove the announced refinement theorems for ST-semantics. In
VAN GLABBEEK & V AANDRAGER [94] it will be shown that such a theorem does
not hold for split semantics.

THEOREM: Let f;,§"EIE and r be a refinement. Then

f; ~STb §" =? r(&) ~STb r(':J).

PROOF: Let R c;;,S(E0)XS(E'!J)X0'(E0 XECJ) be an ST-bisimulation between f;

and <if. Define the relation R by:

R = {((C, P),(D , Q),.f)ES(E,(t,;)) XS(Er('!J)) X 0'(£,(&) XE,('!J)) I

3((C,P),(D,Q),f)ER such that ,- 1(C, P)=(C,P), ,-1(D, Q)=(D,Q)

and j: C _jj is a bijection, satisfying j(e,e')=(f(e),e')andj(P)= Q }.

I show that R is an ST-bisimulation between r (&) and r (':J).

1. ((0, 0),(0, 0), 0) ER. since ((0, 0),(0, 0), 0) ER.

n. Suppose ((C, P),(D, Q),.f)E R. Take ((C,P),(D,Q),f)ER such that

,- 1(C,P)=(C,P), ,- 1(D,Q)=(D,Q) and j:c-b is a bijection,

satisfying j(e,e')=(f (e),e') and j(P)= Q. Now three things have to

be established:

1. j: C -jj is a bijection, satisfying l,('!J)(j (e,e')) = l,(&)(e,e') and

j(i>)= Q.

2. (C, P)➔ r(&)(C', P') =? 31)', Q' ,]' with f t C = j,

(D, Q)➔ r('!J)(D', Q') and ((C', P'),(D', Q'),j)ER.

3. (D,Q)➔ ,<'!J)(D',Q') =? 3C',P',]' with] tc=j,

(C ,P)➔ ,(&)(C' ,P') and ((C' ,P'),(D', Q'),j)ER

ad 1. By construction j : C - D is a bijection, satisfying j (P) = Q .

Moreover l,('!J)(j(e,e')) = l,('!J)(f (e),e') = l,(lif(e)))(e') =

= 1,(1,(e))(e') = l,(&)(e,e').

ad 2. Suppose (C, P)➔ ,(&)(C', P'), i.e. (C', P')ES(r(&)),

c c C' and P c P' .
Let (C',P')=,- 1(C', P'). Using Lemma 4.ii,

266 VII. The refinement theorem for ST-bisimu/ation semantics

(C,P)➔ 0(C',P'). Since R is an ST-bisimulation, 3D',Q',f

with (D,Q)➔ ~D',Q'), ((C',P'),(D',Q'),f)ER and/ tC=f
Let fy = {(f(e),e') I (e,e')E C' },

Q' ={(f(e),e')l(e,e')E.P'} and

j = {((e,e'),(f(e),e')) I (e,e')E C' }.
For eEpr 1(C') let.

Ce= { e' I (e,e')E C' }andPe = { e' I (e,e')E P' };
for dEpr 1(iY) let

Dd={e'l(d,e')ED' }andQd={e'l(d,e')E Q' }.

Remark that Qf(e)={e'lif(e),e')EQ' }={e'l(e,e')E.P' }=Pe

and similarly Df(e) = Ce.

I prove that (D , Q)➔ ,(~(D' , Q'),
((C', P'),(D', Q'),j)ER. and j t C = J.

I start with proving that (.D', Q')ES>{r(§)).

pr1(D')={f(e)I eEpr1(C')}= f(C')=D' (1)

so D' ={(d,e')idED', e'EDd},

Q' ={(d,e')idED', e'EQd}-

Using Lemma 4.i, it is then sufficient to show that

(D',Q') is an ST-configuration of~
(Dd,Qd) is an ST-configuration of r(/~d)) for dED',
Qd=Er(l.(d)) iff dEQ'. (2)

The first requirement is already implicit m

(D,Q)➔ ~D',Q').

Since D'=f(C') one may substitute f(e) ford and eEC'

for d ED' in the remaining two requirements.

Since Df(e)=Ce, Qf(e)=Pe, /'!}(/(e)) = /0 (e) and Q'=f(P')
they reduce to

(Ce,Pe) is an ST-configuration of r(/0(e)) for eEC' and
Pe=E,(l.(e)) iff eEP'.

These follow from Lemma 4.i, using that (C' , P')ES>{r(&))

and r- 1(C', P')=(C',P').

Hence (.D', Q')ES>{r(§)).

Now (1) and (2) above say that D'=pr 1(D') and

6. The refinement theorems

Q'={dED'I Qd=E,(l.(d))}- Hence r- 1(D', Q')=(D',Q').

It follows that ((C', P'),(D', Q'),f)ER...

267

Finally J t C = j, D ~ D' and Q ~ Q' by construction,

using that ft C= f With (JJ', Q')E?>(r(<:J)), it follows that

(D, Q)➔ ,(6J)(JJ', Q').
ad 3. By symmetry. □

THEOREM: Let 0,<!YEIE and r be a refinement. Then

0 ~ STt <if ⇒ r (0) ~ STt r (0).

PROOF: It suffices to proof 0 -::5sTt <if ⇒ r(0) -::5sTt r(<:J), so let 0,<!YEIE with
0-::5sTt<!f and let r be a refinement. Suppose in r(0) there is a chain of ST
configurations

(0,0)➔ r(&)(C1 ,Pl)➔ r(&) · · · ➔ r(&)(Cn ,Pn).

By Lemma 4.ii there is a chain of ST-configurations

(0,0)➔ 0(C1,P1)➔ & • • • ➔ s(Cn,Pn)

in 0 with (C;,P;)=r- 1(C;, P;) for i = 1, · · · ,n. Hence there must be a chain

(0, 0)➔ ~D1,Q1)➔ 'J • · · ➔ ~Dn,Qn)

in <if and a bijection f :Cn➔Dn, satisfying l'J(f(e)) = l0(e), f(C;)=D; and
f(P;)=Q; fori=l, · · · ,n.

Let D; ={(f(e),e')l(e,e')E C; },
Q; = {(f (e),e') I (e,e')E .l'; } and

f = {((e,e'),(f (e),e')) I (e,e')E Cn }.

It remains to be shown that

(0, 0)➔ r(§J(D1 , Q1)➔ r(6J) · · · ➔ r(6J)(Dn, Qn)

is a chain of ST-configurations in r(<:J) and j: Cn ➔ Dn is a bijection satisfy

ing l,(6JJ(f (e,e')) = l,(&)(e,e'), j (C;)= D; and j (P;)= Q; for i = 1, · · · ,n.

The only nontrivial part of this consist of proving that (D;, Q;)E?>(r(<:J)) for

i = 1, · · · ,n. This goes exactly as in the previous proof. □

268 VII. The refinement theorem for ST-bisimulation semantics

CONCLUDING REMARKS

In this chapter ten semantic equivalences for concurrent systems are defined
on a domain of labelled event structures, and their interdependencies are
classified as indicated in Figure 2 of the introduction. It has been established -
in [46, 84] and [94] respectively - that interleaving, step and split equivalences
are strictly based on action atomicity. In particular, the owl example of [94]
shows that no equivalence that can be localized between split bisimulation and
interleaving trace equivalence is preserved under refinement of actions. On the
other hand it has been shown - in [46] and in the previous chapter - that the
two partial order equivalences of Figure 2 are preserved under action
refinement and thus need not to be based on action atomicity. Now this
chapter added that also ST-trace and ST-bisimulation equivalence are
preserved under refinement. So the borderline is between split and ST
semantics.

It should be remarked that at all places where split semantics was used
before it was studied for a restricted class of concurrent systems (Petri nets
without autoconcurrency in [91], a subset of CCS in [5, 109] and deterministic
event structures in [172]) on which it coincides with ST-semantics. The exam
ples of [94] suggest that outside such a class, split semantics is not an interest
ing notion. The reason for mentioning it in this chapter is that it seems to be
a natural simplification of ST-semantics and in order to indicate that for the
purposes of this book this simplification should not be made.

The refinement operation considered in this chapter replaced actions by
finite, conflict-free, non-empty event structures. As remarked earlier, a gen
eralization to infinite refinements, leaving all definitions the same, is incompa
tible with the principle of finite causes: try to refine a in

by a1 ---- a2 ---- a3 ----

If one would drop this principle, there are (at least) two possibilities of inter
preting event structures: events which have an infinite set of causes can happen
in a finite time, or they can not. The last interpretation is slightly simpler to
grasp, more common, and compatible with the view of this chapter, in which
the behaviour of concurrent systems - together with all semantic equivalences -
is explained in terms of finite configurations (or ST-configurations) only.
Using this interpretation any 'generalized' event structure can be transformed
in an ordinary prime event structure satisfying the principle of finite causes, by
removing all events that have infinitely many causes. A transformed event
structure and its original are equivalent with respect to all equivalences of Fig
ure 2. On the domain of 'generalized' event structures one may drop the res
triction that refinements need to be finite, and all theorems and definitions of
this chapter remain valid. In fact also all proofs remain valid, since (except in
the proof of Proposition l.i) the principle of finite causes is never used. How
ever, it can be argued that infinite refinements change the behaviour of the
considered systems in a way that cannot be explained by a change in the level

Concluding remarks 269

of abstraction at which processes are regarded: consider a system performing
the actions a and b one time each, where the occurrence of b is dependent of
the occurrence of a (as depicted above); after replacement of a by an infinite
event structure, b cannot happen any more; it occurs in no (finite)
configuration. Finally notice that it is also possible to describe this type of
refinement on the domain of prime event structures satisfying the principle of
finite causes, by adding to the definition of refinement that after refinement in
the sense of Section 1, events with infinitely many causes should be left out.

A generalization to refinements containing conflicts can be obtained analo
gously as the above generalization to infinite refinements, but is technically
more complicated. On the domain of prime event structures used in this
chapter, refinements with conflicts are incompatible with the principle of
conflict heredity: try to replace a in

a - b by

This problem has been solved in Chapter IV by moving to a more general
form of event structures where the axiom of conflict heredity is dropped, e.g.
flow event structures [38, 40]. On flow event structures we could define a
refinement operator for any function r :Act-lE-{O}, thus allowing both
infinite refinements and refinements with conflicts. I expect that after this gen
eralization all my theorems remain valid. Each flow event structure is
equivalent to a prime event structure (with respect to any of the equivalences
of Figure 2). Hence an alternative solution consists of appending to the
definition of refinement some transformation that turns the refined event struc
ture into an equivalent prime event structure.

Contrary to the previous generalization, a generalization of the refinement
operator to forgetful refinements, where replacing actions by the empty event
structure is allowed, does not seem very natural. Such refinements can drasti
cally change the behaviour of concurrent systems and can not be explained by
a change in the level of abstraction at which these systems are regarded
(Chapter IV). Moreover, unlike the refinement theorems for partial order
semantics (Chapter VI) the refinement theorem for ST-bisimulation semantics
does not hold for forgetful refinements, as is demonstrated by the following
counterexample.

a ······· C a ······· C

t t
b b b

The two event structures above are ST-bisimulation equivalent. However, after
replacing a by the empty event structure, the resulting event structures (below)

270 VII. The refinement theorem for ST-bisimulation semantics

are not ST-bisimulation equivalent.

C C

t t
b b b

The refinement theorems for ST-semantics show that in case preservation
under refinement is required, it is not necessary to employ partial order seman
tics. 1 From this the natural question arises if it is necessary to employ at least
ST-semantics, i.e. if any equivalence finer then a given interleaving equivalence
that is preserved under refinement is also finer then some ST-equivalence. Let
:::::;x be an equivalence on IE. Define :::::;,x by

0 :::::;,x <!f ifffor all refinements r:Act-lE-{O} one has r(0) :::::;x r(§).

Then, :::::;,x is finer then :::::;x and preserved under refinement. Moreover it is
coarser then any other equivalence with these properties. In other words, :::::;,x

is fully abstract with respect to :::::;x and refinement. Of course the definition
above is parametrized by the concept of refinement. Let :::::;,x be defined under
reference to general refinements r :Act-IE - {O} (using flow event structures);
and let :::::;,,x be defined under reference to refinements as defined in Section 1
of this chapter. Then I conjecture that :::::;STb coincides with :::::;,;b, i.e. ST-

1. WALTER VOGLER [176,178,179] argues that partial order semantics is necessary for action
refinement. The question at stake is of course the definition of partial order semantics. In order
for partial order semantics to be necessary, both ST-bisimulation and ST-trace equivalence (and all
other equivalences that are preserved under action refinement) should be classified as partial order
equivalences. Vogler rightly rejects the definition of partial order semantics as a semantics that
makes use of partial orders - say, in order to describe system runs. Such a definition would make
no sense, as the information contained in the partial orders can easily be coded in other ways.
However, he argues that at least ST-trace semantics "deserve[s] to be called a partial order seman
tics. [ST-traces] are just sequential representations of special partial orders", namely of interval ord
ers. It seems that the implicit definition requires that a partial order semantics can be convenient
ly described in terms of partial orders. This definition has two drawbacks. First of all Vogler has
to amend it by stating that a '"real' partial order semantics should also use partial orders that do
not correspond to sequences or step sequences". The question arises why not to require the full
generality of partial orders, and exclude interval orders as well. Secondly, it appears that ST
bisimulation is still more conveniently described without using partial orders, thus undermining
the argument. Maybe that a semantics that is finer than a partial order semantics is automatically
counted as a partial order semantics, even if it has no employ for partial orders.

In view of this I prefer the definition of partial order semantics given in this text (page 252, line
8), namely that a partial order semantics is a semantics that uses partial orders for representing
causal dependence, or uses anything that can be rephrased in terms of partial orders, as long as it
is for representing causal dependence. This definition is more of a conceptual than of a technical
nature. Moreover, I claim that it better corresponds with the historical use of the term. Under
this definition ST-trace and ST-bisimulation semantics do not count as partial order semantics.

Concluding remarks 271

bisimulation equivalence is fully abstract with respect to interleaving bisimula
tion equivalence and action refinement, and also ,;:::jSTt coincides with ,;:::j,;1• To
be more precise, let re be the refinement that replaces actions a EAct by

at ······· a{ at

i i i
a, a:; a"i

Then I think that 0 ,;:::jSTb '!f <=? rc(0) ,;:::jib re(§) and likewise
0 ,;:::jsTt '!f <=? rc(E;) ,;:::jit re(§), from which the conjecture follows. Furthermore,
together with Walter Vogler I observed that for finite event structures ,;:::jSTb

even coincides with ,;:::jr'ib· On the other hand ,;;:,j,,;1 is strictly coarser then ,;:::j,u,

as follows from an example in LARSEN [126], see also [94].
In VOGLER [175] a 'failures semantics based on interval serniwords' was

presented that can be regarded as the ST-version of failure semantics. He
proved that this semantics is preserved under refinement of actions and also
established that it is fully abstract with respect to interleaving failure semantics
and refinement (allowing refinements with conflicts, but without initial and
final parallism, see Section 4 of Chapter IV). The same results he obtained for
ST-trace semantics. Topics for further research include

generalizing the refinement theorems to a setting with infinite refinements
and refinements with conflicts, as in Chapter IV.
defining 'syntactic refinement' (replacing action symbols by terms in pro
cess expressions) on process specification languages, investigating the
interaction with communication, proving syntactic refinement theorems
and establishing the correspondence with 'semantic refinement', as
employed in this chapter (cf. [5,6, 91,126, 141]),1

proving the full abstraction results conjectured above,2
proving refinement theorems and full abstraction results for the ST
versions of decorated trace semantics,3

and generalizing the entire theory to a setting with silent actions, or T

moves (possibly combining the notions of branching bisimulation (for
refinement of systems with silent actions) (Chapter III) and ST
bisimulation or history preserving bisimulation (for refinement of non
sequential systems)).4

PRATT [154] and CASTELLANO, DE MICHELIS & POMELLO [46] use the issue of
action atomicity as an argument for using partial order semantics instead of
interleaving semantics. This chapter shows that it is not necessary to employ
partial order semantics if one does not want to assume action atomicity; ST
semantics turns out to be sufficient. In VAN GLABBEEK & VAANDRAGER [91]
we introduced the (related) criterion of real-time consistency. A semantics is
real-time consistent if it does not identify systems with a different real-time
behaviour. Of course interleaving semantics are not real-time consistent, but

272 VII. The refinement theorem for ST-bisimulation semantics

again the criterion did not force us to consider partial order semantics: also for
this purpose ST-bisimulation semantics turned out to be sufficient. Therefore
the question remains whether or not there exists a convincing testing scenario,
or some natural operator, that reveals the full distinguishing power of partial
order semantics. 5

1. This problem has been solved in GOLTZ, GORRIERI & RENSINK [97).
2. This has been done in VOGLER [179).
3. For failure semantics this has been done in VOGLER [175) in a setting of Petri nets, see also
JATEGAONKAR & MEYER [117), and for a variant of trace semantics, in the absence of autocon
currency, modelling a process as a set of semiwords, in NIELSEN, ENGBERG & LARSEN [141) and
LARSEN [126).
4. This has been done in VOGLER [179) too, but using weak bisimulation rather than branching
bisimulation. Vogler proves that weak ST-bisimulation, pomset weak ST-bisimulation and history
preserving weak ST-bisimulation equivalence are preserved under action refinement. The last
result is also established in DEVILLERS [72) in the setting of Petri nets. When choosing the 'weak'
mode in dealing with -r-steps, the 'ST' is obviously needed in all three results: it effectively converts
weak bisimulation into delay bisimulation (as defined Chapter III), which, like branching bisimula
tion, is preserved under action refinement. This prevents one from running into the counterexam
ple of Section 6 in Chapter III. Independent of the choice of the 'weak' mode in dealing with
internal actions, the 'ST' is necessary in the first two results; witness the counterexamples of
Chapter VI. This leaves open the question whether history preserving branching bisimulation and
history preserving delay bisimulation (without 'ST'; the definitions should be obvious) are
preserved under action refinement. In a joint paper with Sophie Pinchinat I will show that,
surprisingly, they are not. In the presence of -r's ST-semantics appears to be necessary.
5. In a linear time setting (i.e. neglecting the branching structure of processes) this question has
been addressed in PLOTKIN & PRATT [151).

273

References

References
1. S. ABRAMSKY, "Observation equivalence as a testing equivalence,"

Theoretical Computer Science 53, pp. 225-241 (1987).
2. S. ABRAMSKY & S. VICKERS, "Quantales, observational logic and process

semantics," Mathematical Structures in Computer Science 3, pp. 161-227
(1993).

3. L. ACETO, "Action refinement in process algebras," Ph.D. Thesis,
University of Sussex (1991). Report No. 3/91

4. L. ACETO, R. DE NICOLA & A. FANTECHI, "Testing equivalences for
event structures," pp. 1-20 in Proceedings Advanced School on Mathemati
cal Models for the Semantics of Parallelism, 1986, ed. M. VENTURINI
ZILLI, ED., Springer-Verlag (1987).

5. L. ACETO & M. HENNESSY, "Towards action-refinement in process alge
bras," Information and Computation 103(2), pp. 204-269 (1993).

6. L. ACETO & M. HENNESSY, "Adding action refinement to a finite process
algebra," Information and Computation, to appear (1994).

7. P. AczEL, Non-welljounded sets, CSU Lecture Notes No.14, Stanford
University (1988).

8. G.J. AKKERMAN & J.C.M. BAETEN, "Term rewriting analysis in process
algebra," Report P9006, Programming Research Group, University of
Amsterdam (1990).

9. P. AMERICA, "Definition of the programming language POOL-T,"
ESPRIT project 415, Doc. Nr. 91, Philips Research Laboratories, Ein
dhoven (1985).

10. D. AusTRY & G. BouooL, "Algebre de processus et synchronisations,"
Theoretical Computer Science 30(1), pp. 91-131 (1984).

27 4 References

11. J.C.M. BAETEN & J.A. BERGSTRA, "Global renaming operators in con
crete process algebra," I&C 78(3), pp. 205-245 (1988).

12. J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP, "Conditional axioms and
al /3 calculus in process algebra," pp. 53-75 in Formal Description of Pro
gramming Concepts - III, Proceedings of the third IFIP WG 2.2 working
conference, Ebberup 1986, ed. M. WIRSING, ED., North-Holland, Amster
dam (1987).

13. J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP, "On the consistency of
Koomen's fair abstraction mle," Theoretical Computer Science 51(1/2),
pp. 129-176 (1987).

14. J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLOP, "Ready-trace semantics
for concrete process algebra with the priority operator," The Computer
Journal 30(6), pp. 498-506 (1987).

15. J.C.M. BAETEN & R.J. VAN GLABBEEK, "Another look at abstraction in
process algebra," pp. 84-94 in Proceedings ICALP 87, Karlsruhe, ed. TH.
OTTMAN, ED., Springer-Verlag (1987).

16. J.C.M. BAETEN & R.J. VAN GLABBEEK, "Merge and termination in pro
cess algebra," pp. 153-172 in Proceedings 1th Conference on Foundations
of Software Technology & Theoretical Computer Science, Pune, India, ed.
K.V. NORI, ED., Springer-Verlag (1987).

17. J.C.M. BAETEN & W.P. WEIJLAND, Process algebra, Cambridge Univer
sity Press (1990).

18. J.W. DE BAKKER, J.A. BERGSTRA, J.W. KLOP & J.-J.CH. MEYER, "Linear
time and branching time semantics for recursion with merge," Theoretical
Computer Science 34, pp. 135-156 (1984).

19. J.W. DE BAKKER, J.N. KOK, J.-J.CH. MEYER, E.-R. OLDEROG & J.I.
ZUCKER, "Contrasting themes in the semantics of imperative con
currency," pp. 51-121 in Current trends in concurrency, ed. J.W. DE
BAKKER, W.-P. DE ROEVER & G. ROZENBERG, EDS., Springer-Verlag
(1986).

20. J.W. DE BAKKER & J.I. ZUCKER, "Processes and the denotational seman
tics of concurrency," I&C 54(1/2), pp. 70-120 (1982).

21. J. VAN BENTREM, J. VAN EucK & V. STEBLETSOVA, "Modal logic, transi
tion systems and processes," Report CR-R9321, CWI, Amsterdam
(1993).

22. J.A. BERGSTRA, "A process creation mechanism in process algebra,"
Logic Group Preprint Series Nr. 2, CIF, State University of Utrecht
(1985). in: Applications of process algebra, (J.C.M. Baeten, ed.), Cam
bridge University Press, 1990, pp. 81-88

23. J.A. BERGSTRA, J. HEERING & P. KLINT, "Module algebra," JACM
37(2), pp. 335-372 (1990).

24. J.A. BERGSTRA & J.W. KLOP, "The algebra of recursively defined
processes and the algebra of regular processes," pp. 82-95 in Proceedings
ICALP 84, Antwerp, ed. J. PAREDAENS, ED., Springer-Verlag (1984).

25. J.A. BERGSTRA & J.W. KLoP, "Process algebra for synchronous com
munication," I&C 60(1/3), pp. 109-137 (1984).

275

26. J.A. BERGSTRA & J.W. KLoP, "Algebra of communicating processes with
abstraction," Theoretical Computer Science 37(1), pp. 77-121 (1985).

27. J.A. BERGSTRA & J.W. KLoP, "A complete inference system for regular
processes with silent moves," pp. 21-81 in Proceedings Logic Colloquium
1986, ed. F.R. DRAKE & J.K. TRUSS, EDS., North Holland, Hull (1988).
also appeared as: Report CS-R8420, Centrum voor Wiskunde en Infor
matica, Amsterdam 1984

28. J.A. BERGSTRA & J.W. KLOP, "Process theory based on bisimulation
semantics," pp. 50-122 in Proceedings REX School/Workshop on Linear
Time, Branching Time and Partial Order in Logics and Models for Con
currency, Noordwijkerhout, ed. J.W. DE BAKKER, W.-P. DE ROEVER & G.
ROZENBERG, EDS., Springer-Verlag (1989).

29. J.A. BERGSTRA, J.W. KLOP & E.-R. 0LDEROG, "Failures without chaos:
a new process semantics for fair abstraction," pp. 77-103 in Formal
Description of Programming Concepts - III, Proceedings of the third IFIP
WG 2.2 working conference, Ebberup 1986, ed. M. WIRSING, ED., North
Holland, Amsterdam (1987).

30. J.A. BERGSTRA, J.W. KLOP & E.-R. 0LDEROG, "Readies and failures in
the algebra of communicating processes," SIAM Journal on Computing
17(6), pp. 1134-1177 (1988).

31. J.A. BERGSTRA & J. TIURYN, "Process algebra semantics for queues,"
Fund. Inf X, pp. 213-224, also appeared as: MC Report IW 241,
Amsterdam 1983 (1987).

32. J.A. BERGSTRA & J.V. TuCKER, "Top down design and the algebra of
communicating processes," SCP 5(2), pp. 171-199 (1985).

33. E. BEST, R. DEVILLERS, A. KIEHN & L. POMELLO, "Concurrent Bisimula
tions in Petri nets," Acta Informatica 28, pp. 231-264 (1991).

34. B. BLOOM, "Structural operational semantics for weak bisimulations,"
Technical Report TR 93-1373, Cornell University, Ithaca, New York
(1993).

35. B. BLOOM, S. ISTRAIL & A.R. MEYER, "Bisimulation can't be traced:
preliminary report," pp. 229-239 in Conference Record of the 15th Annual
ACM Symposium on Principles of Programming Languages (POPL), San
Diego, California (1988).

36. A. BOUALI, "Weak and branching bisimulation in FcTOOL," RAPPORTS
DE RECHERCHE N° 1575, INRIA, CENTRE SOPHIA-ANTIPOLIS, VALBONNE
CEDEX (1992).

37. G. BouDOL, "Atomic actions (note)," Bulletin of the EATCS 38,
pp. 136-144 (1989).

38. G. BoUDOL, "Flow event structures and flow nets," pp. 62-95 in Seman
tics of Systems of Concurrent Processes (I. Guessarian, ed.), Proceedings of
the LITP Spring School on Theoretical Computer Science, La Roche
Posay, France 1990, Springer-Verlag (1990).

39. G. BouDOL & I. CASTELLANI, "On the semantics of concurrency: partial
orders and transition systems," pp. 123-137 in Proceedings TAPSOFT 87,
Vol. I, ed. H. EHRIG, R. KOWALSKI, G. LEVI & U. MONTANARI, EDS.,

276 References

Springer-Verlag (1987).
40. G. BouDOL & I. CASTELLANI, "Permutation of trans1t10ns: an event

structure semantics for CCS & SCCS," pp. 411-427 in Proceedings REX
School/ Workshop on Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, Noordwijkerhout, ed. J.W. DE
BAKKER, W.-P. DE ROEVER & G. ROZENBERG, EDS., Springer-Verlag
(1989).

41. W. BRAUWER, R. GOLD & W. VOGLER, "A survey of behaviour and
equivalence preserving refinements of Petri nets," pp. 1-46 in Advances in
Petri nets 1990, ed. G. ROZENBERG, ED., Springer-Verlag (1991).

42. S.D. BROOKES, C.A.R. HOARE & A.W. ROSCOE, "A theory of communi
cating sequential processes," JACM 31(3), pp. 560-599 (1984).

43. M.C. BROWNE, E.M. CLARKE & 0. GRUMBERG, "Characterizing finite
Kripke structures in propositional temporal logic," Theoretical Computer
Science 59(1,2), pp. 115-131 (1988).

44. M. BROY, "Views on queues," Sci. Comp. Prog. 11, pp. 65-86 (1988).
45. N. BUSI, R.J. VAN GLABBEEK & R. GORRIERI, Axiomatising ST

Bisimulation Equivalence, Available by anonymous ftp from
Boole.stanford.edu, 1993.

46. L. CASTELLANO, G. DE MICHELIS & L. POMELLO, "Concurrency vs
Interleaving: an instructive example," Bulletin of the EATCS 31, pp. 12-
15 (1987).

47. F. CHERIEF, "Contributions a la semantique du parallelisme: Bisimula
tions pour le raffinement et le vrai parallelisme," Pd.D. Thesis, Univ.
Grenoble (1992).

48. F. CHERIEF & PH. SCHNOEBELEN, "T-Bisimulations and full abstraction
for refinement of actions," Information processing letters 40, pp. 219-222
(1991).

49. S. CHRISTENSEN, H. HUTTEL & C. STIRLING, "Bisimulation equivalence
is decidable for all context-free processes," pp. 138-147 in Proceedings
CONCUR '92, Stony Brook, NY, USA, August 1992, ed. W.R. CLEAVE
LAND, ED., Springer-Verlag (1992).

50. E.M. CLARKE & E.A. EMERSON, "Design and synthesis of synchroniza
tion skeletons using branching-time temporal logic," pp. 52-71 in
Proceedings of the Workshop on Logic of Programs, Yorktown Heights, ed.
D. KOZEN, ED., Springer-Verlag (1981).

51. I. CZAJA, R.J. VAN GLABBEEK & U. GOLTZ, "Interleaving Semantics and
Action Refinement with Atomic Choice," pp. 89-107 in Advances in Petri
Nets 1992, ed. G. ROZENBERG, ED., Springer-Verlag (1992).

52. PH. DARONDEAU, "An enlarged definition and complete axiomatisation
of observational congruence of finite processes," pp. 47-62 in Proceedings
international symposium on programming: 5th colloquium, Aarhus, ed. M.
DEZANI-CIANCAGLINI & U. MONTANARI, EDS., Springer-Verlag (1982).

53. P. DARONDEAU & P. DEGANO, "Causal trees," in Proceedings ICALP 89,
Stresa, July 1988, ed. G. AUSIELLO, M. DEZANI-CIANCAGLINI & S. RON
CHI DELLA ROCCA, EDS. (1989).

277

54. PH. DARONDEAU & P. DEGANO, "Causal trees: Interleaving + Causal
ity," pp. 239-255 in Semantics of Systems of Concurrent Processes (I.
Guessarian, ed.), Proceedings of the LITP Spring School on Theoretical
Computer Science, La Roche Posay, France 1990, Springer-Verlag (1990).

55. PH. DARONDEAU & P. DEGANO, "Event structures, causal trees, and
refinements," in Proceedings Mathematical Foundations of Computer Sci
ence 1990 (MFCS), ed. B. ROVAN, ED., Springer-Verlag (1990).

56. PH. DARONDEAU & P. DEGANO, "About semantic action refinement,"
Fundamenta Informaticae XIV, pp. 221-234 (1991).

57. PH. DARONDEAU & P. DEGANO, "Refinement of actions in event struc
tures and causal trees," Theoretical Computer Science 118, pp. 21-48
(1993).

58. P. DEGANO, R. DE NICOLA & U. MONTANARI, "Observational
equivalences for concurrency models," pp. 105-129 in Formal Description
of Programming Concepts - III, Proceedings of the third IFIP WG 2.2
working conference, Ebberup 1986, ed. M. WIRSING, ED., Elsevier Science
Publishers B.V. (North Holland) (1987).

59. P. DEGANO, R. DE NICOLA & U. MONTANARI, "A distributed opera
tional semantics for CCS based on condition/event systems," Acta Infor
matica 26(1/2), pp. 59-91 (1988).

60. P. DEGANO, R. DE NICOLA & u. MONTANARI, "Partial orderings
descriptions and observations of nondeterministic concurrent processes,"
pp. 438-466 in Proceedings REX School/ Workshop on Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency,
Noordwijkerhout, The Netherlands, May/June 1988, ed. J.W. DE BAKKER,
W.-P. DE ROEVER & G. ROZENBERG, EDS., Springer-Verlag (1989).

61. P. DEGANO & R. GORRIERI, "Atomic refinement for process description
languages," pp. 121-130 in Proceedings Mathematical Foundations of
Computer Science 1991 (MFCS), ed. A. TARLECKI, ED., Springer-Verlag
(1991).

62. P. DEGANO & R. GORRIERI, "An operational definition of action
refinement," Technical Report 28, Dipartimento di Informatica, Univer
sita di Pisa (1992).

63. R. DE NICOLA, "Extensional equivalences for transition systems," Acta
Informatica 24, pp. 211-237 (1987).

64. R. DE NICOLA & M. HENNESSY, "Testing equivalences for processes,"
Theoretical Computer Science 34, pp. 83-133 (1984).

65. R. DE NICOLA, P. lNVERARDI & M. NESI, "Using axiomatic presentation
of behavioural equivalences for manipulating CCS specifications," pp.
54-67 in Automatic Verification Methods for Finite State Systems, ed. J.
SIFAKIS, ED., Springer-Verlag (1990).

66. R. DE NICOLA, u. MONTANARI & F.W. V AANDRAGER, "Back and forth
bisimulations," pp. 152-165 in Proceedings CONCUR 90, Amsterdam, ed.
J.C.M. BAETEN & J.W. KLoP, EDS., Springer-Verlag (1990). also
appeared as CWI Report CS-R902 l

67. R. DE NICOLA & F.W. VAANDRAGER, "Three logics for branching

278 References

bisimulation (extended abstract)," pp. 118-129 in Proceedings 5th Annual
Symposium on Logic in Computer Science (LICS 90), Philadelphia, USA,
IEEE Computer Society Press, Los Alamitos, CA (1990). full version
appeared as CWI Report CS-R9012, Amsterdam 1990

68. R. DE NICOLA & F.W. V AANDRAGER, "Action versus state based logics
for transition systems," pp. 407-419 in Semantics of Systems of Con
current Processes (I. Guessarian, ed.), Proceedings of the LITP Spring
School on Theoretical Computer Science, La Roche Posay, France 1990,
Springer-Verlag (1990).

69. T. DENVIR, w. HARWOOD, M. JACKSON & M. RAY, The analysis of con
current systems, Proceedings of a Tutorial and Workshop, Cambridge
University 1983, Springer-Verlag (1985).

70. J. DESEL & A. MERCERON, "Vicinity respecting net morphisms," pp.
115-138 in Proceedings of the 10th International Conference on Petri Nets,
Bonn (1989).

71. R. DEVILLERS, "On the definition of a bisimulation notion based on par
tial words," Petri Net Newsletter 29, pp. 16-19, Gesellschaft fur Informa
ti!(, Bonn (1988).

72. R. DEVILLERS, "Maximality preserving bisimulation," Theoretical Com
puter Science 102, pp. 165-183 (1992).

73. R. DEVILLERS, "Maximality preservation and the ST-idea for action
refinement," pp. 108-151 in Advances in Petri Nets 1992, ed. G. ROZEN
BERG, ED., Springer-Verlag (1992).

74. E.A. EMERSON & J.Y. HALPERN, '"Sometimes' and 'Not Never' revisited:
on branching time versus linear time temporal logic," JACM 33(1),
pp. 151-178 (1986).

75. H.J. GENRICH & E. STANKIEWICZ-WIECHNO, "A dictionary of some
basic notions of Petri nets," in Advanced course on general net theory of
processes and systems, Hamburg 1979, ed. W. BRAUER, ED., Springer
Verlag (1980).

76. J.L. GISCHER, "The equational theory of pomsets," Theoretical Computer
Science 61, pp. 199-224 (1988).

77. R.J. VAN GLABBEEK, "Bounded nondeterminism and the approximation
induction principle in process algebra," pp. 336-347 in Proceedings
STACS 87, ed. F.J. BRANDENBURG, G. VIDAL-NAQUET & M. WIRSING,
EDS., Springer-Verlag (1987).

78. R.J. VAN GLABBEEK, "The refinement theorem for ST-bisimulation
semantics," pp. 27-52 in Programming Concepts and Methods (M. Broy &
C.B. Jones, eds.), Proceedings IFIP Working Group 2.2/2.3 Working
Conference, Sea of Galilee, Israel 1990, Elsevier Science Publishers B.V.
(North Holland) (1990).

79. R.J. VAN GLABBEEK, "The linear time - branching time spectrum," pp.
278-297 in Proceedings CONCUR 90, Amsterdam, ed. J.C.M. BAETEN &
J.W. KLoP, EDS., Springer-Verlag (1990).

80. R.J. VAN GLABBEEK, "A complete axiomatization for branching bisimula
tion congruence of finite-state behaviours," pp. 473-484 in Proceedings

279

Mathematical Foundations of Computer Science 1993 (MFCS), Gdansk,
Poland, August! September 1993, ed. A.M. BORZYSZKOWSKI & S.
SOKOlOWSKI, EDS., Springer-Verlag (1993).

81. R.J. VAN GLABBEEK, The linear time - branching time spectrum II; the
semantics of sequential systems with silent moves, Preliminary version
available from boole.stanford.edu; Extended abstract in Proceedings
CONCUR'93, Hildesheim, Germany, August 1993 (E. Best, ed), LNCS
715, Springer-Verlag, pp. 66-81 1993.

82. R.J. VAN GLABBEEK, "What is branching time and why to use it?,"
Report No. STAN-CS-93-1486, Stanford University (1993). Available by
anonymous ftp from Boole.stanford.edu

83. R.J. VAN GLABBEEK, "Full Abstraction in Structural Operational Seman
tics (extended abstract)," pp. 77-84 in Proceedings of the Third Interna
tional Conference on Algebraic Methodology and Software Technology
(AMAST93), The Netherlands, June 1993, ed. M. NIVAT, C. RATTRAY, T.
Rus & G. ScoLLo, EDS., Springer-Verlag (1993). Available by
anonymous ftp from Boole.stanford.edu

84. R.J. VAN GLABBEEK & U. GOLTZ, "Equivalence notions for concurrent
systems and refinement of actions," Arbeitspapiere der GMD 366, Sankt
Augustin (1989). extended abstract appeared in: Proceedings 14th Sym
posium on Mathematical Foundations of Computer Science (MFCS),
Poq1bka-Kozubnik, Poland, August/September 1989 (A. Kreczmar & G.
Mirkowska, eds.), LNCS 379, Springer-Verlag, pp. 237-248

85. R.J. VAN GLABBEEK & U. GOLTZ, "Partial order semantics for
refinement of actions - neither necessary nor always sufficient but
appropriate when used with care," Bulletin of the EATCS 38, pp. 154-163
(1989).

86. R.J. VAN GLABBEEK & U. GOLTZ, "Refinement of actions in causality
based models," pp. 267-300 in Proceedings of the REX Workshop on
Stepwise Refinement of Distributed Systems: Models, Formalism, Correct
ness (J. W de Bakker, W-P. de Roever & G. Rozenberg, eds.), Mook, The
Netherlands 1989, Springer-Verlag (1990).

87. R.J. VAN GLABBEEK & U. GOLTZ, "Equivalences and refinement," pp.
309-333 in Semantics of Systems of Concurrent Processes (I. Guessarian,
ed), Proceedings of the LITP Spring School on Theoretical Computer Sci
ence, La Roche Posay, France 1990, Springer-Verlag (1990). This is an
extended and updated version of [84]

88. R.J. VAN GLABBEEK & U. GOLTZ, "A Deadlock-sensitive Congruence for
Action Refinement," SFB-Bericht Nr. 342/23/90 A, Institut fur Infor
matik der Technischen Universitat Miinchen (1990).

89. R.J. VAN GLABBEEK & J.J.M.M. RUTTEN, "The processes of De Bakker
and Zucker represent bisimulation equivalence classes," pp. 243-246 in
J. W de Bakker, 25 Jaar semantiek, fiber amicorum (1989).

90. R.J. VAN GLABBEEK, S.A. SMOLKA, B. STEFFEN & C.M~. TOFTS, "Reac
tive, generative, and stratified models of probabilistic processes," pp.
130-141 in Proceedings 5th Annual Symposium on Logic in Computer

280 References

Science (LICS 90), Philadelphia, USA, IEEE Computer Society Press,
Los Alamitos, CA (1990).

91. R.J. v AN GLABBEEK & F. W. V AANDRAGER, "Petri net models for alge
braic theories of concurrency," pp. 224-242 in Proceedings PARLE
conference, Eindhoven, Vol. II (Parallel Languages), ed. J.W. DE BAKKER,
A.J. NIJMAN & P.C. TRELEAVEN, EDS., Springer-Verlag (1987).

92. R.J. VAN GLABBEEK & F.W. VAANDRAGER, "Modular specifications in
process algebra - with curious queues," Report CS-R8821, Centrum voor
Wiskunde en Informatica, Amsterdam (1988). extended abstract in:
Algebraic Methods: Theory, Tools and Applications (M. Wirsing & J.A.
Bergstra, eds.), LNCS 394, Springer-Verlag, 1989, pp. 465-506. A revision
of part of this paper is:

93. R.J. VAN GLABBEEK & F.W. V AANDRAGER, "Modular specification of
process algebras," TCS 113(2), pp. 293-348 (1993).

94. R.J. VAN GLABBEEK & F.W. VAANDRAGER, The difference between split
ting in n and n + 1, in preparation, 1994.

95. R.J. VAN GLABBEEK & W.P. WEIJLAND, "Refinement in branching time
semantics," Report CS-R8922, Centrum voor Wiskunde en Informatica,
Amsterdam (1989). appeared in: J.W. de Bakker, 25 jaar semantiek,
liber amicorum, Centrum voor Wiskunde en Informatica, Amsterdam
1989, pp. 247-252, and also in: Proceedings AMAST Conference, May
1989, Iowa, USA, pp. 197-201, and finally in:

96. R.J. VAN GLABBEEK & W.P. WEIJLAND, "Branching time and abstraction
in bisimulation semantics," Report TUM-19052, SFB-Bericht Nr.
342/29/90 A, Institut fur Informatik, Technische Universiti:it Miinchen
(1990). under revision for JACM. Extended abstract in: Information
Processing 89 (G.X. Ritter, ed.), Proceedings of the IFIP 11th World
Computer Congress, San Fransisco 1989, Elsevier Science Publishers B.V.
(North Holland), 1989, pp. 613-618

97. U. GOLTZ, R. GORRIERI & A. RENSINK, "On syntactic and semantic
action refinement," in Proc. Theoretical Aspects of Computer Science, Sen
dai, Japan, Springer-Verlag (1994). to appear

98. R. GORRIERI, "Refinement, atomicity and transactions for process
description languages," Ph.D. Thesis, TD-2/91, University of Pisa
(1991).

99. R. GORRIERI & C. LANEVE, "Split and ST Bisimulation Semantics,"
Information and Computation, to appear (1994).

100. R. GORRIERI, S. MARCHETTI & U. MONTANARI, "A 2 CCS: a simple
extension of CCS for handling atomic actions," pp. 258-270 in Proceed
ings CAAP 88, Nancy, France, ed. M. DAUGHET & M. NIVAT, EDS.,
Springer-Verlag (1988).

101. J. GRABOWSKI, "On partial languages," Fundamenta Informaticae IV(2),
pp. 427-498 (1981).

102. S. GRAF & J. SIFAKIS, "Readiness semantics for regular processes with
silent actions," pp. 115-125 in Proceedings ICALP 87, Karlsruhe, ed. TH.
OTTMAN, ED., Springer-Verlag (1987).

281

103. E.P. GruBOMONT, "Stepwise refinement and concurrency: a small exer
cise," pp. 219-238 in Mathematics of program construction, ed. J.L.A. VAN
DE SNEPSCHEUT, ED., Springer-Verlag (1989).

104. J.F. GROOTE, "A new strategy for proving w-completeness with applica
tions in process algebra," pp. 314-331 in Proceedings CONCUR 90,
Amsterdam, ed. J.C.M. BAETEN & J.W. KLoP, EDS., Springer-Verlag
(1990).

105. J.F. GROOTE & H. HUTTEL, "Undecidable equivalences for basic process
algebra," Information and Computation, to appear (1994).

106. J.F. GROOTE & F.W. V AANDRAGER, "An efficient algorithm for branch
ing bisimulation and stuttering equivalence," pp. 626-638 in Proceedings
ICALP 90, Warwick, ed. M.S. PATERSON, ED., Springer-Verlag (1990).

107. J.F. GROOTE & F.W. V AANDRAGER, "Structured operational semantics
and bisimulation as a congruence," I&C 100(2), pp. 202-260 (1992).

108. M. HENNESSY, "Acceptance trees," JACM 32(4), pp. 896-928 (1985).
109. M. HENNESSY, "Axiomatising finite concurrent processes," SIAM Journal

on Computing 17(5), pp. 997-1017 (1988).
110. M. HENNESSY, "Concurrent testing of processes (extended abstract)," pp.

94-107 in Proceedings CONCUR '92, Stony Brook, NY, USA, August
1992, ed. W.R. CLEAVELAND, ED., Springer-Verlag (1992).

111. M. HENNESSY & R. MILNER, "On observing nondeterminism and con
currency," pp. 299-309 in Proceedings ICALP 80, ed. J.W. DE BAKKER &
J. VAN LEEUWEN, EDS., Springer-Verlag (1980). this is a preliminary ver
sion of:

112. M. HENNESSY & R. MILNER, "Algebraic laws for nondeterminism and
concurrency," JACM 32(1), pp. 137-161 (1985).

113. M. HENNESSY & G.D. PLOTKIN, "A term model for CCS," pp. 261-274
in Proceedings 9th Symposium on Mathematical Foundations of Computer
Science (MFCS), ed. P. DEMBINSKI, ED., Springer-Verlag (1980).

114. C.A.R. HOARE, "Communicating sequential processes," Communications
of the ACM 21(8), pp. 666-677 (1978).

115. C.A.R. HOARE, "Communicating sequential processes," pp. 229-254 in
On the construction of programs - an advanced course, ed. R.M. MCKEAG
& A.M. MACNAGHTEN, EDS., Cambridge University Press (1980).

116. C.A.R. HOARE, Communicating sequential processes, Prentice-Hall Inter
national (1985).

117. L. JATEGAONKAR & A. MEYER, "Testing equivalence for Petri nets with
action refinement," pp. 17-31 in Proceedings CONCUR '92, Stony Brook,
NY, USA, August 1992, ed. W.R. CLEAVELAND, ED., Springer-Verlag
(1992).

118. HE JIFENG & C.A.R. HOARE, "Algebraic specification and proof of a
distributed recovery algorithm," Distributed Computing 2(1), pp. 1-12
(1987).

119. B. JoNSSON & J. PARROW, "Deciding bisimulation equivalences for a
class of non-finite-state programs," Information and Computation 107(2),
pp. 272-302 (1993).

282 References

120. P.C. KANELLAKIS & S.A. SMOLKA, "CCS expressions, finite state
processes, and three problems of equivalence," Information and Computa
tion 86, pp. 43-68 (1990).

121. J.K. KENNAWAY, "Formal semantics of nondetermism and parallelism,"
Ph.D. Thesis, University of Oxford (1981).

122. W. KORCZYNSKI, "An algebraic characterization of concurrent systems,"
Fundamenta Informaticae 11(2), pp. 171-194 (1988).

123. C.P.J. KOYMANS & J.C. MULDER, "A modular approach to protocol
verification using process algebra," Logic Group Preprint Series Nr. 6,
CIF, State University of Utrecht (1986). in: Applications of process
algebra, (J.C.M. Baeten, ed.), Cambridge University Press, 1990, pp.
261-306

124. L. LAMPORT, "What good is temporal logic?," pp. 657-668 in Information

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Processing 83, ed. R.E. MASON, ED., Elsevier Science Publishers B.V.
(North Holland) (1983).
L. LAMPORT, "On interprocess communication," Distributed Computing 1,
pp. 77-101 (1986).
K.S. LARSEN, "A fully abstract model for a process algebra with
refinements," Master Thesis, Aarhus University, Denmark (1988).
K.G. LARSEN & R. MILNER, "A complete protocol verification using
relativized bisimulation," pp. 126-135 in Proceedings ICALP 87,
Karlsruhe, ed. TH. OTTMANN, ED., Springer-Verlag (1987).
K.G. LARSEN & A. SKOU, "Bisimulation through probabilistic testing,"
I&C 94(1), pp. 1-28, a preliminary report appeared in: Conference
Record of the 16th Annual ACM Symposium on Principles of Program
ming Languages (POPL), Austin, Texas, ACM Press, New York 1989,
pp. 344-352 (1991).
S. MAUW, "An algebraic specification of process algebra, including two
examples," Report FYI 87-06, Dept. of Computer Science, University of
Amsterdam (1987). extended abstract in: Algebraic Methods: Theory,
Tools and Applications (M. Wirsing & J.A. Bergstra, eds.), LNCS 394,
Springer-Verlag, pp. 507-554
S. MAUW & G.J. VELTINK, "A process specification formalism," Funda
menta Informaticae XIII, pp. 85-139 (1990).
J. MEsEGUER & U. MONTANARI, "Petri nets are monoids: a new alge
braic foundation for net theory," pp. 155-164 in Proceedings 3th Annual
Symposium on Logic in Computer Science (LICS 88), Edinburgh, IEEE
Computer Society Press, Washinrton (1988).
A.R. MEYER, "Report on the 51 international workshop on the seman
tics of programming languages in Bad Honnef," Bulletin of the EA TCS
27, pp. 83-84 (1985).
G.J. MILNE, "CIRCAL and the representation of communication, con
currency, and time," TOP LAS 7(2), pp. 270-298 (1985).
R. MILNER, A Calculus of Communicating Systems, Springer-Verlag
(1980).
R. MILNER, "Modal characterisation of observable machine behaviour,"

283

pp. 25-34 in Proceedings CAAP 81, ed. G. ASTESIANO & C. BOHM, EDS.,
Springer-Verlag (1981).

136. R. MILNER, "Calculi for synchrony and asynchrony," Theoretical Com
puter Science 25, pp. 267-310 (1983).

137. R. MILNER, "Lectures on a Calculus for Communicating Systems," pp.
197-220 in Seminar on Concurrency, ed. S.D. BROOKES, A.W. ROSCOE &
G. WINSKEL, EDS., Springer-Verlag (1985).

138. R. MILNER, Communication and concurrency, Prentice-Hall International
(1989).

139. F. MOLLER, "The importance of the left merge operator in process alge
bras," pp. 752-764 in Proceedings ICALP 90, Warwick, ed. M.S. PATER
SON, ED., Springer-Verlag (1990).

140. J.D. MONK, Mathematical logic, Springer-Verlag (1976).
141. M. NIELSEN, U. ENGBERG & K.S. LARSEN, "Fully abstract models for a

process language with refinement," pp. 523-548 in Proceedings REX
School/ Workshop on Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, Noordwijkerhout, ed. J.W. DE
BAKKER, W.-P. DE ROEVER & G. ROZENBERG, EDS., Springer-Verlag
(1989).

142. M. NIELSEN, G.D. PLOTKIN & G. WINSKEL, "Petri nets, event structures
and domains, part I," Theoretical Computer Science 13(1), pp. 85-108
(1981).

143. E.-R. OLDEROG, U. GOLTZ & R.J. VAN GLABBEEK, "Combining compo
sitionality and concurrency, summary of a GMO-workshop,
Konigswinter, March 1988," Arbeitspapiere der GMD 320, Sankt
Augustin (1988).

144. E.-R. OLDEROG & C.A.R. HOARE, "Specification-oriented semantics for
communicating processes," Acta Informatica 23, pp. 9-66 (1986).

145. D.M.R. PARK, "Concurrency and automata on infinite sequences," pp.
167-183 in Proceedings 5th GI Conference, ed. P. DEUSSEN, ED., Springer
Verlag (1981).

146. J. PARROW & P. SJODIN, "Multiway synchronization verified with cou
pled simulation," pp. 518-533 in Proceedings CONCUR '92, Stony Brook,
NY, USA, August 1992, ed. W.R. CLEAVELAND, ED., Springer-Verlag
(1992).

147. G.L. PETERSON, "Myths about the mutual exclusion problem," Informa
tion Processing Letters 12(3), pp. 115-116 (1981).

148. J. PETERSON, "Petri nets," ACM Computing Surveys 9(3), pp. 223-252
(1977).

149. C.A. PETRI, "Non-sequential processes," Intemer Bericht ISF-77-05,
Gesellschaft fur Mathematik und Datenverarbeitung, Sankt Augustin
(1977).

150. I.C.C. PHILLIPS, "Refusal testing," Theoretical Computer Science 50,
pp. 241-284 (1987).

151. G.D. PLOTKIN & V.R. PRATT, Teams can see pomsets, Manuscript avail
able from Boole.stanford.edu, 1990.

284 References

152. A. PNuEu, "Linear and branching structures in the semantics and logics
of reactive systems," pp. 15-32 in Proceedings ICALP 85, Nafplion, ed.
W. BRAUER, ED., Springer-Verlag (1985).

153. L. POMELLO, "Some equivalence notions for concurrent systems. An
overview," pp. 381-400 in Advances in Petri Nets 1985, ed. G. ROZEN
BERG, ED., Springer-Verlag (1986).

154. V.R. PRATT, "Modelling concurrency with partial orders," International
Journal of Parallel Programming 15(1), pp. 33-71 (1986).

155. A. RABINOVICH & B.A. TRAKHTENBROT, "Behavior Structures and
Nets," Fundamenta Informaticae 11(4), pp. 357-404 (1988).

156. W. REISIG, Petri nets - an introduction, Springer-Verlag (1985).
157. W. REISIG, "Petri nets in software engineering," pp. 63-96 in Petri Nets:

Applications and Relationships to Other Models of Concurrency, Advances
in Petri Nets 1986, Part II; Proceedings of an Advanced Course, Bad Hon
nef, September 1986, ed. w. BRAUER, w. REISIG & G. ROZENBERG, EDS.,
Springer-Verlag (1987).

158. A. RENSINK, "Models and methods for action refinement," Ph.D. Thesis,
University of Twente (1993).

159. W.C. ROUNDS & S.D. BROOKES, "Possible futures, acceptances, refusals
and communicating processes," pp. 140-149 in Proceedings 22nd Annual
Symposium on Foundations of Computer Science, Nashville, USA 1981,
IEEE, New York (1981).

160. M. SANDERSON,"," Ph.D. Thesis, University of Edinburgh (1982).
161. D.T. SANNELLA & A. TARLECKI, "Toward formal development of pro

grams from algebraic specifications: implementations revisited," Acta
Informatica 25, pp. 233-281 (1988).

162. D.T. SANNELLA & M. WIRSING, "A kernel language for algebraic
specification and implementation (extended abstract)," pp. 413-427 in
Proceedings International Conference on Foundations of Computation
Theory, Borgholm, ed. M. KARPINSKI, ED. (1983). long version: Report
CSR-131-83, Dept. of Computer Science, Univ. of Edinburgh, 1983

163. PH. SCHNOEBELEN, "Experiments on Processes with Backtracking," pp.
80-94 in Proceedings CONCUR 91, Amsterdam, ed. J.C.M. BAETEN &
J.F. GROOTE, EDS., Springer-Verlag (1991).

164. I. SUZUKI & T. MURATA, "A method for stepwise refinement and
abstraction of Petri nets," Journal of Computer and System Sciences 27(1),
pp. 51-76 (1983).

165. D.A. TAUBNER & W. VOGLER, "Step failure semantics and a complete
proof system," Acta Informatica 27, pp. 125-156 (1989).

166. I. ULIDOWSKI, "Equivalences on observable processes," pp. 148-159 in
Proceedings 7th Annual Symposium on Logic in Computer Science (LICS
92), Santa Cruz, California, IEEE Computer Society Press, Los Alamitos,
CA.

167. F.W. V AANDRAGER, "Verification of two communication protocols by
means of process algebra," Report CS-R8608, Centrum voor Wiskunde
en Informatica, Amsterdam (1986).

285

168. F.W. V AANDRAGER, "Process algebra semantics of POOL," Report CS
R8629, Centrum voor Wiskunde en Informatica, Amsterdam (1986).
in: Applications of process algebra, (J.C.M. Baeten, ed.), Cambridge
University Press, 1990, pp. 173-236

169. F.W. V AANDRAGER, "Some observations on redundancy in a context,"
Report CS-R8812, Centrum voor Wiskunde en Informatica, Amster
dam (1988). in: Applications of process algebra, (J.C.M. Baeten, ed.),
Cambridge University Press, 1990, pp. 237-260

170. F.W. V AANDRAGER, "An explicit representation of equivalence classes of
the history preserving bisimulation," Unpublished manuscript, quoted in
[54] (1989).

171. F.W. V AANDRAGER, "Algebraic techniques for concurrency and their
application," Ph.D. Thesis, University of Amsterdam (1990).

172. F.W. VAANDRAGER, "Determinism ➔ (event structure isomorphism =
step sequence equivalence)," Theoretical Computer Science 79, pp. 275-
294 (1991).

173. R. V ALETIE, "Analysis of Petri nets by stepwise refinements," Journal of
Computer and System Sciences 18, pp. 35-46 (1979).

174. W. VOGLER, "Behaviour preserving refinements of Petri nets," pp. 82-93
in Proceedings 12th International Workshop on Graph-Theoretic Concepts
in Computer Science, Bernried, 1986, ed. G.TINHOFER & G. SCHMIDT,
EDS., Springer-Verlag (1987).

175. W. VOGLER, "Failures semantics based on interval semiwords is a
congruence for refinement," Distributed Computing 4, pp. 139-162 (1991).

176. W. VOGLER, "Is partial order semantics necessary for action
refinement?," SFB-Bericht Nr. 342/1/91 A, Institut fur lnformatik der
Technischen Universitat Miinchen (1991).

177. W. VOGLER, "Deciding history preserving bisimilarity," pp. 495-505 in
Proceedings ICALP 91, ed. J. LEACH ALBERT, B. MONIEN & M.
RODRIGUEZ ARTALEJO, EDS., Springer-Verlag (1991).

178. W. VOGLER, Modular construction and partial order semantics of Petri
nets, Springer-Verlag (1992).

179. W. VOGLER, "Bisimulation and action refinement," Theoretical Computer
Science 114, pp. 173-200 (1993).

180. W. VOGLER, "Generalized OM-bisimulation," Information and Computa
tion, to appear (1995).

181. D.J. WALKER, "Bisimulation and divergence," I&C 85(2), pp. 202-241
(1990).

182. W.P. WEIJLAND, "Synchrony and asynchrony in process algebra," Ph.D.
Thesis, University of Amsterdam (1989).

183. G. WINSKEL, "Event structures," pp. 325-392 in Petri Nets: Applications
and Relationships to Other Models of Concurrency, Advances in Petri Nets
1986, Part II; Proceedings of an Advanced Course, Bad Honnef, September
1986, ed. w. BRAUER, w. REISIG & G. ROZENBERG, EDS., Springer
Verlag (1987).

CWI TRACTS

1 D.H.J. Epema. Surfaces with canonical hyperplane
sections. 1984.

2 J.J. Dijkstra. Fake topological Hilbert spaces and
characterizations of dimension in terms of negligi
bility. 1984.

3 A.J. van der Schan. System theoretic descriptions
of physical systems. 1984.

4 J. Koene. Minimal cost flow in processing networks,
a primal approach. 1984.

5 B. Hoogenboom. Intertwining functions on com-
pact Lie groups. 1984.

6 A.PW. Bohm Dataflow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoorn. Algorithms and approximations

for queueing systems. 1984.
9 C. P.J. Koymans. Models of the lambda calculus.

1984.
10 C.G. van der Laan, N.M. Temme. Calculation of

special functions: the gamma function, the expo
nential integrals and error-like functions. 1984.

11 N.M. van Dijk. Controlled Markov processes; time
discretization. 1984.

12 W.H. Hundsdorfer. The numerical solution of non
linear stiff initial value problems: an analysis of one
step methods. 1985.

13 D. Grune. On the design of ALEPH. 1985.
14 J.G.F. Thiemann. Analytic spaces and dynamic pro

gramming: a measure theoretic approach. 1985.
15 F.J. van der Linden. Euclidean rings with two infi

nite primes. 1985.
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic par

tial differential operators: a case-study in Fourier
integral operators. 1985.

17 H.M.M. ten Eikelder. Symmetries for dynamical
and Hamiltonian systems. 1985.

18 A.D.M. Kester. Some large deviation results in
statistics. 1985.

19 T.M.V. Janssen. Foundations and applications of
Montague grammar, part 1: Philosophy, frame
work, computer science. 1986.

20 B.F. Schriever. Order dependence. 1986.
21 D.P. van der Vecht. Inequalities for stopped Brow

nian motion. 1986.

22 J.C.S.P. van der Woude. Topological dynamix.
1986.

23 A.F. Monna. Methods, concepts and ideas in math
ematics: aspects of an evolution. 1986.

24 J.C.M. Baeten. Filters and ultrafilters over defin
able subsets of admissible ordinals. 1986.

25 A.W.J. Kolen. Tree network and planar rectilinear
location theory. 1986.

26 A.H. Veen. The misconstrued semicolon: Recon
ciling imperative languages and dataflow machines.
1986.

27 A.J.M. van Engelen. Homogeneous zero-
dimensional absolute Borel sets. 1986.

28 T.M.V. Janssen. Foundations and applications of
Montague grammar, part 2: Applications to natu
ral language. 1986.

29 H.L. Trentelman. Almost invariant subspaces and
high gain feedback. 1986.

30 A.G. de Kok. Production-inventory control models:
approximations and algorithms. 1987.

31 E.E.M. van Berkum. Optimal paired comparison
designs for factorial experiments. 1987.

32 J.H.J. Einmahl. Multivariate empirical processes.
1987

33 O.J. Vrieze. Stochastic games with finite state and
action spaces. 1987.

34 P.H.M. Kersten. Infinitesimal symmetries: a com
putational approach. 1987.

35 M.L. Eaton. Lectures on topics in probability in
equalities. 1987.

36 A.H.P. van der Burgh, R.M.M. Mattheij (eds.).
Proceedings of the first international conference
on industrial and applied mathematics {IC/AM 87).
1987.

37 L. Stougie. Design and analysis of algorithms for
stochastic integer programming. 1987.

38 J.B.G. Frenk. On Banach algebras, renewal mea
sures and regenerative processes. 1987.

39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in game
theory and related topics. 1987.

40 J.L. Geluk, L. de Haan. Regular variation, exten
sions and Tauberian theorems. 1987.

41 Sape J. Mullender (ed.). The Amoeba distributed
operating system: Selected papers 1984-1987.
1987.

42 P.R.J. Asveld, A. Nijholt (eds.). Essays on con
cepts, formalisms, and tools. 1987.

43 H. L. Bod la ender. Distributed computing: structure
and complexity. 1987.

44 A.W. van der Vaart. Statistical estimation in large
parameter spaces. 1988.

45 S.A. van de Geer. Regression analysis and empirical
processes. 1988.

46 S. P. Spekreijse. Multigrid solution of the steady
Euler equations. 1988.

47 J.B. Dijkstra. Analysis of means in some non
standard situations. 1988.

48 F.C. Drost. Asymptotics for generalized chi-square
goodness-of-fit tests. 1988.

49 F. W. Wubs. Numerical solution of the shallow
water equations. 1988.

50 F. de Kerf. Asymptotic analysis of a class of per
turbed Korteweg-de Vries initial value problems.
1988.

51 P.J.M. van Laarhoven. Theoretical and computa
tional aspects of simulated annealing. 1988.

52 P.M. van Loon. Continuous decoupling transforma
tions for linear boundary value problems. 1988.

53 K.C.P. Machielsen. Numerical solution of optimal
control problems with state constraints by sequen
tial quadratic programming in function space. 1988.

54 L.C.R.J. Willenborg. Computational aspects of sur
vey data processing. 1988.

55 G.J. van der Steen. A program generator for recog
nition, parsing and transduction with syntactic pat
terns. 1988.

56 J.C. Ebergen. Translating programs into delay
insensitive circuits. 1989.

57 S.M. Verduyn Lune!. Exponential type calculus for
linear delay equations. 1989.

58 M.C.M. de Gunst. A random model for plant cell
population growth. 1989.

59 D. van Dulst. Characterizations of Banach spaces

not containing 11 . 1989.
60 H.E. de Swart. Vacillation and predictability prop

erties of low-order atmospheric spectral models.
1989.

61 P. de Jong. Central limit theorems for generalized
multilinear forms. 1989.

62 V.J. de Jong. A specification system for statistical
software. 1989.

63 8. Hanzon. Identifiability, recursive identification
and spaces oflineardynamical systems, part I. 1989.

64 8. Hanzon. Identifiability, recursive identification
and spaces of linear dynamical systems, part If.
1989.

65 B.M.M. de Weger. Algorithms for diophantine
equations. 1989.

66 A. Jung. Cartesian closed categories of domains.
1989.

67 J.W. Polderman. Adaptive control & identification:
Conflict or conflux?. 1989.

68 H.J. Woerdeman. Matrix and operator extensions.
1989.

69 8.G. Hansen. Monotonicity properties of infinitely
divisible distributions. 1989.

70 J.K. Lenstra, H.C. Tijms, A. Volgenant (eds.).
Twenty-five years of operations research in the
Netherlands: Papers dedicated to Gijs de Leve.
1990.

71 P.J.C. Spreij. Counting process systems. Identifi
cation and stochastic realization. 1990.

72 J. F. Kaashoek. Modeling one dimensional pattern
formation by anti-diffusion. 1990.

73 A.M.H. Gerards. Graphs and polyhedra. Binary
spaces and cutting planes. 1990.

74 8. Koren. Multigrid and defect correction for the
steady Navier-Stokes equations. Application to
aerodynamics. 1991.

75 M.W.P. Savelsbergh. Computer aided routing.
1992.

76 O.E. Flippo. Stability, duality and decomposition in
general mathematical programming. 1991.

77 A.J. van Es. Aspects of nonparametric density es
timation. 1991.

78 G.A.P. Kindervater. Exercises in parallel combina
torial computing. 1992.

79 J.J. Lodder. Towards a symmetrical theory of gen
eralized functions. 1991.

80 S.A. Smulders. Control of freeway traffic flow.
1996.

81 P.H.M. America, J.J.M.M. Rutten. A parallel
object-oriented language: design and semantic
foundations. 1992.

82 F. Thuijsman. Optimality and equilibria in stochas
tic games. 1992.

83 R.J. Kooman. Convergence properties of recurrence
sequences. 1992.

84 A.M. Cohen (ed.). Computational aspects of Lie
group representations and related topics. Proceed
ings of the 1990 Computational Algebra Seminar at
CW/, Amsterdam. 1991.

85 V. de Valk. One-dependent processes. 1994.
86 J.A. Baars, J.A.M. de Groot. On topological and

linear equivalence of certain function spaces. 1992.
87 A.F. Monna. The way of mathematics and mathe

maticians. 1992.
88 E.D. de Goede. Numerical methods for the three

dimensional shallow water equations. 1993.
89 M. Zwaan. Moment problems in Hilbert space with

applications to magnetic resonance imaging. 1993.
90 C. Vuik. The solution of a one-dimensional Stefan

problem. 1993.
91 E.R. Verheul. Multimedians in metric and normed

spaces. 1993.

92 J. L. M. Maubach. Iterative methods for non-linear
partial differential equations. 1994.

93 A.W. Ambergen. Statistical uncertainties in poste
rior probabilities. 1993.

94 P.A. Zegeling. Moving-grid methods for time
dependent partial differential equations. 1993.

95 M.J.C. van Pul. Statistical analysis of software re
liability models. 1993.

96 J.K. Scholma. A Lie algebraic study of some inte
grable systems associated with root systems. 1993.

97 J. L. van den Berg. Sojourn times in feedback and
processor sharing queues. 1993.

98 A.J. Koning. Stochastic integrals and goodness-of
fit tests. 1993.

99 B.P. Sommeijer. Parallelism in the numerical inte
gration of initial value problems. 1993.

100 J. Molenaar. Multigrid methods for semiconductor
device simulation. 1993.

101 H.J.C. Huijberts. Dynamic feedback in nonlinear
synthesis problems. 1994.

102 J .A. M. van der Weide. Stochastic processes and
point processes of excursions. 1994.

103 P.W. Hemker, P. Wesseling (eds.). Contributions
to multigrid. 1994.

104 I.J.B.F. Adan. A compensation approach for queue
ing problems. 1994.

105 O.J. Boxma, G.M. Koole (eds.). Performance eval
uation of parallel and distributed systems - solution
methods. Part 1. 1994.

106 O.J. Boxma, G.M. Koole (eds.). Performance eval
uation of parallel and distributed systems - solution
methods. Part 2. 1994.

107 R.A. Trompert. Local uniform grid refinement for
time-dependent partial differential equations. 1995.

108 M.N.M. van Lieshout. Stochastic geometry models
in image analysis and spatial statistics. 1995.

109 R.J. van Glabbeek. Comparative concurrency se
mantics and refinement of actions. 1996.

110 W. Vervaat, H. Holwerda (ed.). Probability and
lattices. 1997.

111 I. Helsloot. Covariant formal group theory and some
applications. 1995.

112 R.N. Bol. Loop checking in logic programming.
1995.

113 G.J.M. Koole. Stochastic scheduling and dynamic
programming. 1995.

114 M.J. van der Laan. Efficient and inefficient estima
tion in semiparametric models. 1995.

115 S.C. Borst. Polling models. 1996.
116 G.D. Otten. Statistical test limits in quality control.

1996.
117 K.G. Langendoen. Graph reduction on shared

memory multiprocessors. 1996.
118 W.C.A. Maas. Nonlinear1i 00 control: the singular

case. 1996.
119 A. Di Bucchianico. Probabilistic and analytical as

pects of the umbra/ calculus. 1997.
120 M. van Loon. Numerical methods in smog predic

tion. 1997.
121 B.J. Wijers. Nonparametric estimation for a win

dowed line-segment process. 1997.
122 W.K. Klein Haneveld, O.J. Vrieze, L.C.M. Kallen

berg (editors). Ten years LNMB - Ph.D. research
and graduate courses of the Dutch Network of Op
erations Research. 1997.

MA TH EMA T/CAL CENTRE TRACTS
I T. van dcr Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Samplingfrom a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes,
part /: model and method. 1964.
4 G. de Leve. Generalized Markovian decision processes,
part I I: probabilistic background. 1964.

5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
IO E.M. de Jager. Applications of distributions in mathematical

physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokkcn, tg6;~n Wijngaarden. Formal properties of newspaper Dutch.

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print:
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Fonnal definition of programmi1i
\a9$.ages with an application to the definition of AL OL 60.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part /. I 968.
18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.
19 J. van der Slot. Some properties related to compactness.
1968.
20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1968.
21 E. Wattel. The compactness operator in set theory and
topology. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra.
part/. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J. W. de Bakker. Recursive procedures. 1971.
25 E.R. Paerl. Representations of the Lorelltz group and projec
tive geometry. 1969.
26 European Meeting 1968. Selected statistical paperJ~ part I.
1968.

f l6i~ropean Meeting 1968. Selected statistical papers, part I/.

28 J. Oosterhoff. Combination of one-sided statistical tests.
1969.
29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.

31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distrlbution functions. 1970.
32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservations of infinite divisibility under mix
ing and related topics. 1970.
34 I. Juhasz. A. Verbeek, N.S. Kroonenberg. Cardinal Junc
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw. A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper.
F.E.J. Kruseman Aretz, W.L. van der Poe!, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of(s,S) inventory models. 1972.
41 A. Verbeek. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). f972.
43 P.H. Ruymgaart. Asymptotic theory of rank tests for
independence. 1973.
44 H. Bart. Meromorphic operator valuedfunctions. 1973.

45 A.A. Balkema. Monotone transformarions and limit laws.
1973. .

46 R.P. van de Riel. ABC ALGOL. a portable language for
formula manipulation systems, part 1: the language. 1973.
47 R.P. van de Rici. ABC ALGOL, a porwbie /angtw/!,efor
formula manipulation !iystems, part 2: the compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen. H.L.
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler.for the EL-XS. 1973.
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G.
Fisker {eds.). Revised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.
52 P~C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part /:
theory of designs, finite geometry and coding theory. l974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations. partitions and combinatorial
geometry. 1914.
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group the01y. 1974.
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975.
59 J.L. Mijnheer. Sample path properties <?f stable processes.
1975.
60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations ~f computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1975.
65 J. de Vries. Topological transformation groups, 1: a categor•
ical approach. 1975.
66 H.G.J. Pijls. logical{y convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularlj1 perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markm' decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic lame
functions and their applications in the the01y of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness of inlllitionistic logic. I 979.
74 H.J.J. te Riele. A theoretical and computational study of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo•
logical spaces. 1977.
76 M. Rem. Associons and the closure statements. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in exponential families. 1978.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977.
79 M.C.A. van Zuijlen. Empirical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical study of stiff two-point bounda(Y
problems. 1977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science ll, part /. 1976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part 2. 1976.
83 L.S. van Benthem Jutting. Checking landau's
"Grundlagen" in the AUTOMATH system. 1979.
84 H.L.L. Busard. The translation of the elemellts of Euclid
from the Arabic into Latin by Hermann of Carinthia (?), books
vii-xii. 1977.
85 J. van Mill. Supercompactness and Wallmann spaces. 1977.
86 S.G. van der Meulen. M. Veldhorst. Torrix I, a program
ming system for operations on vectors and matrices over arbi
trary fields and oJ variable size. 1978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and ana
(vtic functionals with unbounded carriers. I 978.
90 L.P.J. Groencwcgen. Characterization of optimal strategies
in dynamic games. I 981.

91 J.M. Geysel. Transcendence infields of positive characteris
tic. 1979.
92 P.J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms, J. Wessels (eds.). Markov decision theory.
1977.
94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. 1978.
95 K.M. van Hee. Bayesian control of Markov chains. I 978.
96 P.M.B. Vit.inyi. Lindenmayer systems: structure,
languages, and growth functions. 1980.
97 A. Federgruen. Markovian control problems; functional
equations and algorithm<;. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas
(eds.). Interfaces between computer science and operations
research. I 978.
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
1. 1979.
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff(eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
2. 1979. :g~8~. van Dulst. Reflexive and superreflexive Banach spaces.

103 K. van Ham. Classifying infinitely divisible distributions
by functional equations. 1978.
I04 J.M. van Wouwe. GO-spaces and generalizations of metri
zability. 1979.
1 OS R. Helmers. Edgeworth expansions for linear combinations
of order statistics. 1982.
~g~9~. Schrijver (ed.). Packing and covering in combinatorics.

107 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979.
I08 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science II I, part 1. J 979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science Ill, part 2. 1979.
I 10 J.C. van Vliet. ALGOL 68 transput, part 1: historical
review and discussion of the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 transput, part JI: an implemen
tation model. 1979.
I 12 H.C.P. Berbee. Random walks with stationary increments
and renewai theory. 1979.
113 T.A.B. Snijders. Asymptotic optimality theory for testing
problems with restricted alternatives. J 979.
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harmonic analysis of generalized stochastic processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structures JI,
part 1. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological structures JI,
part 2. 1979.
117 P.J.M. Kallenberg. Branching processes with continuous
state space. 1979.
118 P. Groeneboom. Large deviations and asymptotic
efficiencies. 1980.
I 19 F.J. Peters. Sparse matrices and substructures, with a nol•el
implementation oJ finite element algorithms. I 980.
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980.
121 W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.
122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. 1980.

i~~l· Yuhilsz. Cardinal functions in topology. ten years later.

124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980.
127 J.W. Klop. Combinatory reduction systems. 1980.
128 A.J.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicialfixed point algorithms. 1980.
130 P.J.W. ten Ha!en, T. Hagen, P. Klint, H. Noot, H.J.
~~iii.A.H. Veen. I P: intermediate language/or pictures.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The interval function of a graph. 1980.

133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981.
134 J.C. van Vliet, H. Wu1'ler (eds.). Proceedings interna
tional coriference on ALGO 68. 1981.
135 J.A.G. Groenendijk. T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part I. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part II. 198 I.
137 J. Telgen. Redundancy and linear progratns. 1981.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic programming, succes
sive approximations and nearly optimal strategies for Afarkov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of pure
exchange economies without the no-critical-point hypothesis.
1981.
141 G.E. Welters. Abel.Jacobi isogeniesfor certain types of
Fano three/olds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structure::,; part I. 1981.
143 J.M. Schumacher. Dynamic feedback in finite- and
infinite-dimensional linear systems. 1981.
144 P. Eijgenraam. The solution of initial value problems using
interval arithmetic; formulation and ana{ysis of an algorithm.
1981.
145 A.J. Brentjes. Multi-dimensional continued fraction algo
rithms. 1981.
146 C.V.M. van der Mee. Semigroup and factorization
methods in transport theory. 198"1.
147 H.H. Tigelaar. Identification and irifonnative sample size.
1982.
148 L.C.M. Kallenberg. Linear programming and.finite Mar
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg,
W.K. Vietsch (eds.). From A to z. proceedings of a sympo
sium in honour of A. C. Zaanen. J 982.
150 M. Veldhorst. An analysis of sparse matrix storage
schemes. 1982.
151 R.J.M.M. Does. Higher order asymptoticsfor simple linear
rank statistics. 1982.

~~~2?.F. van der Hoeven. Projections of lawless sequencies. 

153 J.P.C. Blanc. Af;'f'lication of lhe theory of boundary value 
problems in the anarysis of a queueing model with paired ser
vices. 1982. 
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part /. 1982. 
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part II. I 982. 
156 P.M.G. Apers. Query processing and data a/location in 
distributed database systems. 1983. 
157 H.A.W.M. Kneppers. The covariant classification oftwo
dimensional smooth commutative formal groups over an alge• 
braica/Q1 closed field of positive characteristic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science TV. distributed systems, part J. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part 2. 1983. 
160 A. Rezus. Abstract AUTOMATfl. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations of the 
second kind with applications in fluid mechanics. l 983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen• 
~~~~~ techniques, with an application to garbage collection. 

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983.
168 J.H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations, 1983.
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 2. 1983.

