2,107 research outputs found

    Relating Developers’ Concepts and Artefact Vocabulary in a Financial Software Module

    Get PDF
    Developers working on unfamiliar systems are challenged to accurately identify where and how high-level concepts are implemented in the source code. Without additional help, concept location can become a tedious, time-consuming and error-prone task. In this paper we study an industrial financial application for which we had access to the user guide, the source code, and some change requests. We compared the relative importance of the domain concepts, as understood by developers, in the user manual and in the source code. We also searched the code for the concepts occurring in change requests, to see if they could point developers to code to be modified. We varied the searches (using exact and stem matching, discarding stop-words, etc.) and present the precision and recall. We discuss the implication of our results for maintenance

    Improving information retrieval-based concept location using contextual relationships

    Get PDF
    For software engineers to find all the relevant program elements implementing a business concept, existing techniques based on information retrieval (IR) fall short in providing adequate solutions. Such techniques usually only consider the conceptual relations based on lexical similarities during concept mapping. However, it is also fundamental to consider the contextual relationships existing within an application’s business domain to aid in concept location. As an example, this paper proposes to use domain specific ontological relations during concept mapping and location activities when implementing business requirements

    Locating bugs without looking back

    Get PDF
    Bug localisation is a core program comprehension task in software maintenance: given the observation of a bug, e.g. via a bug report, where is it located in the source code? Information retrieval (IR) approaches see the bug report as the query, and the source code files as the documents to be retrieved, ranked by relevance. Such approaches have the advantage of not requiring expensive static or dynamic analysis of the code. However, current state-of-the-art IR approaches rely on project history, in particular previously fixed bugs or previous versions of the source code. We present a novel approach that directly scores each current file against the given report, thus not requiring past code and reports. The scoring method is based on heuristics identified through manual inspection of a small sample of bug reports. We compare our approach to eight others, using their own five metrics on their own six open source projects. Out of 30 performance indicators, we improve 27 and equal 2. Over the projects analysed, on average we find one or more affected files in the top 10 ranked files for 76% of the bug reports. These results show the applicability of our approach to software projects without history

    The use of TRAO to manage evolution risks in e-government

    Get PDF
    The need to develop and provide more efficient ways of providing Electronic Government Services to key stakeholders in government has brought about varying degrees of evolution in government. This evolution is seen in different ways like the merging of government departments, the merging of assets or its components with legacy assets etc. This has involved the incorporation of several practices that are geared towards the elimination of processes that are repetitive and manual while attempting to progressively encourage the interaction that exists between the different stakeholders. However, some of these practices have further complicated processes in government thus creating avenues for vulnerabilities which if exploited expose government and government assets to risks and threats. Focusing on ways to manage the issues accompanied with evolution can better prepare governments for manging the associated vulnerabilities, risks and threats. The basis of a conceptual framework is provided to establish the relationships that exist between the E-Government, asset and security domains. Thus, this thesis presents a design research project used in the management of evolution-related risks. The first part of the project focusses on the development of a generic ontology known as TRAO and a scenario ontology TRAOSc made up of different hypothetical scenarios. The resulting efficiency of the development of these ontologies have facilitated the development of an intelligent tool TRAOSearch that supports high-level semantically enriched queries. Results from the use of a case study prove that there are existing evolution-related issues which governments may not be fully prepared for. Furthermore, an ontological approach in the management of evolution-related risks showed that government stakeholders were interested in the use of intelligent processes that could improve government effectiveness while analysing the risks associated with doing this. Of more importance to this research was the ability to make inferences from the ontology on existing complex relationships that exist in the form of dependencies and interdependencies between Stakeholders and Assets. Thus, this thesis presents contributions in the aspect of advancing stakeholders understanding on the types of relationships that exist in government and the effect these relationships may have on service provisioning. Another novel contribution can be seen in the correction of the ambiguity associated with the terms Service, IT Service and E-Government. Furthermore, the feedback obtained from the use of an ontology-based tool during the evaluation phase of the project provides insights on whether governments must always be at par with technological evolution

    Locating Bugs without Looking Back

    Get PDF
    Bug localisation is a core program comprehension task in software maintenance: given the observation of a bug, where is it located in the source code files? Information retrieval (IR) approaches see a bug report as the query, and the source code files as the documents to be retrieved, ranked by relevance. Such approaches have the advantage of not requiring expensive static or dynamic analysis of the code. However, most of state-of-the-art IR approaches rely on project history, in particular previously fixed bugs and previous versions of the source code. We present a novel approach that directly scores each current file against the given report, thus not requiring past code and reports. The scoring is based on heuristics identified through manual inspection of a small set of bug reports. We compare our approach to five others, using their own five metrics on their own six open source projects. Out of 30 performance indicators, we improve 28. For example, on average we find one or more affected files in the top 10 ranked files for 77% of the bug reports. These results show the applicability of our approach to software projects without history

    Model driven validation approach for enterprise architecture and motivation extensions

    Get PDF
    As the endorsement of Enterprise Architecture (EA) modelling continues to grow in diversity and complexity, management of its schema, artefacts, semantics and relationships has become an important business concern. To maintain agility and flexibility within competitive markets, organizations have also been compelled to explore ways of adjusting proactively to innovations, changes and complex events also by use of EA concepts to model business processes and strategies. Thus the need to ensure appropriate validation of EA taxonomies has been considered severally as an essential requirement for these processes in order to exert business motivation; relate information systems to technological infrastructure. However, since many taxonomies deployed today use widespread and disparate modelling methodologies, the possibility to adopt a generic validation approach remains a challenge. The proliferation of EA methodologies and perspectives has also led to intricacies in the formalization and validation of EA constructs as models often times have variant schematic interpretations. Thus, disparate implementations and inconsistent simulation of alignment between business architectures and heterogeneous application systems is common within the EA domain (Jonkers et al., 2003). In this research, the Model Driven Validation Approach (MDVA) is introduced. MDVA allows modelling of EA with validation attributes, formalization of the validation concepts and transformation of model artefacts to ontologies. The transformation simplifies querying based on motivation and constraints. As the extended methodology is grounded on the semiotics of existing tools, validation is executed using ubiquitous query language. The major contributions of this work are the extension of a metamodel of Business Layer of an EAF with Validation Element and the development of EAF model to ontology transformation Approach. With this innovation, domain-driven design and object-oriented analysis concepts are applied to achieve EAF model’s validation using ontology querying methodology. Additionally, the MDVA facilitates the traceability of EA artefacts using ontology graph patterns
    corecore