
Open Research Online
The Open University’s repository of research publications
and other research outputs

Improving Information Retrieval Bug Localisation
Using Contextual Heuristics
Thesis
How to cite:

Dilshener, Tezcan (2017). Improving Information Retrieval Bug Localisation Using Contextual Heuristics. PhD
thesis The Open University.

For guidance on citations see FAQs.

c© 2016 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Improving Information Retrieval

Based Bug Localisation Using

Contextual Heuristics

Tezcan Dilshener M.Sc.

A thesis submitted to

The Open University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing

Department of Computing and Communications

Faculty of Mathematics, Computing and Technology

The Open University

September 2016

Copyright © 2016 Tezcan Dilshener

Abstract

Software developers working on unfamiliar systems are challenged to identify where and how

high-level concepts are implemented in the source code prior to performing maintenance tasks.

Bug localisation is a core program comprehension activity in software maintenance: given the

observation of a bug, e.g. via a bug report, where is it located in the source code?

Information retrieval (IR) approaches see the bug report as the query, and the source

files as the documents to be retrieved, ranked by relevance. Current approaches rely on

project history, in particular previously fixed bugs and versions of the source code. Existing

IR techniques fall short of providing adequate solutions in finding all the source code files

relevant for a bug. Without additional help, bug localisation can become a tedious, time-

consuming and error-prone task.

My research contributes a novel algorithm that, given a bug report and the application’s

source files, uses a combination of lexical and structural information to suggest, in a ranked

order, files that may have to be changed to resolve the reported bug without requiring past

code and similar reports.

I study eight applications for which I had access to the user guide, the source code, and

some bug reports. I compare the relative importance and the occurrence of the domain

concepts in the project artefacts and measure the e↵ectiveness of using only concept key

words to locate files relevant for a bug compared to using all the words of a bug report.

Measuring my approach against six others, using their five metrics and eight projects, I

position an e↵ected file in the top-1, top-5 and top-10 ranks on average for 44%, 69% and 76%

of the bug reports respectively. This is an improvement of 23%, 16% and 11% respectively

over the best performing current state-of-the-art tool.

Finally, I evaluate my algorithm with a range of industrial applications in user studies,

and found that it is superior to simple string search, as often performed by developers. These

results show the applicability of my approach to software projects without history and o↵ers

a simpler light-weight solution.

i

ii

Acknowledgements

I express my thanks and sincere gratitude to my supervisors, Dr. Michel Wermelinger and

Dr. Yijun Yu, for believing in my research and in my capabilities. Their dedicated sup-

port, direction and the guidance made my journey through the research forest a conquerable

experience.

Simon Butler for his assistance in using the JIM tool and for the countless proof readings

of my work. As my research buddy, he always managed to motivate and encourage me.

Prof. Marian Petre for sharing her valuable experience during online seminar sessions and

organising the best departmental conferences.

Prof. Hongyu Zhang for kindly providing BugLocator and its datasets, Ripon Saha for

the BLUiR dataset, Laura Moreno for the LOBSTER dataset and Chu-Pan Wong for giving

me access to the source code of his tool BRTracer.

Jana B. at our industrial partner, a global financial IT solutions provider located in

southern Germany, for providing the artefacts to one of their proprietary application that I

used throughout my research and their input on diverse information required.

Markus S., Georgi M. and Alan E. for being the proxy at their business locations while I

conducted my user study. Also to Markus S. at our industrial partner for his countless hours

of discussions on patterns in software applications and source code analysis.

My wife Anja for her endless patience, understanding and respect. With her love, encour-

agement and dedicated coaching, I stood the emotional up and down phases of my research,

thus completed my Ph.D. studies.

To my two daughters, Denise and Jasmin for allowing their play time with me to be spent

on my research instead.

Last but not least, thank you to all those who wish to remain unnamed for contributing

to my dedication.

Finally, there are no intended contradictory intentions implied to any individual or estab-

lishment.

iii

iv

Contents

Contents viii

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Academic Motivation: Software Maintenance Challenges 1

1.2 Industry Motivation: Industry Needs in Locating Bugs 3

1.3 An Example of Information Retrieval Process 3

1.4 Existing Work and The Limitations . 7

1.5 Research Questions . 9

1.6 Overview of the Chapters . 11

1.7 Summary . 13

2 Landscape of Code Retrieval 15

2.1 Concept Assignment Problem . 16

2.2 Information Retrieval as Conceptual Framework 17

2.2.1 Evaluation Metrics . 18

2.2.2 Vector Space Model and Latent Semantic Analysis 18

2.2.3 Dynamic Analysis and Execution Scenarios 20

2.2.4 Source Code Vocabulary . 21

2.2.5 Ontology Relations . 25

2.2.6 Call Relations . 27

2.3 Information Retrieval in Bug Localisation . 29

2.3.1 Evaluation Metrics . 31

2.3.2 Vocabulary of Bug Reports in Source Code Files 32

v

2.3.3 Using Stack Trace and Structure . 34

2.3.4 Version History and Other Data Sources 37

2.3.5 Combining Multiple Information Sources 39

2.4 Current Tools . 43

2.5 User Studies . 46

2.6 Summary . 49

2.6.1 Conclusion . 52

3 Relating Domain Concepts and Artefact Vocabulary in Software 55

3.1 Introduction . 56

3.2 Previous Approaches . 57

3.3 My Approach . 59

3.3.1 Data Processing . 60

3.3.1.1 Data Extraction Stage . 61

3.3.1.2 Persistence Stage . 64

3.3.1.3 Search Stage . 66

3.3.2 Ranking Files . 68

3.4 Evaluation of the results . 71

3.4.1 RQ1.1: How Does the Degree of Frequency Among the Common Con-

cepts Correlate Across the Project Artefacts? 71

3.4.1.1 Correlation of common concepts across artefacts 75

3.4.2 RQ1.2: What is the Vocabulary Similarity Beyond the Domain Con-

cepts, which may Contribute Towards Code Comprehension? 76

3.4.3 RQ1.3: How can the Vocabulary be Leveraged When Searching for

Concepts to Find the Relevant Files? 79

3.4.3.1 Performance . 81

3.4.3.2 Contribution of VSM . 81

3.4.3.3 Searching for AspectJ and SWT in Eclipse 83

3.5 Threats to validity . 84

3.6 Discussion . 85

3.7 Concluding Remarks . 86

vi

4 Locating Bugs without Looking Back 89

4.1 Introduction . 90

4.2 Existing Approaches . 93

4.3 Extended Approach . 95

4.3.1 Ranking Files Revisited . 96

4.3.1.1 Scoring with Key Positions (KP score) 97

4.3.1.2 Scoring with Stack Traces (ST score) 99

4.3.1.3 Rationale behind the scoring values 100

4.4 Evaluation of the Results . 100

4.4.1 RQ2: Scoring with File Names in Bug Reports 101

4.4.1.1 Scoring with Words In Key Positions (KP score) 101

4.4.1.2 Scoring with Stack Trace Information (ST score) 103

4.4.1.3 KP and ST Score improvement when Searching with Concepts

Only vs all Bug Report Vocabulary 105

4.4.1.4 Variations of Score Values 106

4.4.1.5 Overall Results . 108

4.4.1.6 Performance . 114

4.4.2 RQ2.1: Scoring without Similar Bugs 116

4.4.3 RQ2.2: VSM’s Contribution . 118

4.5 Discussion . 120

4.5.1 Threats to Validity . 122

4.6 Concluding Remarks . 123

5 User studies 125

5.1 Background . 125

5.2 Study Design . 127

5.3 Results . 129

5.3.1 Pre-session Interview Findings . 129

5.3.2 Post-session Findings . 131

5.4 Evaluation of the Results . 134

5.4.1 Threats to Validity . 136

5.5 Concluding Remarks . 137

vii

6 Conclusion and Future Directions 139

6.1 How the Research Problem is Addressed . 139

6.1.1 Relating Domain Concepts and Vocabulary 140

6.1.2 Locating Bugs Without Looking Back 142

6.1.3 User Studies . 145

6.1.4 Validity of My Hypothesis . 145

6.2 Contributions . 146

6.2.1 Recommendations for Practitioners 146

6.2.2 Suggestions for Future Research . 147

6.3 A Final Rounding O↵ . 150

Bibliography 153

A Glossary 167

B Top-5 Concepts 170

C Sample Bug Report Descriptions 172

D Search Pattern for Extracting Stack Trace 173

E Domain Concepts 174

viii

List of Figures

1.1 Information retrieval repository creation and search process 4

1.2 Bug report with a very terse description in SWT project 5

1.3 AspectJ project’s bug report description with stack trace information 6

1.4 Ambiguous bug report description found in SWT 7

3.1 ConCodeSe Data Extraction, Storage and Search stages 61

3.2 Block style comment example used in a source code file 63

3.3 ConCodeSe database table extensions in addition to JIM database tables . . 65

3.4 Referential relations linking the information stored in ConCodeSe and JIM

database tables. 66

3.5 Pseudo code example of an SQL select statement for finding domain concepts

that occur in bug report #PMO-2012 . 66

3.6 Distribution of concepts among AspectJ, Eclipse, SWT and ZXing projects . 73

3.7 Distribution of concepts among Tomcat, ArgoUML, Pillar1 and Pillar2 projects 74

4.1 Performance comparison of MAP and MRR values per tool for AspectJ, Eclipse

and SWT (n=number of BRs analysed) . 109

4.2 Performance comparison of MAP andMRR values per tool for Tomcat, ArgoUML,

Pillar1 and Pillar2 (n=number of BRs analysed) 110

4.3 Performance compare of the tools for AspectJ and Eclipse (n=BRs analysed) 111

4.4 Performance compare of the tools for SWT and ZXing (n=BRs analysed) . . 112

4.5 Performance compare of the tools for Tomcat, ArgoUML, Pillar1 and Pillar2

(n=number of BRs analysed) . 113

4.6 Recall performance of the tools for top-5 and top-10 for AspetcJ, Eclipse, SWT

and ZXing (n=number of BRs analysed) . 115

ix

4.7 Recall performance of the tools for top-5 and top-10 for Tomcat, ArgoUML,

Pillar1 and Pillar2 (n=number of BRs analysed) 116

D.1 Search pattern for stack trace . 173

x

List of Tables

2.1 Project artefacts and previous studies that also used them 44

3.1 Number of a↵ected files per bug report (BR) in each project under study . . 68

3.2 Sample of ranking achieved by all search types in SWT project 69

3.3 Total and unique number of word occurrences in project artefacts 72

3.4 Spearman rank correlation of common concepts between the project artefacts

using exact concept terms . 75

3.5 Spearman rank correlation of common concepts between the project artefacts

using stemmed concept terms . 76

3.6 Common terms found in source files of each application across all projects . . 77

3.7 Common identifiers found in source files of each application across all projects 78

3.8 Bug reports for which at least one a↵ected file placed into top-N using concept

terms only search . 80

3.9 Bug reports for which at least one a↵ected file placed into top-N using all of

the bug report vocabulary . 80

3.10 Recall performance at top-N with full bug report vocabulary search 81

3.11 Bug reports for at least one a↵ected file placed into top-N using VSM vs lexical

similarity scoring using concept terms only search 82

3.12 Bug reports for at least one a↵ected file placed into top-N using VSM vs lexical

similarity scoring using full bug report vocabulary search 83

3.13 Search performance for SWT and AspectJ bug reports within Eclipse code base 83

4.1 Comparison of IR model and information sources used in other approaches . 96

4.2 Sample of words in key positions showing presence of source file names 98

4.3 Summary of file names at key positions in the analysed bug reports 98

4.4 Stack trace information available in bug reports (BR) of each project 99

xi

4.5 Example of ranking achieved by leveraging key positions in SWT bug reports

compared to other tools . 102

4.6 Performance comparison of scoring variations: Key Position (KP+TT) vs

Stack Trace (ST+TT) vs Text Terms (TT only) 103

4.7 Example of ranking achieved by leveraging stack trace information in AspectJ

bug reports compared to other tools . 104

4.8 Performance comparison between using combination of all scores vs only TT

score during search with only concept terms 105

4.9 Performance comparison between using combination of Key Word and Stack

Trace scoring On vs O↵ . 106

4.10 Performance comparison of using variable values for KP, ST and TT scores . 107

4.11 Number of files for each bug report placed in the top-10 by ConCodeSe vs

BugLocator and BRTracer . 114

4.12 Example of ranking achieved by leveraging similar bug reports in other tools

vs not in ConCodeSe . 117

4.13 Performance of ConCodeSe compared to BugLocator and BRTracer without

using similar bug reports score across all projects 118

4.14 Performance comparison between Lucene VSM vs lexical similarity scoring

within ConCodeSe . 119

4.15 Wilcoxon test comparison for top-5 and top-10 performance of BugLocator

and BRTracer vs ConCodeSe . 123

5.1 Business nature of the companies and professional experience of the parti-

cipants involved in the user study . 128

5.2 Project artefact details used in the study at the participating companies . . . 128

B.1 Top-5 concepts occuring across the project artefacts 170

B.2 Top-5 concepts occuring across the project artefacts - cont. 171

C.1 Sub-set of bug report descriptions for Pillar1 and Pillar2 172

E.1 Graphical User Interface (GUI) Domain Concepts 174

E.2 Integrated Development Environment (IDE) Domain Concepts 175

E.3 Bar Code (imaging/scanning) Domain Concepts 176

E.4 Servlet Container Domain Concepts . 177

xii

E.5 Aspect Oriented Programming (AOP) Domain Concepts 177

E.6 Basel-II Domain Concepts . 178

E.7 Unified Modelling Language (UML) Domain Concepts 178

xiii

xiv

Chapter 1

Introduction

As current software applications become more acceptable and their lifespan stretches beyond

their estimated life expectancies, they evolve into legacy systems. These applications become

valuable strategic assets to companies and require ongoing maintenance to continue providing

functionality for the business. To reduce the cost of ownership, such companies may turn

towards third party developers to take over the task of maintaining these applications. These

consultants, due to the impermanent nature of their job, could introduce high-turn around

and cause the knowledge of the applications to move further away from its source.

Each time a new developer is designated to perform a maintenance task, the associated

high learning curve results in loss of precious time, incurring additional costs. As the doc-

umentation and other relevant project artefacts decay, to understand the current state of

the application before implementing a change, the designated software developer has to go

through the complex task of understanding the code.

In this Chapter, I describe the current challenges faced by software developers when

performing maintenance tasks and my motivation for conducting this research. Henceforth, I

show examples of the information retrieval process in software maintenance and identify the

limitations of the existing approaches. Subsequently, I define the hypothesis that I investigate

and the research questions I aim to answer to address some of the highlighted limitations.

Finally, I summarise by giving an overview of the chapters contained in this thesis.

1.1 Academic Motivation: Software Maintenance Challenges

IEEE standards 1219 define software maintenance as the task of modifying a software applic-

ation after it has been delivered for use, to correct any unforeseen faults, apply improvements

1

or enhance it for other environments. Corbi (1989) identified that program comprehension

— i.e. the process of understanding a program — is an important activity a developer must

undertake before performing any maintenance tasks.

Program comprehension forms a considerable component of the e↵ort and costs of software

maintenance. Between 40–60% of software maintenance e↵orts are dedicated to understand-

ing the software application (Pigoski, 1996), and the cost of change control — i.e. the process

of managing maintenance — is estimated to make up 50–70% of the project life cycle costs,

(Hunt et al., 2008).

Prior to performing a maintenance task, the designated developer has to become familiar

with the application in concern. If unfamiliar, she has to read the source code to understand

how those program elements, e.g. source code class files (see Appendix A), interact with

each other to accomplish the described use case. Even the experienced programmers face a

tremendous learning curve while understanding the applications domain when they move to

another area within their current projects, (Davison et al., 2000). It is concluded that during

maintenance there is a tendency of 60–80% of time being spent on discovering and argued

that it is much harder to understand the problem than to implement a solution.

During application development, it would have been ideal for program comprehension

to use the same words found in the requirements documentation when declaring program

identifier names, i.e. source code entities (Appendix A). However, the developers often choose

the abbreviated form of the words and names found in the text documentation as well as

use nouns and verbs in compound format to capture the described actions. In addition,

the layered multi-tier architectural guidelines, (Parnas, 1972), cause the program elements

implementing the domain concept (Appendix A) to be scattered across the application and

creates challenges during maintenance when linking the application source code to the text

documentation.

Software maintainers can face further barriers during program comprehension because

the knowledge recorded in source code and documentation can decay. Each change cycle

causes degradation amongst the project artefacts like program elements, architecture and its

documentation, if the changes are not propagated to these artefacts, (Lehman, 1980). The

study conducted by Feilkas et al. (2009) report that between 70–90% decay of knowledge is

caused by flaws in the documentation and 9–19% of the implementations failed to conform

to the documented architecture.

2

1.2 Industry Motivation: Industry Needs in Locating Bugs

As an independent software development consultant, I perform maintenance tasks in business

applications at di↵erent companies and sometimes rotate between projects within the same

company. Each time I start work on a project new to me, I spend considerable amount of

time trying to comprehend the application and come up to speed in locating relevant source

code files prior to performing maintenance tasks.

In general, when I receive a new task to work on, e.g. documented as a bug report,

I perform a search for the files to be changed using the tools available in my development

environment. Firstly, these tools force me to specify precise search words otherwise the results

contain many irrelevant files or no results are returned if I enter too many words. Secondly,

even when the search words are precise, the results are displayed without an order.

As a new project team member, unfamiliar with the domain terminology (i.e. concepts)

and project vocabulary, I am usually challenged to identify the key words or concepts to use

on the search query as well as forced to analyse a long list of files retrieved from an application

which I am unfamiliar with.

I often wonder whether the rich content available in bug reports can be utilised during the

search and the resulting list of files are displayed in a ranked order based on relevance from

most to least important. Subsequently, I can focus on the files listed at the top of the list

and avoid the time consuming task of analysing all of the files. To reduce the time it takes

in locating relevant source files and to improve the reliability of the search results, in my

research I investigate to see how additional sources of information found in project artefacts

can be leveraged and the search results are presented in an ordered list to provide benefit for

the developers.

1.3 An Example of Information Retrieval Process

In a typical information retrieval (IR) approach for traceability between an application’s

source code and its textual documentation like the user guide, the current techniques first

analyse the project artefacts and build an abstract high level representation of an application

in a repository referred as the corpus where the program elements implementing the concepts

can be searched. The existing IR techniques extract the traceability information from the

program elements by parsing the application’s source code files and store the extracted in-

3

Figure 1.1: Information retrieval repository creation and search process

formation in the corpus. During the extraction process the identifier names are transformed

into individual words (i.e. terms) according to known Object Oriented Programming (OOP)

coding styles like the camel case naming pattern where, for example, identifier standAloneR-

isk is split into three single words as stand, alone and risk. After this transformation, the

resulting terms are stored in the repository with a reference to their locations in the program

elements as illustrated at the top half of Figure 1.1.

Once the corpus is created, a developer initiates the concept location (Appendix A) process

by entering the query terms representing the concepts being searched in a user interface.

The query terms may come from user guide documents or bug reports. The IR method

performs the search by comparing the terms entered on the query against the terms found

in the underlying repository. The matching score is calculated based on lexical similarity or

probabilistic distance between the terms, explained in Chapter 2, depending on the underlying

IR method. Finally the results are displayed to the developer in a list ranked by their relevance

as defined in the IR model.

Now I will go through with examples to illustrate the limitations of the existing ap-

proaches. One of the projects I use to evaluate my approach, as we will see in Chapter 3

and Chapter 4, is a graphical user interface (GUI) project called SWT1. In project SWT,

bug report #92757 has a very terse description (see Figure 1.2) and for a developer who is

unfamiliar with SWT, exposes the question of what concept terms to use when searching for

the relevant files prior to performing a change to resolve the reported bug. The only concept

this bug report refers to is the GUI domain concept of text, which results in 142 source files

1
http://www.eclipse.org/swt/

4

Bug id: 92757
Summary: Styled text: add caret listener
Description: null
<no details are described by the creator of this bug report>

Figure 1.2: Bug report with a very terse description in SWT project

to be returned when queried. To reduce the number of files the developer has to analyse,

alternative terms like style or caret found in the bug report summary may be used. However

style returns 55 and caret 13 files of which none of them is the relevant one already changed

to resolve the reported bug.

Since this is a closed bug report, e.g. resolved, looking at the content of the a↵ected file

revealed that it implements the GUI domain concept widget. However, when the concept

widget is used as the search query term, 130 files are returned on the resulting list.

To address the challenges highlighted by this example, i.e. selecting search terms that

result in reduced number of files to be investigated, the current research approaches use all

the vocabulary available in the bug report during the search (Zhou et al., 2012a; Wong et al.,

2014; Saha et al., 2013; Wang and Lo, 2014; Ye et al., 2014). Then the results are enhanced

by considering available historical data, e.g. previously changed source code files and similar

bug reports. Finally, the results are presented in a list ranked by order of importance from

high to low based on the relevance to the entered search terms.

However the existing studies conclude that such supplemental information sources, i.e.

past history and similar bugs, do not guarantee improved results. For example, the two

existing tools, BugLocator (Zhou et al., 2012a) and BRTracer (Wong et al., 2014), still rank

the relevant file for this bug report at 88th and 75th position in the result list respectively.

We will see in Chapter 4 that my proposed approach ranks the same file in the 5th position.

In general bug reports describe the observed erroneous behaviour and may contain detailed

descriptions like stack trace information, which lists a sequence of files that were executing

at the time of the error (Bettenburg et al., 2008). To improve the performance of the bug

localisation approaches, current research also considered evaluating stack trace information

included in the bug reports (Wong et al., 2014; Moreno et al., 2014).

One of the ways to utilise the stack trace is to consider the file names listed in the trace. For

example, in Figure 1.3 AspectJ2 bug #158624 contains a detailed stack trace of an exception

(UnsupportedOperationException) produced by an erroneous condition referred as “the bug

2
http://eclipse.org/aspectj/

5

Bug id: 158624
Summary: Compiler Error: generics and arrays
Description: OK, not sure what to report here or what info you need, but here’s the set
up, message, and erroneous class. I don’t understand the errors from the compiler enough
to parse down the erroneous file to something that contains only the bug, but I could if
direction were given. Here’s my set up: Eclipse SDK Version: 3.2.0 Build id: M20060629-
1905 With AJDT: Eclipse AspectJ Development Tools Version: 1.4.1.200608141223 AspectJ
version: 1.5.3.200608210848 Here’s the bug dump from the compiler inside Eclipse:
java.lang.UnsupportedOperationException at
org.aspectj.weaver.UnresolvedType.parameterize(UnresolvedType.java:221) at
org.aspectj.weaver.ResolvedMemberImpl .parameterize(ResolvedMemberImpl.java:680)
at
org.aspectj.weaver.ResolvedMemberImpl.parameterize(ResolvedMemberImpl.java:690) at
org.aspectj.weaver.ReferenceType.getDeclaredMethods(ReferenceType.java:508) at
org.aspectj.weaver.ResolvedType$4.get(ResolvedType.java:226) at
...
<rest of the stack trace is intentionally not displayed>

Figure 1.3: AspectJ project’s bug report description with stack trace information

dump” in the description. AspectJ is another project I use to evaluate the performance of

my approach and compare it against the other tools that also used it. The source code file

name, ResolvedMemberImpl.java (listed after the second “at” in the stack trace) is one of the

the relevant files modified to solve this bug.

When the search results between the tool that takes advantage of the stack trace available

in bug reports (Wong et al., 2014) and the other tool that does not (Zhou et al., 2012a) are

compared, the ranking of the relevant file improves from 16th to 6th position in the result list.

Nevertheless the developer still has to analyse 5 irrelevant files prior to finding the relevant

one. The reasons for the low ranking in these tools is that existing approaches (Wong et al.,

2014; Moreno et al., 2014) consider all the files found in the stack trace list, which eventually

causes irrelevant files to be ranked more important than the relevant ones. Again we will see

that my approach ranks ResolvedMemberImpl.java at 2nd position in the results list.

Further analysis showed that words in certain positions in the bug reports reveal file

names. For example, as illustrated in Figure 1.4, the first word in the summary field of SWT

bug #79268 is the relevant file name. The existing tools rank this file at 21st and 11th position

respectively. One of the reasons for this is that the word Program is considered to be too

ambiguous and gets a lower score. Although the current IR approaches also detect the file

names available in the bug report, they continue to score other files based on word similarity,

thus resulting in irrelevant files that have more matching words with the words from the bug

report to get ranked higher. We will see that my approach ranks this file at the 1st position

6

Bug id: 79268
Summary: Program API does not work with GNOME 2.8 (libgnomevfs-WARNING)
Description: I200411170800-gtk Not sure what triggers it, neither who is doing it. I get the
following stderr output once in a while: (&lt;unknown&gt;:27693): libgnomevfs-
WARNING **: Deprecated function. User modifications to the MIME database are
no longer supported. In my development workbench, the output reads: (Gecko:11501):
libgnomevfs-WARNING **: Deprecated function. User modifications to the MIME data-
base are no longer supported. So I suspect the mozilla/gecko library is doing this, hence I
punted it to SWT. Probably nothing we can do much about, but here’s the bug anyway.

Figure 1.4: Ambiguous bug report description found in SWT

in the result list.

1.4 Existing Work and The Limitations

Early attempts to aid developers in recovering traceability links between source code files

and textual documentation used IR methods like the Vector Space Model (VSM), Salton

and Buckley (1988), and managed to achieve high precision (the accuracy of the results,

Marcus and Maletic 2003) or high recall (the completeness of the results, Antoniol et al.

2002). Nevertheless, the IR approaches do not consider words that are strongly related via

structural information, e.g. OOP inheritance, available in software programs to be relevant

and thus still perform poorly in some cases (Petrenko and Rajlich, 2013).

Further research recognised the need for combining multiple analysis approaches on top

of IR to support program comprehension (Gethers et al., 2011). To determine the starting

points in investigating relevant source code files for maintenance work, techniques combining

dynamic (Wilde and Scully, 1995) and static (Marcus et al., 2005) analysis have been exploited

(Poshyvanyk et al., 2007; Eisenbarth et al., 2001).

The application of dynamic analysis builds upon the trace information obtained by ex-

ecuting application usage scenarios. However, if a maintenance task describes a scenario that

may not be executable, e.g. a new non-existing feature, then it is unsuitable for dynamic

analysis (Poshyvanyk et al., 2007).

On the other hand, to cover a broader set of program elements, one of the techniques

the static analysis utilises is a static call-graph where the interactions, i.e. call relations,

between the source code files are organised. However the call-graphs usually contain many

dependencies and very deep subtrees (i.e. nodes/edges) that make them impractical for search

and navigation purposes.

7

To compensate for the impractical call-graph weaknesses, the previous approaches util-

ised pruning logic to selectively remove the nodes during clustering (i.e. grouping) the call

relations. However, one of the challenges pruning exposes is that a source code file may be

moved to a di↵erent group/cluster due to the underlying pruning logic and cause inconsist-

encies when searching for the files implementing a concept.

Recent approaches utilise additional sources of information, e.g. previously fixed bug

reports (i.e. similar bugs) and number of times a source file is fixed (i.e. version history), to

boost the scoring of the underlying IR model. However, it is claimed that considering similar

bug reports earlier than 14 days add no value (Nichols, 2010) and version history older than

20 days decrease the performance (Wang and Lo, 2014). Besides a large software project

or one with a long history may require time-consuming analysis, making these approaches

impracticable (Rao and Kak, 2011).

To overcome these limitations, recent studies utilised segmentation (Wong et al., 2014)

and stack trace analysis (Moreno et al., 2014) as an e↵ective technique to boost performance

of IR models. During segmentation the source code files are divided into smaller chunks

containing reduced number of words to provide more advantage during the search. However,

the e↵ectiveness of segmentation known to be sensitive to the number of words being included

in each segment (Wong et al., 2014), thus may reduce the relevance of a segment for the

concept being searched. Moreover these approaches fail to consider non-application specific

files found in the stack trace, hence the precision of the results deteriorate.

In general the limitations in the current literature can be summarised as follows.

1. Due to poor VSM performance combination of multiple techniques are required.

2. Dynamic analysis improves VSM but fails to consider all the relevant files.

3. Static analysis using application call-graph results in many irrelevant files.

4. Clustering first and then pruning cause relevant files to be removed.

5. Using similar bug reports earlier than 14 days provide no contribution.

6. Past history requires analysis of huge data thus time consuming and impractical.

7. Considering all files listed in the stack traces deteriorates the performance.

8. Segmentation causes files to be divided ine�ciently thus results in loss of info.

8

In summary, current state-of-the-art IR approaches in bug localisation rely on project history,

in particular previously fixed bugs and previous versions of the source code. Existing studies

(Nichols, 2010; Wang and Lo, 2014) show that considering similar bug reports up to 14 days

and version history between 15—20 days does not add any benefit to the use of IR alone.

This suggests that the techniques can only be used where great deal of maintenance history is

available, however same studies also show that considering history up to 50 days deteriorates

the performance.

Besides, Bettenburg et al. (2008) argued that a bug report may contain a readily iden-

tifiable number of elements including stack traces, code fragments, patches and recreation

steps each of which should be treated separately. The previous studies also show that many

bug reports contain the file names that need to be fixed (Saha et al., 2013) and that the bug

reports have more terms in common with the a↵ected files, which are present in the names

of those a↵ected files (Moreno et al., 2014).

Furthermore, the existing approaches treat source code comments as part of the vocab-

ulary extracted from the code files, but the comments tend to be written in sublanguage

of English and due to their imperfect nature, i.e. terse grammar, they may deteriorate the

performance of the search results (Etzkorn et al., 2001; Arnaoudova et al., 2013).

The hypothesis I investigate is that superior results can be achieved without drawing on

past history by utilising only the information, i.e. file names, available in the current bug

report and considering source code comments, stemming, and a combination of both inde-

pendently, to derive the best rank for each file.

My research seeks to o↵er a more e�cient and light-weight IR approach, which does

not require any further analysis, e.g. to trace executed classes by re-running the scenarios

described in the bug reports. Moreover I aim to provide a simple usability, which contributes

to an ab-initio applicability, i.e. from the very first bug report submitted for the very first

version and also be applied to new feature requests.

1.5 Research Questions

To address my hypothesis, I first undertake a preliminary investigation of eight applications

to see whether vocabulary alone provides a good enough leverage for maintenance. More

precisely I am interested in comparing the vocabularies of project artefacts (i.e. text docu-

mentation, bug reports and source code) to determine whether (1) the source code identifier

9

names properly reflect the domain concepts in developers’ minds and (2) identifier names can

be e�ciently searched for concepts to find the relevant files for implementing a given bug

report. Thus my first research question (RQ) is follows.

RQ1: Do project artefacts share domain concepts and vocabulary that may

aid code comprehension when searching to find the relevant files during software

maintenance?

Insights to RQ1 revealed that despite good conceptual alignment among the artefacts,

using concepts when searching for the relevant source files result in low precision and recall.

I was able to improve the recall by simply using all of the vocabulary found in the bug report

but precision remains low. To improve the suggestion of relevant source files during bug

localisation, I conclude that heuristics based on words in certain key positions within the

context of bug reports be developed.

Current state-of-the-art approaches for Java programs (Zhou et al., 2012a; Wong et al.,

2014; Saha et al., 2013; Wang and Lo, 2014; Ye et al., 2014) rely on project history to

improve the suggestion of relevant source files. In particular they use similar bug reports and

recently modified files. The rationale for the former is that if a new bug report x is similar to a

previously closed bug report y , the files a↵ected by y may also be relevant to x . The rationale

for the latter is that recent changes to a file may have led to the reported bug. However,

the observed improvements using the history information have been small. I thus wonder

whether file names mentioned in the bug report descriptions can replace the contribution

of historical information in achieving comparable performance and ask my second research

question as follows.

RQ2: Can the occurrence of file names in bug reports be leveraged to re-

place project history and similar bug reports to achieve improved IR-based bug

localisation?

Previous studies performed by Starke et al. (2009) and Sillito et al. (2008) reveal that

text-based searches available in current integrated development environments (IDE) are in-

adequate because they require search terms to be precisely specified otherwise irrelevant or

no results are returned. It is highlighted that large search results returned by the IDE tools

cause developers to analyse several files before performing bug-fixing tasks.

Henceforth, interested to find out how developers perceive the search results of my ap-

proach where a ranked list of candidate source code files that may be relevant for a bug report

10

at hand during software maintenance, I ask my third research question as follows.

RQ3: How does the approach perform in industrial applications and does it

benefit developers by presenting the results ranked in the order of relevance for

the bug report at hand?

The added substantial value of my proposed approach compared to existing work is that

it does not require past information like version history or similar bug reports that have

been closed, nor the tuning of any weight factors to combine scores, nor the use of machine

learning.

1.6 Overview of the Chapters

This thesis is organised as follows: Chapter 2 describes the current research e↵orts related to

my work, Chapter 3 describes the work on analysing the occurrence of concepts in projects

artefacts, Chapter 4 illustrates how file names can be leveraged to aid in bug localisation,

Chapter 5 presents the results of a user study and Chapter 6 concludes with future recom-

mendations.

Chapter 2. Landscape of code retrieval: Current research has proposed automated

concept and bug location techniques. In this Chapter, I describe the relevant research ap-

proaches to introduce the reader into the landscape of code retrieval and summarise the

limitations of the existing approaches that my research aims to address.

Chapter 3. Vocabulary analysis: In my previously published work (Dilshener and

Wermelinger, 2011), which partially contributes to this Chapter, I have identified the key

concepts in a financial domain and searched them in the application implementing these

concepts using the concepts referenced in bug reports, however the number of relevant files

found, i.e. precision, was very low. I have learnt the bug report document descriptions

are very terse, action oriented and the unit of work often stretches beyond single concept

implementations.

In this Chapter, I address my first research question by studying eight applications for

which I had access to the user guide, the source code, and some bug reports. I compare the

relative importance of the domain concepts, as understood by developers, in the user manual

and in the source code of all eight applications. I analyse the vocabulary overlap of identifiers

among the project artefacts as well as between the source code of di↵erent applications.

I present my novel IR approach, which directly scores each current file against the given

11

bug report by assigning a score to a source file based on where the search terms occur in the

source code file, i.e. class file names or identifiers. The logic also treats the comments and

word stemming independently form each other when assigning a score.

Moreover, I search the source code files for the concepts occurring in the bug reports

and vary the search to use all of the words from the bug report, to see if they could point

developers to the code places to be modified. I compare the performance of the results and

discuss the implications for maintenance.

Chapter 4. Heuristic based positional scoring: In my previously published work

(Dilshener et al., 2016), which partially contributes to this Chapter, I analysed to see how

the file names occurring in bug reports can be leveraged to improve the performance without

requiring past code and similar bug reports.

In this Chapter, I address my second research question by extending my approach presen-

ted in Chapter 3 to score files also based on where the search terms located in the bug report,

i.e. the summary or stack trace. I treat each bug report and file individually, using the sum-

mary, stack trace, and file names only when available and relevant, i.e. when they improve

the ranking. Subsequently, I compare the performance of my approach to eight others, using

their own five metrics on their own projects and succeeded in placing an a↵ected file among

the top-1, top-5 and top-10 files for 44%, 69% and 76% of bug reports, on average.

I also look more closely at the contribution of past history, in particular of considering

similar bug reports, and the contribution of IR model VSM, compared to a bespoke variant.

I found that VSM is a crucial component to achieve the best performance for projects with a

larger number of files that makes the use of term and document frequency more meaningful,

but that in smaller projects its contribution is rather small.

Chapter 5. User case study: In this Chapter, I address my third research question

by reporting on user studies conducted at 3 di↵erent companies with professional developers.

My approach achieved to place at least one file on average for 88% of the bug reports into

top-10 also with di↵erent commercial applications. Additionally developers stated that since

most of the relevant files were positioned in the top-5, they were able to avoid the error prone

tasks of browsing long result lists.

Chapter 6. Conclusion and future directions: After describing the key findings of

my research and reflecting upon the results I presented, this Chapter highlights the conclu-

sions I draw from my research and end by emphasising its importance for practitioners and

12

researchers.

1.7 Summary

In my research, I embarked on a journey to improve bug localisation in software maintenance,

which I describe in this thesis. Based on current literature and my industrial work experience,

developers known to search for relevant source code files using the domain concepts when

performing maintenance tasks to resolve a given a bug report. Although the concepts may

occur in project artefacts and correlate strongly between the textual artefacts, e.g. user guide,

and the source code, they may not be e↵ective during bug localisation.

To improve the performance of the results, current research has recognised the need to use

additional information sources, like project history. However, certain relevant files still can not

be located. I argue that in addition to a bug report containing specific terms that support

search (i.e. words that may match those used in source files), the bug reports also often

include contextual information (i.e. file names) that further supports (refines) the search.

Thus leveraging heuristics based on the contextual information, i.e. file names in certain

positions of the bug report summary and of the stack trace, are the main contributions of my

research.

Research shows that techniques to improve program understanding also have practical

relevance and hence my work contributes to that area as well. Firstly, this research may

benefit industrial organisations by reducing the programmer’s time spent on program com-

prehension so that cost of implementing modifications is justifiable. Secondly, the published

e↵orts can be used to educate the next generation of software developers who are designated

to take on the challenges of maintaining applications.

13

14

Chapter 2

Landscape of Code Retrieval

In this Chapter, I describe in detail the existing research approaches in information retrieval

and summarise their limitations. I highlight some of the challenges associated with identifying

all the program elements relevant for a maintenance task and discuss how the challenges are

addressed in current research.

According to existing literature, software maintenance tasks are documented as change

requests, which are often written using the domain vocabulary or better known as domain

concepts, (Rajlich and Wilde, 2002; Marcus and Haiduc, 2013). The developers who are

assigned to perform a change task would need to perform concept location tasks to find the

program elements implementing the concepts relevant for the task at hand.

Additionally, change requests may describe an unexpected and unintended erroneous be-

haviour, known as bugs of a software system. Identifying where to make changes in response

to a bug report is called bug localisation where the change request is expressed as a bug

report and the end goal is to change the existing code to correct an undesired behaviour of

the software (Moreno et al., 2014).

In this Chapter, Section 2.1 introduces the concept assignment process during program

comprehension and the concept location activities while performing software maintenance

tasks. In Section 2.2, I present some of the popular IR techniques used to locate the program

elements implementing the concepts. Section 2.3 introduces the concept location techniques

used in bug localisation. In Section 2.4, the current state-of-the-art tools against which I

compare my approach are described. Section 2.5 summarises the existing literature on user

studies relevant to my research. I conclude this Chapter in Section 2.6 by summarising the

gaps which inspired me to conduct this research.

15

2.1 Concept Assignment Problem

A concept is a phrase or a single term that describes the unit of human knowledge (thought)

existing within the domain of the software application (Rajlich and Wilde, 2002). Biggersta↵

et al. (1993) argued that comparison between computer and human interpretation of con-

cepts confronts us with human oriented terms, which may be informal and descriptive, e.g.

“deposit amount into savings account”, against compilation unit terms which are formal and

structured, e.g. “if (accountType == ‘savings’) then balance += depositAmount”. Bigger-

sta↵ et al. (1993) refer to discovering human oriented concepts and assigning them to their

counterparts in the applications source code as “the concept assignment problem”.

In addition to human vs. computational concept characteristics, Marcus et al. (2005)

identified two types of implementation categories to describe the characteristics of program

elements (i.e. source code class files, methods etc.) implementing the concepts in an OOP

language like Java. The composite functionality refers to a group of source code files and

their referenced code files that implement a concept. The local functionality refers to the

files implementing the functionality of a concept in one file. For example, in a bank account

management application, concept of “account balance” may be implemented in the account

source code file, however the concept of “balance transfer”may be implement in multiple files.

A detailed study by Nunes et al. (2011), evaluated the implementation of the concepts

by looking at their underlying characteristics with regards to their interaction (how they

communicate with other class files), dependency (between other classes) and modularity

(where they are located). The concept implementations are classified under the following six

categories:

1. Multi partition: implementation is scattered in several modules (e.g., classes, methods).

2. Overly communicative: a set of class files implementing a concept heavily communicates

with another set.

3. Sensitive: a method implementing a concept di↵erent to the one implemented by its

class file.

4. Lattice: where concepts partially a↵ect one another like logging and debugging.

5. Overlapping: sharing program elements.

6. Code clone: duplicating program elements.

16

Nunes et al. (2011) found these categories are correlated among each other based on two

relations, (1) can be related ; representing the perspective of where the concept is viewed

from, e.g. overlapping vs overly communicative, and (2) can influence; referring to how

dependency between each other can result in the outcome of the other, e.g. Multi partition

vs. code clone. Finally, Nunes et al. (2011) observed the common mistakes made by software

developers during program comprehension due to these characteristics of the concepts as

follows:

1. Lack of explicit references between class files.

2. Strong dependency causes confusion over what class represents what concept.

3. Di�culty to assign a concept due to mixture of its implementation.

4. Confusion over a block of code in a class not related to the main concept of the class.

5. Classes implementing multiple concepts are mapped to only one concept.

6. Missing concept functionality in packaging, focus on behaviour of methods.

Although Nunes et al. (2011) acknowledged that certain assumptions like bias due to pro-

grammer experience as threats to the validity of the results, the study reveals that in certain

applications due to naming conventions multiple program elements may seem to be imple-

menting two independent concepts where as they are the same concept. Conversely, two

program elements may seem to be implementing one concept but due to OOP language char-

acteristics, e.g. overloading, they may actually be two independent concepts. In a further

study, Deißenböck and Raţiu (2006) claimed that source code files may reflect only a fraction

of the concepts being implemented accurately and argued that one cannot solely rely on the

source code as the single source of information during concept location.

2.2 Information Retrieval as Conceptual Framework

Information retrieval deals with finding the relevant set of documents for a given query. In

software maintenance, the project artefacts like the application’s source code files, i.e. classes,

and sometimes the search query are treated as the documents of the IR system. IR systems

use internal models like the Vector Space Model (VSM) and the Latent Semantic Analysis

(LSA) to aid in concept location during software maintenance. The internal model of an IR

17

system defines certain configurable settings for example whether the relevance and ranking

of the terms, i.e. words existing in the set of documents, is calculated based on the term

frequency or term relations.

2.2.1 Evaluation Metrics

The results of an IR system are measured by precision, recall and in some cases by F-measure:

• The recall measures the completeness of the results and is calculated as the ratio of the

total number of relevant documents over the number of documents retrieved.

• The precision measures the accuracy of the results and calculated as the ratio of number

of relevant document assignments over the total number of documents retrieved.

• F-measure is used as a single quality measure and calculated as the harmonic mean of

precision and recall since it combines both.

In VSM, each document and each query is mapped onto a vector in a multi-dimensional

space, which is used for indexing and relevance ranking. The document vectors are ranked,

according to some distance function, to the query vectors. The similarities are obtained by a

well-known classic metric called the term frequency (tf) and inverse document frequency (idf)

introduced by Salton and Buckley (1988). The tf is the number of times a term occurs in a

document and the idf is the ratio between the total numbers of documents over the number

of documents containing the term. The idf is used to measure if a term occurs more or less

across a number of documents. The product of these two measures (i.e. tf * idf) is used to

score the weighting of a term in a given collection of terms.

2.2.2 Vector Space Model and Latent Semantic Analysis

Antoniol et al. (2000a) demonstrated recovering traceability links between the source code

files and its documentation by applying VSM. The aim of the study was to see if the source

code class files could be traced back to the functional requirements. The study compared two

di↵erent retrieval methods VSM and probabilistic. In VSM tf/idf score is used to calculate

the similarity whereas probabilistic model computes the ranking scores as the probability

that a document is related to the source code component (Antoniol et al., 2000b). The

authors concluded that semi-automatically recovering traceability links between code and

documentation is achievable despite the fact that the developer has to manually analyse a

18

number of information sources to obtain high recall values. Capobianco et al. (2009) argued

that VSM has its limitations in that the similarity measure only takes into account the terms

that precisely match between the search terms and the terms mapped onto the vector space.

According to Capobianco et al. (2009), large size documents produce poor similarity values

due to increased dimensions of the search space. Furthermore, in VSM, the possible semantic

term relationships, like the synonymy between the terms truck and lorry, are not taken into

account when calculating their similarities.

To address the described limitations of VSM, Kuhn et al. (2007) demonstrated the use

of Latent Semantic Analysis (LSA) to handle the semantic relationships by comparing doc-

uments at their topical (conceptual) similarity level. LSA is referred as the Latent Semantic

Indexing (LSI) in software maintenance and is known to be the application of LSA to doc-

ument indexing and retrieval (Kuhn et al., 2007). LSI organises the occurrences of project

artefact terms in a repository of term by document matrix and applies the Single Value De-

composition (SVD) principle. SVD is a technique used to reduce noise while keeping the

relative distance between artefacts intact. According to Capobianco et al. (2009), this allows

the storage of semantically related terms based on synonymy, like the association that exists

between the terms engine and wheel to the terms truck or lorry, in its repository.

Marcus and Maletic (2003) argued that LSI exclude less frequently occurring terms from

its vector space by assuming them to be less related. However, if the applications are pro-

grammed using a subset of the English language then excluding terms will cause relations

that may pose significance to be missed out during information retrieval. Furthermore, the

model of language used in prose may not be the same as that found in source code files.

According to the authors, the selective terminology used in programming, often at abstract

level, introduces additional challenges in recovering traceability. So the issue that remains

unanswered in the case study performed by Marcus and Maletic (2003). is how to map sim-

ilarities between project artefacts when the pieces to link are described in broken language

prose.

Additionally Marcus and Maletic (2003) found that when the underlying document space

is large, improved results are obtained by using LSI because the main principle of LSI is

to reduce this large corpus to a manageable size without loss of information. However, if

the corpus is small where the terms and concepts are distributed sparsely throughout the

space, reduction of the dimensionality results in significant loss of information. Hence, the

19

authors articulated the need for improving the results by combining structural and semantic

information extracted from the source code and its associated documentation. Furthermore,

Marcus and Maletic (2003) proposed to support the semantic similarity measure defined in

LSI to also consider the program structural information like call-hierarchies.

2.2.3 Dynamic Analysis and Execution Scenarios

Among other software analysis approaches to concept location, a popular technique known as

dynamic analysis builds upon the trace information obtained by executing application usage

scenarios (Liu et al., 2007). The early work of Wilde and Scully (1995) pioneered concept

location using the dynamic analysis technique. Their approach identifies the entry points of

computational units for further analysis. However, the approach does not consider related

elements within a group of concepts. Eisenberg and Volder (2005) extended the dynamic

tracing approach by applying ranking heuristics to improve the accuracy of program elements’

relevance to concepts being searched.

Although the dynamic analysis exposes a direct relation between the executed code and

the scenario being run, it falls short of distinguishing between overlapping program elements,

in that it does not guarantee that all the relevant elements are considered. On the other hand,

the static analysis information organises and covers a broader spectrum of program elements

though it may fail to identify the contributing elements that belong to a specific scenario.

The current research has already recognised the need for combining both of these analysis

approaches to aid in IR to support program comprehension. Eisenberg and Volder (2005)

used static analysis (e.g. structural dependencies) and dynamic analysis (e.g. execution

traces) as well as concept analysis techniques to relate concepts to program elements.

Poshyvanyk et al. (2007) combined LSI with Scenario Based Probabilistic (SBP) ranking

to address the challenges of concept location and program comprehension. The aim was to

improve precision of finding relevant program elements implementing a concept. SBP allows

the tracing of execution scenarios and lists program elements (i.e. source code classes and

methods) ranked according to their similarity for a given concept when it is executed during

a particular scenario. However, LSI represents how the elements relate to each other and

requires results to be analysed manually based on domain knowledge. Poshyvanyk et al.

(2007) claimed that in SBP approach, it is possible to replace the manual knowledge-based

analysing and argued that combining the results of both techniques improves the concept

20

location and program comprehension process.

Based on three case studies conducted, Poshyvanyk et al. (2007) concluded that the com-

bined techniques perform better than any one of the two (LSI, SBP) techniques independently.

Recently, Gethers et al. (2011) also compared the accuracy of di↵erent IR methods, includ-

ing VSM, Jensen and Shannon (JS) model, i.e. a similarity measurement representing the

relations between data (Zhou et al., 2012b), and Relational Topic Modelling (RTM), i.e. a

model of documents with collection of words and the relations between them (Chang and Blei,

2009). Gethers et al. (2011) conclude that no IR method consistently provides superior recov-

ery of traceability links. The authors argued that IR-based techniques expose opportunities

to improve accuracy of finding program elements by combining di↵erent techniques.

Another approach to locating concepts in the source code is to apply Formal Concept

Analysis (FCA). FCA defines two dimensions for a concept: extension, covering the entire

objects (i.e. program elements) belonging to a concept, and intension, covering all the at-

tributes that are shared by all the objects being considered. Poshyvanyk and Marcus (2007)

combined the FCA technique with LSI based IR that organised the search results in a concept

lattice to aid software developers in concept location activities. The authors articulated that

the intentional description of FCA allows the grouping of concepts to be better interpreted

and provides a flexible way of exploring the lattice. Poshyvanyk and Marcus (2007) also

claimed that the use of concept lattices in the approach o↵ers additional clues like the re-

lationship between the concepts. The case study results indicate that FCA improves the

concept ranking over those obtained by LSI. However, the trade o↵ is when a higher number

of attributes are used, it increases the size of the nodes in the generated concept lattices.

Thus the sheer amount of information (i.e. the increased number of attributes and nodes)

may cause extra burden on developers to comprehend the concept lattice during maintenance.

2.2.4 Source Code Vocabulary

Caprile and Tonella (1999) analysed the structure and informativeness of source code identi-

fiers by considering their lexical, syntactical, and semantical structure. This was done by first

breaking the identifiers into meaningful single words and then classifying them into lexical

categories. The authors concluded that identifiers reveal the domain concepts implemented

by an application, thus provide valuable information to developers when performing main-

tenance.

21

Since identifiers often communicate a programmer’s intent when writing pieces of source

code, they are often the starting point for program comprehension. To help new program-

mers understand typical verb usage, Høst and Østvold (2007) automatically extracted a verb

lexicon from source code identifiers. The quality of identifiers was studied in relationship with

other code quality measures, for example, the number of faults in the source code, cyclomatic

complexity, and readability and maintainability metrics by Butler et al. (2010). Additionally,

Abebe et al. (2009) illustrated inconsistencies referred to as lexicon bad smells existing in

source code due to excessive use of contractions, e.g. shortened usage of spoken words like

arg instead of argument. The authors claimed that such inconsistencies may cause problems

during software maintenance, especially when searching the source code.

In addition to identifiers, developers use lexical information found in program comments.

Even the comments, which are supposedly written in English, tend to gradually narrow into

a lexically and semantically restricted subset of English (Etzkorn et al., 2001). Recently,

Padioleau et al. (2009) study conducted with three operating systems revealed that 52.6% or

roughly 736,1092 comments are to be more than just being as explanatory and conclude that

the comments may be leveraged by various search techniques.

While above studies (Abebe et al., 2009; Etzkorn et al., 2001) focused on smells related

to identifiers and comments, the lexical anti-patterns described by Arnaoudova et al. (2013)

introduced a more abstract level of perspective. The authors revealed inconsistencies between

source code method names, parameters, return types and comments as well as inconsistencies

between source code attribute names, types, and comments, i.e. the comments did not

correctly describe the intended purpose of the referenced program elements.

Existing code search approaches treat comments as part of the vocabulary extracted from

the source code, however since comments are sublanguage of English, they can deteriorate the

performance of the search results due to their imperfect nature, i.e. terse grammar, (Etzkorn

et al., 2001; Arnaoudova et al., 2013). Therefore, the terms extracted from the comments

should be considered independently from those extracted from the source code identifiers,

e.g. method names.

In the absence of textual documentation, one of the techniques software developers utilise

during maintenance tasks is to search for the concepts over the application’s source code as

Marcus et al. (2004) demonstrated by using LSI to discover the program elements implement-

ing the concepts formulated on user queries. Kuhn et al. (2007) extended this approach to

22

extract concepts from the source code based on the vocabulary usage and presented the se-

mantic similarities that exist within the application’s code. Both of these techniques focused

on lexical similarities between the source code terms without considering the conceptual re-

lations that exist in the application’s domain, however neither of the techniques considers

linguistic properties of the terms (i.e. nouns, verbs).

OOP guidelines encourage developers to use nouns to name source files and verbs to

describe methods. Shepherd et al. (2006) found that natural language (NL) representation

of an application’s source code also plays an important role in program comprehension. On

the role of nouns in recovering traceability, Capobianco et al. (2009) presented a method

to index only the nouns extracted from the project artefacts to improve the accuracy of IR

techniques based on VSM or Probabilistic models. The authors claimed that since software

documentation is written using a subset of English, nouns play a semantic role and the verbs

play a connector role to assist in recovering traceability links between use-cases and program

elements. Capobianco et al. (2009) argued that some programming languages like Java are

more noun oriented while others like Smalltalk are more verb oriented.

Shepherd et al. (2005) presented an approach to discover concepts from the source code

by using the lexical chaining (LC) technique. LC groups semantically related terms in a

document by computing the semantic distance (i.e. strength of relationship) between two

terms. In order to automatically calculate the distance, the path between the two terms as

defined in WordNet (Miller, 1995) dictionary and part of speech (PoS) tagging techniques are

utilised. The approach in (Shepherd et al., 2005) exploits naming conventions in the source

code by using the LC technique to discover related program elements. The authors claimed

that complex relations are also identified compared to other approaches by relying on the

semantic of a term rather than lexical similarity.

One of the limitations of the approach presented in (Shepherd et al., 2005) is that it

fails to consider the terms extracted from the source code may occur in WordNet, but the

implied meaning within the source code may di↵er. According to Sridhara et al. (2008), the

terms used to represent similar meanings in computer science vocabulary, could have di↵erent

meanings in the English vocabulary, e.g. the term fire extracted from the identifier fireEvent

is used synonymously with the term notify extracted from identifier notifyListener but fire

and notify do not commonly relate with one another in English text.

In a further work, Shepherd et al. (2006), like Parnas (1972), also argued that OOP pro-

23

motes the decomposition of concepts into several source code files scattered across multiple

layers of an application’s architecture as compared to procedural programming languages

where all of the implementation of a concept is usually done in one source file. Shepherd

et al. (2006) introduced the Action Oriented Identifier Graph (AOIG) approach where the

source code is formalised as a graphical virtual view so that relevant program elements imple-

menting a concept can be viewed as being in one virtual file. It is stated that when concepts

are grouped into a category, it is easier to understand and reason with them. One of the

limitations of the AOIG approach is that it considers only those methods with noun and verb

in their names, hence failing to process those that are declared using other combinations, like

only nouns or indirect verbs.

To overcome the limitations of the AOIG approach, Hill et al. (2009) constructed a natural

representation of source code by extending the AOIG principle and applying linguistic phrase

structures like nouns and semantic usage information obtained from mining the comments and

term similarities. Furthermore, the authors generalised the AOIG principle by introducing

indirect object usage, like noun and preposition phrases, e.g. “Calculate the interest rate”,

to assist the concept location tasks. The introduced algorithm called Software Word Usage

Model (SWUM) automatically extracts and generates noun, verb, and prepositional phrases

from method and field signatures to capture the term context of NL queries (Hill, 2010).

During the information extraction to capture the word context, the approach evaluates

method names and return type names with prepositions in the beginning, at the end and

in the middle. By analysing the most frequently occurring identifiers in a set of 9,000 open

source projects, common rules were created to determine if an identifier is a noun, verb or

preposition phrase. Once the NL phrases have been extracted from the source code, searching

the generated corpus to group associated program elements is achieved by applying regular

expressions. Using the common rules, terms are extracted from the method names and the

signatures are transformed into NL representations, e.g. given a class name “OneGeneric-

CouponAndMultipleProductVoucherSelector”with a method signature as “public List sortBy-

ActivationTime(Collections voucherCandidates)” would get transformed into “sort voucher

candidates by activation time”.

A limitation of the generated context in the approach by Hill (2010) falls short of providing

strong clues in detecting all the relevant program elements, especially those ones where the

search terms are not used on the declaration of searched program elements. In a financial

24

application for example, searching for the term “covariance” using the approach, detects the

methods where the term covariance was present in the method signature, however fails to

detect the related methods to calculate covariance where the term does not occur on the

method signature.

Anquetil and Lethbridge (1998b), on assessing the relevance of program identifier names

in legacy systems, stated that “being able to rely on the names of software artefacts to detect

di↵erent implementations of the same concept would be very useful”. To assist this, they

proposed “reliable naming” conventions to enforce similarity between the program element

names and the concepts they implement. However, Deißenböck and Pizka (2006) argued that

conventions for program identifiers are misleading because they imply that an agreement

between software developers exists and demonstrated that developers, on the contrary, follow

one another to keep a unified standard during the development of a software project, which

may impact programme comprehension (Feilkas et al., 2009).

In addition, Haiduc and Marcus (2008) argued that the main challenge e↵ecting program

comprehension is the quality of program identifiers i.e. variables in source code files, being far

from perfect. The authors found that searching for program elements implementing concepts

are tied to the quality of the terms used to construct these elements. It is concluded that

both comments and program identifiers present a significant source of domain terms to aid

developers in maintenance tasks. Haiduc and Marcus (2008) articulated that in IR it is

essential for any concept mapping and location activity to look at the source code comments

and program identifiers since both provide clues to what is being programmed and what was

on the developer’s mind during implementation.

2.2.5 Ontology Relations

Ontology allows modelling a domain of knowledge by defining a set of basic elements, ren-

dering shared vocabulary amongst them and describing the domain objects or concepts with

their properties and relations (Arvidsson and Flycht-Eriksson, 2008). According to Gruber

(1993), the definition of ontology within the context of computer science is the representation

of knowledge to describe the concepts implemented in the source code files of the application’s

domain, the relations between the concepts and their attributes (or properties).

In a study, Hsi et al. (2003) demonstrated the recovery of core concepts implemented

in an application’s user interface by manually activating all the user interface elements to

25

construct a list of terms and the interrelations among them. Subsequently, the concepts were

discovered after manually analysing and identifying the nouns and indirect objects from the

terms existing in the list. The approach established the relationships between the concepts

by ontology relation types, isA (i.e. generalisation, hierarchical relations) and hasA (i.e.

aggregation, part of a relation). The authors argued that ontology engineering contributes

to many software engineering tasks, for example, during reverse engineering to locate domain

concepts or to aid in semantic program comprehension. They claimed that understanding an

application’s ontology benefits the developers in software maintenance tasks. Petrenko et al.

(2008) also demonstrated the use of manually constructed ontology fragments to partially

comprehend a program and formulated queries to locate concepts in the source code.

Raţiu et al. (2008) argued that despite the implementation of concepts being scattered

across the source code (Nunes et al., 2011), it is possible to identify the concepts from the

application and map them to predefined ontologies because the program elements reflect

the modelled concepts and the relations in program identifier names. Raţiu et al. (2008)

presented a framework to establish mappings between the domain concepts and program

elements. The approach uses similarity and path matching to map concepts to the program

elements. It assumes that given a set of program elements that refer to a concept, a single

program element may also refer to multiple concepts such as a source file implementing

more than one concept, which is also observed by Anquetil and Lethbridge (1998a). One

of the limitations of the framework presented by Raţiu et al. (2008) is that it assumes the

identifier names and the concept names are made up of terms that can be directly mapped

to one another. This is justified by describing that the names are organised according to the

meanings that they represent based on WordNet (Miller, 1995) synsets (i.e. isA and hasPart

relations). However, a term extracted from a program identifier may not always have a synset

(i.e. group of synonyms) representation.

Recently, Abebe and Tonella (2010) presented an approach that extracted domain con-

cepts and relations from program identifiers using natural language (NL) parsing techniques.

First, the terms were extracted from the program identifiers by performing common identifier

splitting and NL parsing techniques. Second, linguistic sentences were constructed by feed-

ing the extracted terms into the sentence templates. The templates were manually created

after analysing the file names and method signatures (i.e. method and argument names).

Subsequently, the concepts and the relationships were discovered from the linguistic depend-

26

encies established by parsing these sentences with a linguistic dependency tool Minipar.

Finally, these dependencies were utilised to automatically extract concepts, which were used

in building the ontology, by analysing the nouns found on the terms.

Similar to Abebe and Tonella (2010), also Hayashi et al. (2010) demonstrated the use of

ontology in the concept location process to recover the tractability links between a natural

language sentence and the relevant program elements. The approach presented makes use of

relational information defined in an ontology diagram and in call-graphs. The results of the

search using the approach with ontological relations were compared against those without

the ontology. However, in 4 out of 7 cases the precision values have deteriorated when the

search performed utilised the ontology relations. One of the reasons for this is due to the

approach selecting false positives, possibly caused by OOP inheritance hierarchy where the

irrelevant files overriding the originally identified ones were also being selected.

2.2.6 Call Relations

In the approach to assign program elements to concepts, Robillard and Murphy (2002) claimed

that the structural information will only be useful when the program elements are directly

related or linked to one another via call relations. The authors stated that structural inform-

ation could be expressed in the source code but lost during dynamic compiler optimisations

in the byte code. When performing static call analysis from byte code, to overcome issues like

optimistic linking of class calls or resolving class calls by reflection, require that the source

code analysis is performed over the complete code base of an application. However, in in-

dustrial environments due to the size of an application with multiple external modules linked

only during full deployment stage, the complete source code analysis may not be feasible.

Robillard (2005) did further work on automatically generating suggestions for program

investigation by extending the approach presented by Biggersta↵ et al. (1993). The proposed

technique ranks the program elements that may be of potential interest to the developers.

It takes in a fuzzy set of elements (i.e. methods and variable names) and produces a set of

methods and variables that might also be of interest. This is achieved by analysing the topo-

logy of the program’s structural dependencies, like class hierarchies. The analysis algorithm

works by calculating a suggestion set based on the relation type of the program elements. If

the relation type specified at input is “calls” then the methods in the input set are analysed

to produce a set of relevant methods that are “called by” from the input set. One of the

27

limitations of this approach is if a novice developer has no experience with the system, he

would not be in a position to provide a set of input elements. Hence the approach puts a lot

of emphasis on the knowledge of the application prior to using the algorithm.

The existing approaches also combine IR methods like LSI, execution tracing, and prune

dependency analysis to locate concepts. In general, these approaches function by first per-

forming a search using query terms and then start navigating the call-graph of the application

from the resulting list of methods to their neighbouring methods iteratively. Each method is

assigned a weight to determine its relevance to the search query terms. The tf-idf score of a

method is used to rank it in the results list. In addition, a weight is also assigned based on

where the search term appears, i.e. on the method or on the class file name or both.

On the use of call relations to recover traceability links, Hill et al. (2007), Shao and Smith

(2009) proposed approaches in which a query is created with search terms, then the source

code is searched for the matching methods by using LSI and a score is obtained. Subsequently,

for each method on the result list, the call-graph of the application is utilised to evaluate the

relevance of the neighbouring methods and a relevance score is assigned based on where the

query terms occur in the method names. Finally, both LSI and relevance scores are combined

to rank the methods in the final search result list.

In their study, Petrenko and Rajlich (2013) presented a technique called DepIR that

combines Dependency Search (DepS) with IR. The technique uses an initial query to obtain

a ranked list of methods. The 10 methods with the highest ranks are selected as the possible

entry points to explore the shortest path on the call-graph to the method relevant for the

query. The shortest path is calculated using Dijkstra’s algorithm (Dijkstra, 1959) and the

e↵ort needed is calculated as the number of edges (call-relations) on the shortest path plus

the IR rank. The study aims to indicate a best-case scenario estimate of the e↵ort needed

to locate the relevant method for each bug report. The DepIR performance is compared

against pure IR and DepS (a call-graph navigation technique) by using 5 systems and 10 bug

report. It is claimed that on average, DepIR required a significantly smaller e↵ort to locate

the relevant methods for each bug report. The study only aims to evaluate the theoretical

e↵ort reduction in finding the target method by combining lexical ranking with dependency

navigation. DepIR doesn’t make use of the dependencies to improve the ranking, and thus

to further reduce the e↵ort in finding the right artefacts to change.

The IR approaches may consider two strongly related terms via structural information

28

(i.e. OOP inheritance) to be irrelevant (Petrenko and Rajlich, 2013). In turn this may cause

one method to be at the top of the result list and the other related one at the bottom.

If the relevant methods, at the bottom of the list, are below the threshold used as cut-o↵

point, they would be ignored when evaluating the performance of the approach. This may

also cause additional burden on the developers because irrelevant files would need to be

investigated before reaching the relevant ones at the bottom of the list. To cater for these

structural relations, the static call-graph is utilised, however the call-graphs usually contain

many dependencies and very deep nodes/edges that make them impractical for search and

navigation purposes.

To compensate for the call-graph limitations, the presented approaches utilise pruning

logic, which selectively removes the subtrees (i.e. nodes) during clustering (i.e. grouping)

the call relations (i.e. links/edges) found in the call-graph. On exploring the neighbouring

methods, Hill et al. (2007) introduced two types of call relations, (1) methods that call many

others and (2) methods called by others. It is proposed that (1) can be seen as delegating and

(2) as performing functionality. Hill et al. (2007) argued that the number of edges coming

and going out of a method can also be used during clustering a call-graph to decide if the

edge should be pruned when moving a node from one cluster to another. However, one

of the challenges pruning exposes is that a source code class or method may be removed

completely or may be moved to a di↵erent group/cluster due to the underlying pruning logic,

e.g. simulated annealing, thus may cause inconsistencies when searching for the program

elements implementing a concept.

2.3 Information Retrieval in Bug Localisation

Current software applications are valuable strategic assets to companies: they play a central

role for the business and require continued maintenance. In recent years, research has focused

on utilising concept location techniques in bug localisation to aid the challenges of performing

maintenance tasks on such applications. In this section, I describe the existing research

approaches and highlight their limitations.

In general, software applications consist of multiple components. When certain compon-

ents of the application do not perform according to their predefined functionality, they are

classified to be in error. These unexpected and unintended erroneous behaviours, also re-

ferred as bugs, are known to be often the product of coding mistakes. Upon discovering such

29

abnormal behaviour of the software, a developer or a user report it in a document referred

as bug report. Bug report documents may provide information that could help in fixing the

bug by changing the relevant components, i.e. program elements of the application. Identi-

fying where to make changes in response to a bug report is called bug localisation where

the change request is expressed as a bug report and the end goal is to change the existing

program elements (e.g. source code files) to correct an undesired behaviour of the software.

Li et al. (2006) classified bugs into three categories: root cause, impact and the involved

software components. The categories are further explained as follows.

• The root cause category includes memory and semantic related bugs like improper

handling of memory objects or semantic bugs, which are inconsistent with the original

design requirements or the programmers’ intention.

• The impact category includes performance and functionality related bugs, like the pro-

gram keeps running but does not respond, halts abnormally, mistakenly changes user

data or functions correctly but runs/responds slowly.

• The software components category includes bugs related to the components implement-

ing core functionality, graphical user interfaces, runtime environment and communica-

tion, as well as data base handling.

The study in (Li et al., 2006), performed with two OSS projects, showed that 81% of all bugs

in Mozilla and 87% of those in Apache are semantics related. These percentages increase as

the applications mature, and they have direct impact on system availability, contributing to

43–44% of crashes. Since it takes a longer time to locate and fix semantic bugs, more e↵ort

needs to be put into helping developers locate the bugs.

Although bug localisation is an instance of concept location (Moreno et al., 2014) and

previously described VSM or LSI information retrieval models are utilised to locate the rel-

evant files, it di↵ers compared to concept location with regards to the number of relevant

files being identified. One of the main principles of concept location is to identify all source

code files implementing a concept whereas in bug localisation only the files that are involved

in the reported bug needs to be identified, which according to Lucia et al. (2012) may be in

just a few of the thousands of files comprising an application.

Zhou et al. (2012a) proposed an approach consisting of the four traditional IR steps

(corpus creation, indexing, query construction, retrieval & ranking) but using a revised Vector

30

Space Model (rVSM) to score each source code file against the given bug report. In addition,

each file gets a similarity score (SimiScore) based on whether the file was a↵ected by one or

more closed bug reports similar to the given bug report. Similarity between bug reports is

computed using VSM and combined with rVSM into a final score, which is then used to rank

files from the highest to the lowest.

2.3.1 Evaluation Metrics

In bug localisation a search query is formulated from a bug report, which is substantially

di↵erent in structure and content from other text documents, thus requiring special techniques

to formulate the query (Dilshener et al., 2016). Many a↵ected program elements may not

relate to the bug directly but they are rather results of the impact of the bug. For example,

a bug report may describe an exception in the user interface component but its cause may

lie in the component responsible for database access. Hence to measure the performance of

bug localisation in precision and recall would be inadequate and unfair, instead the rank of

the source file in the result list should be considered because it indicates the number of files

a developer would need to go through before finding the relevant one to start with, e.g. if

the relevant one is ranked at 5th position then the developer would have to investigate all

four first (Marcus and Haiduc, 2013). Therefore the existing research techniques measure the

performance of the results as top-N Rank of Files (TNRF), Mean Average Precision (MAP)

and Mean Reciprocal Rank (MRR).

• TNRF is the top-N rank, which gives the percentage of bug reports whose related files

are listed in top-N (which was set to 1, 5, and 10) of returned files.

• MAP provides a synthesised way to measure the quality of retrieved files, when there

are more than one related file retrieved for the bug report.

• MRR metric measures the overall e↵ectiveness of retrieval for a set of bug reports.

TNRF metric is used by Zhou et al. (2012a) as, given a bug report, if the top-N query results

contain at least one file with which the bug should be fixed, the bug is considered to be

located. The higher the metric value, the better the bug localisation performance. When a

bug report has more than one related files, the highest ranked one among all the related files

is used to evaluate the performance.

31

MAP has been shown to have especially good discrimination and stability (Manning et al.,

2008). The MAP is calculated as the sum of the average precision value for each bug report

divided by the number of bug reports for a given project. The average precision for a bug

report is the mean of the precision values obtained for all a↵ected files listed in the result set.

MAP is considered to be optimal for ranked results when the possible outcomes of a query

are 5 or more (Lawrie, 2012).

MRR is a metric for evaluating a process that produces a list of possible responses to

a query (Voorhees, 2001). The reciprocal rank for a query is the inverse rank of the first

relevant document found. The mean reciprocal rank is the average of the reciprocal ranks

of results of a set of queries. MRR is known to measure the performance of ranked results

better when the outcome of a query is less than 5 and best when just equal to one (Lawrie,

2012).

2.3.2 Vocabulary of Bug Reports in Source Code Files

In general, a typical bug report document provides multiple fields where information pertain-

ing to the reported issue may be described such as a summary of the problem, a detailed

description of the conditions observed, date of the observed behaviour, name of the files

changed to resolve the reported condition. Recent empirical studies provide evidence that

many terms used in bug reports are also present in the source code files (Saha et al., 2013;

Moreno et al., 2013). Such bug report terms are an exact or partial match of code constructs

(i.e. class, method or variable names and comments) in at least one of the files a↵ected by the

bug report, i.e. those files actually changed to address the bug report. Moreno et al. (2013)

show that (1) the bug report documents share more terms with the corresponding a↵ected

files than with other files in a system and (2) the shared terms are not randomly distributed

in the patched source files instead the file names had more shared terms than other locations.

The similarity between the terms extracted from the bug reports and those extracted from

the source files shows that there is a correlation between each other and it gets stronger when

the files are the a↵ected ones. In addition, the terms were similar between the file names and

comments rather then other parts of the source file, e.g. method names.

Subsequently, Moreno et al. (2013) discovered that source code file names revealed more

of the terms extracted from the bug reports than any other location of a source files, e.g.

the method names or variables. The authors evaluated their study using 6 OSS projects,

32

containing over 35,000 source files and 114 bug reports, which were solved by changing 116

files. For each bug report and source file combination (over 1 million), they discovered that

on average 75% share between 1–13 terms, 22% share nothing and only 3% share more than

13 terms. Investigating the number of shared terms between the bug reports and the changed

set of files also revealed that 99% shared vocabulary.

Furthermore, Moreno et al. (2013) focused on the code location of the terms in the changed

pair set and found that the largest contributor location to the source code vocabulary are

the comments (27%), followed by the method names (20%) and then the identifiers names

(13%). Investigating the contribution of each code location to the total shared terms between

the bug reports revealed that comments contributed 27%, methods 17% and variables 13%

respectively. Additionally, the study revealed that source code file names made up of a

few terms but all of them contributed to the number of shared terms between a bug report

and its a↵ected files. For example, file names are made up of only 2 or 3 terms, e.g. in a

financial application the source code file name MarketRiskCalculator is made up of 3 terms,

market, risk and calculator, after camel case splitting (Butler et al., 2011). Moreno et al.

(2013) discovered that on average 54% of the cases all of those file name terms are present

in the bug reports. Therefore the authors conclude that bug reports and source files share

information, i.e. terms, and that the number of shared terms are directly related to the

changed files.

A study done by Saha et al. (2013) also discovered that class file names are typically a

combination of 2–4 terms and that the terms are present in more than 35% of the bug report

summary fields and 85% of the bug report description fields of the OSS project AspectJ.

Furthermore, the exact file name is present in more than 50% of the bug descriptions. The

authors concluded that when the terms from these locations are compared during a search,

the noise is reduced automatically due to reduction in search space. For example, in 27

AspectJ bug reports, at least one of the file names of the fixed files was present as-is in the

bug report summary, whereas in 101 bug reports at least one of the terms extracted from

the file name was present. Although the summary field contained only 3% of the total terms

found in the bug report, at least one of the terms extracted from the comments, file, method

or variable names was found in the bug report summaries in 82%, 35%, 72% or 43% of the

cases respectively.

Finally, Moreno et al. (2013) have experimented by using the shared terms to search for

33

relevant files using LSI, Lucene1 and shared-terms only, which revealed that shared-terms

search outperformed LSI in 63% of the cases. Although Lucene—a well known Java-based

framework providing tools to index and search documents—out performed both LSI and

shared-terms, there were a few cases where shared-terms performed 22% better than Lucene.

One of the limitations of this approach is that since the bug reports already documented

the a↵ected files, the number of shared terms were easily identified and restrained to the

reported average (i.e. between 1–13). Subsequently, performing search by utilising only those

shared terms might have helped reduce the number of false positives, i.e. less relevant but

accidentally matched source code class files.

While both studies (Saha et al., 2013; Moreno et al., 2013) have shown that there is some

textual overlap between the terms used in bug reports and those in the source code files,

this might not always be the case due to the di↵erent source code terms used by developers

and the ones used by those creating the bug reports, for example, Bettenburg et al. (2008)

showed that bug reports may be tersely described and may contain test scenarios rather then

developer oriented technical details.

2.3.3 Using Stack Trace and Structure

It has been argued that existing approaches treat source code files as one whole unit and

bug report as one plain text. However, bug reports may contain useful information like stack

traces, code fragments, patches and recreation steps (Bettenburg et al., 2008). A study done

by Schröter et al. (2010) explored the usefulness of stack trace information found in the bug

reports. Figure 1.3 in Chapter 1, shows a stack trace, which lists a sequence of files that were

executing at the time of the error. Schröter et al. (2010) investigated 161,500 bug reports in

the Eclipse project bug repository and found that around 8% (12,947/161,500) bug reports

contained stack trace information. After manually linking 30% (3940/12,947) of those closed

bug reports to their a↵ected files, 60% (2321/3940) revealed that the file modified to solve

the bug was one of the files listed in the stack trace or stack frame (ordered list of method/file

names).

Schröter et al. (2010) note that stack traces identified in the study contained up to 1024

frames and a median of 25 frames. Out of 2321 bug reports with a stack trace, in 40% the

a↵ected file was in the very first position of the stack trace and in 80% it was within the first

1
http://lucene.apache.org/java/docs/index.html

34

6 positions. It is not clear if non-project specific file names are ignored during the evaluation

of the stack frames. Investigating the a↵ected files revealed that 70% of the time the a↵ected

file is found in the first trace and in 20% it is found on the second or third trace. Finally, the

authors investigated whether including stack trace in bug reports speeds up the development

process and conclude that fixing bugs with stack trace information, requires 2–26 days and

without stack trace 4–32 days.

Moreno et al. (2014) presented an approach that leverages the stack trace information

available in bug reports to suggest relevant source code files. The authors argue that if 60%

of the cases the stack trace contains at least one of the source code files that was changed to

resolve the bug (Schröter et al., 2010), then in rest of the cases (40%) the changed source file

should be a neighbouring one to those present in the stack trace. Based on this argument,

their approach calculates two scores: (1) a textual similarity between a bug report and a

source file using VSM scoring and (2) a structural similarity score based on the call-graph

shortest path between each file listed in the stack trace and the called/calling class file.

Finally, both the VSM (1) and stack trace (2) scores are combined using an alpha factor,

which determines the importance given to the stack trace score when considering it in the

final score.

After evaluating the approach with only 155 bug reports containing a stack trace, the

results reveal that 65% of the bugs were fixed in a file mentioned in the stack trace submitted

in the bug report. Out of 314 files fixed to resolve the reported bugs, 35% (109/314) were at

a distance 1 from the files listed in the stack trace, 11% (36/314) at a distance of 2 and 8%

(25/314) at a distance between 3–7. Moreno et al. (2014) first varied the stack trace score’s

lambda factor (determines the number of neighbouring files to consider on call-graph) between

1–3 and the alpha factor (determines the weight given to the stack trace score) between 0–1,

subsequently assessed the overall performance using MAP and MRR. The authors observed

that increasing lambda value to consider up to 3rd generation of neighbours decrease the

performance and recommend that up to 2 neighbours be considered. The best performance

was gained when the alpha factor value was set between 0.7–0.9, which indicates that the

VSM score needs to be aided by additional sources of information at 70%–90% ratios to

achieve satisfactory results.

Furthermore, Moreno et al. (2014) noted that when two files are structurally related by

call relations, and when one of them has a higher textual similarity against a particular

35

query then the irrelevant file is ranked higher. So in these situations adjusting the alpha

value allowed the relevant file to be ranked higher instead. The authors observed that when

parts of the code that needs to be changed are not structurally related to the files listed in

the stack trace then the e↵ectiveness of the approach degrades. However, they conclude that

overall 50% of the files to be changed were in the top-4 ranked files. Compared to a standard

VSM (Lucene), the approach achieved 53% better, 29% equal and 18% worst performance

results.

One of the limitations of the study in (Moreno et al., 2014) is that it does not di↵erentiate

the two types of call-relations, i.e. caller : a class that calls others and callee: a class called by

others (Hill et al., 2007). The software developers may follow the call hierarchies to identify

callers of the candidate class file and assign higher importance to them. While n-number of

callee class files from the one listed on the stack trace are being evaluated by Moreno et al.

(2014), no importance is given to the callers of the one found on the stack trace.

Wong et al. (2014) proposed a method that also considers the stack trace information and

performs segmentation of source files to deal with the fact that source files may produce noise

due to varying lengths (Bettenburg et al., 2008). The method involves dividing each source

file into sections so called segments, and matching each segment to a bug report to calculate

a similarity score. After that for each source file a length score is calculated. In addition, the

stack trace is evaluated to calculate a stack trace (ST) boost score. Subsequently, for each

source file, the segment with the highest score is taken as the relevant one for the bug report

and multiplied by the length score to derive a similarity score. Finally, the ST score is added

on top of the similarity score to get the overall score.

The segmentation involves dividing the number of terms extracted into equal partitions,

e.g. if a source file has 11 terms, and the segmentation is set as 4, then 3 segments are created

with the first two having 4 terms and the last one having only 3 terms. The authors have

varied the number of terms used in each segment between 400–1200 and conclude that 800

terms in a segment achieved an optimal e↵ect in the performance of the results.

The length score is calculated by revising the logistic function used in (Zhou et al., 2012a)

with a beta factor to regulate how much favour is given to larger files. The authors have

varied the beta values between 30 and 90 and conclude that 50 achieved an optimal e↵ect.

The ST boost score is calculated by considering the files listed in the stack as well as

the files referenced via import statements known as the closely referred ones, which was first

36

introduced by Schröter et al. (2010). Additionally, the SimiScore function defined by Zhou

et al. (2012a) is utilised to calculate the similarity of the bug report to the previously closed

bugs and give favour to the files closed by those similar reports.

The approach is evaluated by measuring the performance against (Zhou et al., 2012a)

with three of the same datasets used in that study to see whether the segmentation and

stack trace makes a di↵erence. Three sets of search tasks are performed, first with both

segmentation and stack trace enabled, second with only segmentation and third with only ST

boosting. In all three cases, two variants of evaluation criteria are used, one with considering

similar bug reports and the other without. It is concluded that the approach is able to

significantly outperform the one introduced in (Zhou et al., 2012a) regardless of considering

similar bug reports or not. Authors claim that segmentation or stack trace analysis is an

e↵ective technique to boost bug localisation and both are compatible with the use of similar

bug reports.

One of the limitations of this approach, also acknowledged, is that the e↵ectiveness of

segmentation is very sensitive to how the source files are divided, e.g. based on number of

methods or based on number of lines. The number of terms to be included in each segment

has an impact on similarity, in that a code section may get split into di↵erent segments

thus reducing relevance, or including the section in one larger segment may produce false

positives in certain cases. In addition, including closely referred source files, i.e. called files,

via import statements in the search space may cause false positives as Moreno et al. (2014)

study highlights. Furthermore, the study in (Wong et al., 2014) fails to provide evidence on

how much benefit the closely referred files bring into the performance of the results.

Furthermore, there is no indication in either of the studies (Moreno et al., 2014; Wong

et al., 2014) on how the approach handles many non-application specific file names contained

in the stack trace like those form third-party vendors or those belonging to the programming

language specific API, which may be irrelevant for the reported bug.

2.3.4 Version History and Other Data Sources

Nichols (2010) argues that utilising additional sources of information would greatly aid IR

models to identify relations between bug reports and source code files. One of the information

sources available in well-maintained projects is the past bug details. To take advantage of

the past bugs, the author proposed an approach that mines the past bug information auto-

37

matically. The approach extracts semantic information from source code files like identifier

and method names but excludes the comments, claiming that this would lead to inaccurate

results. Subsequently, two documents (i.e. search repositories) are created, one containing a

list of method signatures and the other containing all the terms extracted form those meth-

ods. Finally, information from previous bug reports (e.g. title, description and a↵ected files)

are collected and appended (augmented) into the document containing the method terms.

The author also manually checked to see where exactly the code was changed by a previous

bug report and appends its vocabulary on to the vocabulary of that code section.

Nichols has experimented with augmented and non-augmented search repositories and

found that the search results from the repository augmented with up to 14 previous bug re-

ports has produced same results as those from the non augmented one. The best performance

is obtained when 26–30 previous bugs were used in the augmented repository. It is observed

that there is no guarantee of considering previous bug information contributes towards im-

proving the rank of a source file in the result list and concludes that quality bug reports,

e.g. those with good descriptions, is more valuable than the number of bug reports included

in the repository. One of the limitations of the presented approach is that augmenting the

repository with bug reports requires manual e↵ort, which may be prone to errors and the

author fails to describe how its validity was verified.

Ratanotayanon et al. (2010) performed a study on diversifying data sources to improve

concept location, and asked if having more diverse data in the repository where project arte-

facts are indexed always produce better results. They investigated the e↵ects of combining

information from (1) change set comments added by developers when interacting with source

version control systems, (2) issue tracking systems and (3) source code file dependency rela-

tions, i.e. the call-graph. They experimented with four di↵erent combinations of using these

three information sources together.

1. Change sets (i.e. commit messages and the fixed files).

2. Change sets and call-graph (only the calling class files of the fixed files).

3. Change sets and bug reports.

4. All of the above.

It is observed that (1) using change sets together with bug reports produces the best results,

(2) including the referencing files, i.e. the calling class files available on the call-graph,

38

increased recall but deteriorated precision and (3) adding bug report details into the commit

comments had little e↵ect on the performance of the results.

The authors argue that change sets provide vocabulary from the perspective of the prob-

lem domain because developers add, on each commit, descriptive comments which are more

aligned with the terms used when performing a search task. However, success of utilising the

change sets in search tasks are sensitive to the quality of these comments entered. One of

the reasons for the third observation performing poorly, as stated above, could be due to the

similar vocabulary being used in commit comments as in bug reports, hence the search was

already benefiting from the commit message vocabulary and bug report descriptions did not

provide additional benefit.

Additionally, Ratanotayanon et al. (2010) claimed that refactoring of the code base

severely impacts the usability of commit comments in that they no longer match with the

a↵ected class files. Finally, the authors propose that when using a call-graph, the results

be presented in ranked order based on a weighting scheme to compensate for any possible

deterioration in precision due to false positives.

In the approach presented by Ratanotayanon et al. (2010), the change sets are augmented

with the information extracted from the revision history, which depends on the consistency

and conciseness of the descriptions entered by the developers on commit messages during

interacting with source code control systems. Since di↵erent variations of code control systems

exist, applicability of the approach in environments other then the one used may constrain

the generalisability of the approach.

2.3.5 Combining Multiple Information Sources

One of the earlier works on combining multiple sources of information to aid bug localisation

was to apply the concept of data fusion to feature location (Revelle, 2009). Data fusion

involves integrating multiple sources of data by considering each source to be an expert (Hall

and Llinas, 1997; Revelle, 2009). The proposed approach by Revelle (2009) combines the

structural dependencies and textual information embedded in source code as well as dynamic

execution traces to better identify a feature’s source code files.

The approach by Revelle (2009), initially allows users to formulate queries and ranks all

the source code files by their similarity to the query using LSI. Subsequently, using dynamic

analyses, traces are collected by running a feature of the application. The source code files

39

absent in the traces, i.e. not executed, are pruned from the ranked list. Finally, using a

program call-graph both ranked list and dynamic information is optimised. For example, if

a file’s neighbour in the call-graph was not executed and did not meet a textual similarity

threshold, then the dependency is not followed. The approach is later on implemented in a

tool that integrates textual and dynamic feature location techniques called FLATTˆ3 (Savage

et al., 2010).

One of the limitations of the proposed approach is that it depends on the execution

scenarios, which require recreational data that may no longer be available. In addition,

pruning may unintentionally remove relevant files, thus negatively e↵ect the performance of

the results. Revelle at al. also claim that a change request, e.g. a bug report, may be relevant

for only a small portion of a feature, hence may not fully represent all the files pertaining to

the feature.

Saha et al. (2013) claim that dynamic approaches are more complicated, time consuming

and expensive than static approaches where some sort of a recommendation logic is more

appealing. The authors argued that existing techniques treat source code files as flat text

ignoring its rich structures, i.e. file names, method names, comments and variables. Saha

et al. (2013) proposed an approach where 8 scores are calculated based on the similarity of

terms from 2 parts of a bug report (summary and description) with the terms from 4 parts

of a source code file (file name, method names, variable names and comments).

The approach adopts the built in TF.IDF model of Indri2, which is based on BM25

(Okapi) model3, instead of VSM. The authors argue that di↵erent parts of text documents,

e.g. bug descriptions, may cause noise due to matching lots of irrelevant terms. Based on

a preliminary analysis, they have discovered 6 locations from where terms originate, bug

summary and description as well as source file name, methods, comments and variables.

One of the limitations the approach presented by Saha et al. (2013) assumes all features

are equally important and ignores the lexical gap between bug reports and source code files,

which is problematic due to potential contamination with bug-fixing information.

Davies and Roper (2013) also proposed a combined approach that integrates 4 sources

of information and implemented by considering source code’s method names instead of file

name. Each individual information source is calculated as follows: (1) textual similarity

between the bug description and the source code file’s method; (2) probability output by a

2
http://www.lemurproject.org

3
http://nlp.stanford.edu/IR-book/html/htmledition/okapi-bm25-a-non-binary-model-1.html

40

classifier indicating a previously closed bug’s similarity to the method, i.e. similar bug reports;

(3) number of times a file’s method was fixed, divided by the total number of bugs; and (4)

inverse position of the method in stack traces contained in the bug report. The authors

evaluated the approach using three OSS projects (Ant4, JMeter5, JodaTime6) and compared

the performance of using each of the information sources (i.e. 1—4) as individual approach

against the combined one. The results indicate that the combined approach outperforms any

of the individual approaches in terms of both top-1 and top-10 results.

One of the limitations of the approach is that it depends upon the number of previously

closed bug reports used to train the classifier. For example, Davies and Roper (2013) report

poor performance results for JodaTime compared to the others (Ant, JMeter), which may

be due to the small number of bug reports in that project. Additionally, the source code

files may contain several methods and clutter the results list, hence burden developers when

navigating the results. For example, FileA has 10 methods, FileB 20 and FileC 8. When 5

methods of FileA and 5 of FileC are relevant, but 5 methods of FileB are falsely placed in

the top-10, then there is only room for 5 more methods to be placed into top-10, either from

FileA or FileC, rest will be placed beyond top-10, thus negatively impacting precision of the

results and forcing developers to investigate the irrelevant methods of FileB in top-10.

Wang and Lo (2014) proposed an approach that also consider the files found on version

history commits, i.e. number of times a source file is fixed due to a bug based on commit

messages. Instead of considering all the previous bug reports (Sisman and Kak, 2012), only

recent version history commits are considered. The approach looks to see when the current

bug was created and compare the number of days/hours between each past commit to assign

a score to reflect the relevance of those previously modified files for the current bug at hand.

For example, if a file was changed 17 hours ago, it gets a higher score then if it was changed

17 days ago.

Additionally, Wang and Lo (2014) adopted the similarity score (SimiScore) introduced

by Zhou et al. (2012a), which basically considers the term similarity between a current bug

and all previously reported bugs. Based on the SimiScore, the a↵ected files of all previous

bug reports are assigned a suspiciousness score to reflect their relevance for the current bug.

Finally, the authors utilised the structure score introduced in Saha et al. (2013). Once all 3

4
ant.apache.org

5
jmeter.apache.org

6
joda-time.sourceforge.net

41

scores (history, bug similarity and structure) are calculated, they are combined together in

the following order.

The approach introduced by Wang and Lo (2014) first calculates a suspiciousness score

by combining the structure score and the SimiScore using an alpha (a) value of 0.2, which

is the same as the one used by Saha et al. (2013). So only 20% weight is given to files from

previous bug reports, as follows.

SRscore(f) = (1-a) * structure score of a file + a * SimiScore of a file

Subsequently, the history score is combined with the SRscore in a similar way by using a beta

(b) factor, which again determines how much consideration is given to history score compared

to the combined score of structure and similar bug reports, as follows.

SRHscore(f) = (1-b) * SRscore(f) + b * history score of a file

Wang and Lo (2014) experimented with di↵erent values of beta and conclude that when it is

incremented by 0.1, i.e. 10% weight is given to history, the performance steadily increases up

to a beta value of 0.3 and beyond that the performance decreases. Compared to other history

based bug localisation techniques, the performance of MAP is improved by 24% over the

approach introduced in Zhou et al. (2012a) and 16% over the one introduced by Saha et al.

(2013). The evaluation of the approach shows that considering historical commits up to 15

days increased the performance, 15 to 20 days did not make much di↵erence and considering

up to 50 days deteriorated the performance. Thus Wang and Lo (2014) claim that most

important part of the version history is in the commits of the last 15 to 20 days.

Recently, Ye et al. (2014) claimed that if a source file is recently changed than it may

still contain defects and if a file is changed frequently than it may be more likely to have

additional errors. The authors argued that there is a significant inherent mismatch between

descriptive natural language vocabulary of a bug report and the vocabulary of a programming

language found in source code file. They propose a method to bridge this gap by introducing

a novel idea of enriching bug descriptions with terms from the API descriptions of library

components used in the source code file.

The ranking model of the approach combines six features, i.e. scores, measuring the rela-

tionship between bug reports and source code files, using a learning-to-rank (LtR) technique:

(1) lexical similarity between bug reports and source code files; (2) API enriched lexical sim-

ilarity, using API documentation of the libraries used by the source code; (3) collaborative

42

filtering, using similar bug reports that got fixed previously; (4) bug fixing recency, i.e. time

of last fix (e.g. number of months past since last fix); (5) bug fixing frequency, i.e. how often

a file got fixed; (6) feature scaling, used to bring the score of all previous scores (1–6) into one

scale. Their experimental evaluations show that the approach places a relevant file within

the top-10 recommendations for over 70% of the bug reports of Tomcat7.

The source files are ranked based on the score obtained by evaluating each features weight.

Although improved results are obtained compared to existing tools, Ye et al. (2014) reported

that in two datasets, AspectJ8 and Tomcat, existing tools also achieved very similar results.

One of the reasons is that in AspectJ a↵ected files were very frequently changed and in Tomcat

the bug reports had very detailed and long descriptions. Evaluating the e↵ectiveness of each

feature on the performance show that the best results are obtained by lexical similarity (1)

and previous bug reports (2), hence this leaves the question whether considering features like

version history and bug fix frequency is really worth the e↵ort since other studies also report

their e↵ectiveness rather being poor.

One of the limitations LtR approach exposes is that it makes use of machine learning

based on a set of training data to learn the rank of each document in response to a given

query. However, training data is often unavailable in many cases particularly when developers

work on a new software. Furthermore, the bugs in the training set may not be representative

enough for the incoming buggy files, which could limit the e↵ectiveness of the approach in

localising bugs.

2.4 Current Tools

Zhou et al. (2012a) implemented their approach in a tool called BugLocator, which was

evaluated using over 3,400 reports of closed bugs (see Table 2.1) and their known a↵ected

files from four OSS projects: the IDE tool Eclipse9, the aspect-oriented programming library

AspectJ, the GUI library SWT10 and the bar-code tool ZXing11. Eclipse and AspectJ are

well-known large scale applications used in many empirical research studies for evaluating

various IR models (Rao and Kak, 2011). SWT is a subproject of Eclipse and ZXing is an

Android project maintained by Google. The rVSM and similarity scores introduced by Zhou

7
http://tomcat.apache.org/

8
http:// www.st.cs.uni-saarland.de/ibugs/

9
http://www.eclipse.org

10
http://www.eclipse.org/swt/

11
http://code.google.com/p/zxing/

43

Table 2.1: Project artefacts and previous studies that also used them
Project Source files Bug reports Period Used also by

AspectJ 6485 286 2002/07 - 2006/10 Zhou et al. (2012a), Saha et al.
(2013), Wong et al. (2014), Wang
and Lo (2014), Youm et al. (2015)

Eclipse 12863 3075 2004/10 - 2011/03 Zhou et al. (2012a), Saha et al.
(2013), Wong et al. (2014), Wang

and Lo (2014),
SWT 484 98 2004/10 - 2010/04 Zhou et al. (2012a), Saha et al.

(2013), Wong et al. (2014), Wang
and Lo (2014), Youm et al. (2015),

Rahman et al. (2015)
ZXing 391 20 2010/03 - 2010/09 Zhou et al. (2012a), Saha et al.

(2013), Wang and Lo (2014),
Rahman et al. (2015)

Tomcat 2038 1056 2002/07 - 2014/01 Ye et al. (2014)
ArgoUML 1685 91 2002/01 - 2006/07 Moreno et al. (2014)
Pillar1 4355 27 2012/03 - 2013/01 -
Pillar2 337 12 2010/05 - 2011/01 Dilshener and Wermelinger (2011)

et al. (2012a) are each normalised to a value from 0 to 1 and combined into a final score:

(1-w)*normalrVSM+w*normalSimiScore, where w is an empirically set weight.

The final score is then used to rank files from the highest to the lowest. For two of these

projects w was set to 0.2 and for the other two w=0.3. The performance of BugLocator was

evaluated with 5 metrics: Top-1, Top-5, Top-10, MAP and MRR. Across the four projects,

BugLocator achieved a top-10 of 60–80%, i.e. for each project at least 60% of its bugs were

a↵ected by at least one of the first 10 suggested files. One of the limitations of this approach

is that the parameter w is tuned on the same dataset that is used for evaluating the approach,

which means that the results reported correspond to the training performance. It is therefore

unclear how well their model may generalise with previous bug reports that are not used to

train the model.

Saha et al. (2013) presented BLUiR tool, which leverages the structures inside a bug

report and a source code file as discussed earlier in Section 2.3.5. The results were evaluated

using BugLocator’s dataset and performance indicators. For all but one indicator for one

project (ZXing’s MAP), BLUiR matches or outperforms BugLocator, hinting that a di↵erent

IR approach might compensate for the lack of history information, namely the previously

closed similar bug reports. Subsequently, BLUiR incorporated SimiScore, which did further

improve its performance.

Wang and Lo (2014) implemented their approach (Section 2.3.5) in a tool called AmaLgam

for suggesting relevant buggy source files by combining BugLocator’s SimiScore and BLUiR’s

structured retrieval into a single score using a weight factor, which is then combined (using a

44

di↵erent weight) with a version history score that considers the number of bug fixing commits

that touch a file in the past k days. This final combined score is used to rank the file. The

approach is evaluated in the same way as BugLocator and BLUiR, for various values of k.

AmaLgam matches or outperforms the other two in all indicators except one, again the MAP

for ZXing.

Wong et al. (2014) implemented their proposed method, which considers the stack trace

information and performs segmentation of source files in BRTracer tool by extending the

approach utilised in BugLocator. The approach is evaluated by measuring the performance

against BugLocator as described in Section 2.3.3. It is concluded that the approach is able to

significantly outperform the one introduced in (Zhou et al., 2012a) for all the three projects

regardless of considering similar bug reports or not.

Recently, Youm et al. (2015) introduced an approach where the scoring methods utilised in

previous studies (Zhou et al., 2012a; Wong et al., 2014; Saha et al., 2013; Wang and Lo, 2014)

are first calculated individually and then combined together. The final scores is a product

of all the scores and how much importance is given to each score is determined by varying

alpha and beta parameters. The approach implemented in a tool called BLIA is compared

against the performance of the other tools where the original methods were first introduced.

For evaluation only the three smaller BugLocater datasets (i.e. excluding Eclipse) are used.

Although BLIA improves the MAP and MRR values of BugLocator, BLUiR and BRTracer,

it fails to outperform AmaLgam in AspectJ. The authors found that stack-trace analysis is

the highest contributing factor among the analysed information for bug localisation.

In another recent study, Rahman et al. (2015) extended the approach introduced in Zhou

et al. (2012a) by considering file fix frequency (fileFixFrequency) and file name match (file-

NameMatch) scores as BugLocator(rVSM+SimiScore)*fileFixFrequency+fileNameMatch.

The file fix frequency score is calculated based on the number of times a ranked file is

mentioned in the bug repository as changed to resolve another bug. The file name match

score is based on the file names that appear in the bug report. The file names were extracted

from the bug report using very simple pattern matching techniques and collected in a list.

Subsequently during the search, if a ranked file is in the list of files, its score is boosted with

a beta value.

The approach is evaluated with the SWT and ZXing projects from the BugLocator dataset

45

and one of their own: Guava12. The authors show improved MAP and MRR values over

BugLocator’s. Rahman et al. (2015)’s (1) extract the file names from the bug report using

very simple pattern matching techniques and (2) use a single constant value to boost a file’s

score when its name matches one of the extracted file names. One of the limitations of this

approach is that treating all the positions equally important with only one constant value

may be the reason why increasing its weight (beta factor) beyond 30% deteriorates the results

because irrelevant files are being scored higher.

2.5 User Studies

Sillito et al. (2008) on asking and answering questions during implementing a change task,

conducted two di↵erent studies, one in a laboratory setting with 9 developers who were new

to the code base and the other in an industrial setting with 16 developers who were already

working with the code base. In both studies developers were observed performing change

tasks to multiple source files within a fairly complex code base using modern tools. In both

cases the 30–45min long sessions were documented with an audio recording, screen shots

and a post session interview was conducted. The outcome of the studies allowed authors to

generate types of questions that developers ask organised under following 4 categories.

1. Finding focus points: identifying single classes as entry points

2. Expanding focus points: relating the single classes with their surrounding classes to

find more information relevant to the task.

3. Understanding a sub-graph: the functionality provided with those related classes in (2)

and than building an understanding of the concepts.

4. Correlating the sub-graphs with other sub-graphs: how the functionality is mapped to

another sub-set of classes providing another type of functionality.

Subsequently, the authors describe the behaviours observed while answering these questions

and highlight the gaps that current development tools have when providing support to de-

velopers within the context of these questions. The authors conclude that questions of types

(1) through (3) are asked by mostly developers who are unfamiliar with the code base while

type (4) questions are asked by developers who already have the expertise with the code base.

12
https://github.com/google/guava/wiki

46

The questions asked in the 3rd category was aimed to build an understanding of the control

flow among multiple classes as well as to understand the functionality provided to address

a domain concept. Since current IDEs do not consider information flow during the search

stage, a developer would need to first get a result list of candidate files and than search for

call relations. These steps, as highlighted by the authors, caused developers to loose track of

where they were and often ended up stating a fresh search.

The authors also mention that developers who are more experienced with the code base

often ask questions of type (4), which evolves around how one set of functionality provided

by a set of class files (e.g. call-relations) may map or relate to another functionality provided

by another set of classes. This Indicates that the importance of control flow between these

two sets may be of importance when ranking the class files.

Likewise, Starke et al. (2009) performed a study with 10 developers to find out how

developers decide what to search for and decide what is relevant for the maintenance change

task at hand. The study was conducted at a laboratory setting and involved 10 developers

with prior Java development experience (of which 8 gained in industrial environments) using

the Eclipse IDE. Participants were randomly assigned one of the 2 closed change tasks selected

from the Sub-eclipse tool’s issue repository. Each developer at each session was paired with a

researcher (the second author) to collect data during the 30min. study session. The researcher

acted as the observer (at the keyboard) performing the instructions given by the developer

(the driver). This type of pairing allowed all dialogue exchange between the observer and

the driver to be recorded. At the end of each session, another researcher (the first author)

conducted a 10min interview with the developer. To ensure that 30min was su�cient two

pilot studies were carried out.

In each session, participants were instructed to carry out search tasks in Eclipse using

the 8 available search tools. Out of 96 search queries performed, 35 returned ten or more

results, 22 more than fifty and 29 returned no results at all. Astonishingly, only 4 out of 10

developers has decided to open one of the files on the result list to inspect its content for

relevance. All others briefly browsed the result list and decided to perform a new search.

The authors summarise their key observations of the developers in following 5 categories.

1. Forming hypotheses to what is wrong based on past experience.

2. Formulating search queries based on their hypotheses around naming conventions.

47

3. Looking for what might be relevant in the large search results with a very fuzzy idea.

4. Skimming through the result list rather than systematically investigate each result.

5. Opened a few files, briefly skimmed through and performed a new search rather than

investigating the next item on the result list.

Starke et al. (2009) state that developers look at the code base and use their experience in

the domain when forming their hypotheses to what might be the problem. It is highlighted

that developers found formulating search queries challenging because Eclipse search tools

require the search terms to be precisely specified otherwise no relevant results are returned.

The authors found that when large search results are returned, the developers tend to loose

confidence in the query and decide to search again rather than investigate what was returned.

Starke et al. (2009) propose future research on tool support for the developers to provide

more contextual information by presenting the results in a ranked order, grouped within the

context relevant for the search tasks at hand.

While developers ask focus-oriented questions to find entry points when starting their

investigations, they use text-based searches available in current IDEs as highlighted in both

studies (Sillito et al., 2008; Starke et al., 2009). The tools require the search terms to be

precisely specified otherwise irrelevant or no results are returned, thus cause additional burden

on developers due to repeatedly preformed discovery tasks in a trial and error mode. Sillito

et al. (2008) also point out that additional challenges lie in assessing the high volume of

information returned in the results because most tools treat search queries in isolation and

require developers to assemble the information needed by piecing together the results of

multiple queries.

Recently Kochhar et al. (2016) performed a study with practitioners about their expec-

tation of automated fault localisation tools. The study explored several crucial parameters,

such as trustworthiness, scalability and e�ciency. Out of 386 responses, 30% rated fault

localization as an “essential” research topic. The study further reveals that around 74% of

respondents did not consider a fault localisation session to be successful if it requires devel-

opers to inspect more than 5 program elements and that 98% of developers indicated that

inspecting more than 10 program elements is beyond their acceptability level. These find-

ings show the importance of positioning relevant files in the top-10, especially in the top-5;

otherwise the developers lose confidence.

48

Parnin and Orso (2011) studied users fixing 2 bugs with Tarantula, a tool that suggests a

ranked list of code statements to fix a failed test. Users lost confidence if the ranked list was

too long or had many false positives. Users didn’t inspect the ranked statements in order,

often skipping several ranks and going up and down the list. For some users, the authors

manually changed the ranked list, moving one relevant statement from rank 83 to 16, and

another from rank 7 to rank 35. There was no statistically significant change in how fast the

users found the faulty code statements. This may be further indication that the top-5 ranks

are the important ones.

Xia et al. (2016) record the activity of 36 professionals debugging 16 bugs of 4 Java apps,

each with 20+ KLOC. They divide professionals into 3 groups: one gets the buggy statements

in positions 1-5, the other in positions 6-10, the other gets no ranked list. On average, the

groups fix each bug in 11, 16 and 26 minutes, respectively. The di↵erence is statistically

significant, which shows the ranked list is useful. Developers mention that they look first at

the top-5, although some still use all of the top-10 if they’re not familiar with code. Some do

an intersection of the list with where they think the bug is and only inspect those statements.

Although the bug localisation is based on failed/successful tests and the ranked list contains

code lines, not files, the study emphasises the importance of the top-5 and how developers

use ranked lists.

As I shall present in Chapter 4, my approach equals or improves the top-5 metric on all

analysed projects, and as we shall see in Chapter 5, my user study on IR-based localisation

of buggy files confirms some of the above findings on test-based localisation of buggy code

lines.

2.6 Summary

Early attempts to recover traceability links using IR methods like Vector Space Model (VSM)

resulted in high recall, however due to low precision these approaches required manual e↵ort

in evaluating the results (Antoniol et al., 2000a). VSM has two limitations: (1) the similarity

measure only takes into account the terms that precisely match between the search terms and

the terms mapped onto the vector space, (2) large size documents produce poor similarity

values because the distance between the terms in the search space increases.

To address the limitations of VSM, previous research has applied Latent Semantic In-

dexing (LSI) models that resulted in obtaining higher precision values compared to VSM

49

(Marcus and Maletic, 2003). Nevertheless, LSI is weak compared to VSM when the corpus

created after parsing the source code is too small. Therefore, the need to improve results

by considering additional sources of information like structural source code file hierarchies is

suggested.

The current research also recognised the need for combining multiple analysis approaches

to aid in IR to support program comprehension. Techniques like dynamic and static ana-

lysis in determining the entry points to investigate the other relevant program elements for

maintenance work are exploited (Wilde and Scully, 1995). However, no single IR method

consistently provides superior recovery of traceability links (Gethers et al., 2011).

To improve the accuracy of IR models current research also exploited natural language

(NL) processing techniques like indexing only the nouns extracted from the project artefacts

by relying on the semantic of a term rather then lexical similarity (Shepherd et al., 2005).

Despite the advantages gained, one of the limitations of NL techniques is in di↵erentiating

between how the developers combine the terms during programming compared to their mean-

ing found in English language vocabulary. Therefore, the need to establish semantic context

is raised and the use of contextual (domain specific) representations is proposed (Fry et al.,

2008).

Furthermore, to address the limitations of NL in providing the needed context, existing

research exploited prepositional phrases (Hill et al., 2008) and use of reference dictionaries

containing domain specific vocabulary (Hayase et al., 2011). However, these approaches fail

to consider relational clues based on structural information (i.e. OOP inheritance) among

program elements. The term relations also point to similarities but fall short in recovering

conceptual relations in the absence of domain specific context (Sridhara et al., 2008).

The advantages of utilising ontologies to provide the required contextual information by

modelling the knowledge to aid program comprehension in software maintenance are also

exploited (Hsi et al., 2003; Petrenko et al., 2008). However, the existing approaches assume

that terms extracted from program identifiers are made up of terms that can be directly

mapped to one another without being further evaluated (Raţiu et al., 2008). Furthermore,

these approaches fall short on utilising the available information like navigating the call-graph

e�ciently (Hayashi et al., 2010) and expect that applications are programmed by strictly

following OOP guidelines (Abebe and Tonella, 2010).

In recent years, research has focused on utilising concept location techniques in bug local-

50

isation to aid the challenges of performing maintenance tasks. Concept location also depends

on the experience and intuition of the developers, (Rajlich and Wilde, 2002). In case when

there is shortage of either, to address the challenges of locating program elements, current

research has proposed automated concept and bug location techniques.

Bug reports may describe a situation from the perspective of a problem and may contain

the vocabulary of that domain. On the other hand, software applications are coded to ad-

dress a business domain by providing a solution and contains the vocabulary of that domain

(Ratanotayanon et al., 2010).

As the current literature highlights, the IR approaches may consider two strongly related

terms via structural information (i.e. OOP inheritance) to be irrelevant (Petrenko and Ra-

jlich, 2013). In turn this may cause one source code file to be at the top of the result list

and the other related one at the bottom. To cater for the structural relations, the static

call-graph is utilised, however the call-graphs usually contain many dependencies and very

deep nodes/edges that make them impractical for search and navigation purposes.

To compensate for the call-graph limitations, the presented approaches utilise pruning

logic to remove nodes/edges by clustering the call relations found in the call-graph (Hill

et al., 2007). However, one of the challenges pruning exposes is that a source file may be

removed or moved to a di↵erent group/cluster due to the underlying pruning logic causing

inconsistencies when searching for the program elements implementing a concept.

On one hand, techniques like dynamic analysis requires recreating the behaviour reported

on the bug report to collect execution trace, on the other hand the techniques like mining

software repositories require collecting and analysing large quantities of historical data, mak-

ing both of these techniques time consuming thus impractical in every-day industrial scale

projects (Rao and Kak, 2011).

Recent approaches utilise additional sources of information, e.g. previously fixed bug

reports (i.e. similar bugs) and number of times a source file is fixed (i.e. version history), to

boost the scoring of the underlying IR model. However, it is claimed that considering similar

bug reports earlier than 14 days add no value (Nichols, 2010) and version history older than

20 days decrease the performance (Wang and Lo, 2014).

In addition, recent studies utilised segmentation (Wong et al., 2014) and stack trace

analysis (Moreno et al., 2014) as an e↵ective technique to improve bug localisation. However,

stack trace may often contain many non-application specific file names, e.g. programming

51

language specific APIs or those belong to other vendors, thus deteriorate the precision of the

results.

Furthermore, current studies (Zhou et al., 2012a; Saha et al., 2013; Moreno et al., 2014;

Wong et al., 2014; Wang and Lo, 2014) exposed additional challenges associated with bug

localisation due to the complexity of OOP (e.g. structure) and the nature of bug report

descriptions (e.g. tersely described scenarios), which require weight factors like alpha, beta

and lambda values to be constantly adjusted to obtain optimal results.

2.6.1 Conclusion

In summary, current state-of-the-art IR approaches in bug localisation rely on project history,

in particular previously fixed bugs and previous versions of the source code. Existing studies

(Nichols, 2010; Wang and Lo, 2014) show that considering similar bug reports up to 14 days

and version history between 15—20 days does not add any benefit to the use of IR alone.

This suggests that the techniques can only be used where great deal of maintenance history is

available, however same studies also show that considering history up to 50 days deteriorates

the performance.

Besides, Bettenburg et al. (2008) argued that a bug report may contain a readily iden-

tifiable number of elements including stack traces, code fragments, patches and recreation

steps each of which should be treated separately. The previous studies also show that many

bug reports contain the file names that need to be fixed (Saha et al., 2013) and that the bug

reports have more terms in common with the a↵ected files, which are present in the names

of those a↵ected files (Moreno et al., 2014).

Bettenburg et al. (2008) disagree with the treatment of a bug report as a single piece of

text document and source code files as one whole unit by existing approaches Poshyvanyk

et al. (2007); Ye et al. (2014); Kevic and Fritz (2014); Abebe et al. (2009). Furthermore, the

existing approaches treat source code comments as part of the vocabulary extracted from

the code files, but since comments are sublanguage of English, they may deteriorate the

performance of the search results due to their imperfect nature, i.e. terse grammar (Etzkorn

et al., 2001; Arnaoudova et al., 2013).

Therefore, as defined in Chapter 1, the hypothesis I investigate is that superior results

can be achieved without drawing on past history by utilising only the information, i.e. file

names, available in the current bug report and considering source code comments, stemming,

52

and a combination of both independently, to derive the best rank for each file.

My research seeks to o↵er a more e�cient and light-weight IR approach, which does

not require any further analysis, e.g. to trace executed classes by re-running the scenarios

described in the bug reports. Moreover to provide simple usability, which contributes to an

ab-initio applicability, i.e. from the very first bug report submitted for the very first version

and also be applied to new feature requests, without the need for the tuning of any weight

factors to combine scores, nor the use of machine learning.

In this Chapter, I described the current IR based research e↵orts relevant to software

maintenance and highlighted their limitations that motivated my research. In the following

Chapter, I address my first research question by undertaking a preliminary investigation

of eight applications to see whether vocabulary alone provides a good enough leverage for

maintenance. I also introduce my novel approach, which directly scores each current file

against the given bug report by assigning a score to a source file based on where the search

terms occur in the source code file, i.e. class file names or identifiers.

53

54

Chapter 3

Relating Domain Concepts and

Artefact Vocabulary in Software

In this Chapter, I address RQ1 by undertaking a preliminary study to compare the vocab-

ularies extracted from the projects artefacts (text documentation, bug reports and source

code) of eight applications to see whether vocabulary alone provides a good enough leverage

for maintenance. More precisely, I investigate to determine whether (1) the source code iden-

tifier names properly reflect the domain concepts and (2) identifier names can be e�ciently

searched for concepts to find the relevant files for implementing a given bug report. I also

introduce my novel approach, which directly scores each current file against the given bug

report by assigning a score to a source file based on where the search terms occur in the

source code file, i.e. class file names or identifiers.

Firstly, I compare the relative importance of the domain concepts, as understood by

developers, in the user manual and in the source code. Subsequently, I search the code for the

concepts occurring in bug reports, to see if they could point developers to files to be modified.

I also vary the searches (using exact and stem matching, discarding stop-words, etc.) and

present the performance. Finally, I discuss the implication of my results for maintenance.

In this Chapter, Section 3.1 gives a brief introduction and defines how RQ1 is going to be

addressed. In Section 3.2, I briefly describe the current research e↵orts related to my work. I

present my approach in Section 3.3 and the results of my evaluation in Section 3.4. I discuss

the results and highlight the threats to validity in Section 3.5. Finally in Section 3.6, I end

this Chapter with concluding remarks.

55

3.1 Introduction

Developers working on unfamiliar systems are challenged to accurately identify where and

how high-level concepts are implemented in the source code. Without additional help, concept

location can become a tedious, time-consuming and error-prone task.

The separation of concerns coupled with the abstract nature of OOP obscures the im-

plementation and causes additional complexity for programmers during concept location and

comprehension tasks (Shepherd et al., 2006). It is argued that OOP promotes the decom-

position of concepts into several files scattered across multiple layers of an application’s

architecture opposed to procedural programming languages where all of the implementation

of a concept is usually done in one source file (Shepherd et al., 2006).

Comparison between computer and human interpretation of concepts confronts us with

human oriented terms, which may be informal and descriptive, for example, “deposit the

amount into the savings account”, as opposed to compilation unit terms that tend to be more

formal and structured, e.g. “if (accountType == ‘savings’) then balance += depositAmount”.

Furthermore, if a program is coded by using only abbreviations and no meaningful words

such as the ones from its text documentation, then searching for the vocabulary found in the

supporting documentation would produce no results. In such circumstances, the developer

— responsible for performing corrective task to resolve a reported bug — is now confronted

with the task of comprehending the words represented by the abbreviations before being able

to link them to those described in the text document.

Motivated by the challenges described so far, in Chapter 1, I asked my first research

question as follows.

RQ1: Do project artefacts share domain concepts and vocabulary that may

aid code comprehension when searching to find the relevant files during software

maintenance?

To address the first RQ, I investigate if independent applications share key domain con-

cepts and how the shared concepts correlate across the project artefacts, i.e. text docu-

mentation (user guide), bug reports and source code files. The correlation was computed

pairwise between artefacts, over the instances of the concepts common to both artefacts, i.e.

between the bug reports and the user guide, then between the bug reports and the source

code, and finally between the user guide and the source code. I argue that identifying any

agreement between the artefacts may lead to e�cient software maintenance thus ask my first

56

sub-research question as follows.

RQ1.1: How does the degree of frequency among the common concepts correlate across

the project artefacts?

Furthermore, I am interested in discovering vocabulary similarity beyond the domain

concepts that may contribute towards code comprehension. How vocabulary is distrib-

uted amongst the program elements of an application as well as recovering traceability links

between source code and textual documentation has been recognised as an underestimated

area (Deißenböck and Pizka, 2006). In addition to words, i.e. terms, extracted from source

code identifiers, I investigate overall vocabulary of all the identifiers because my hypothesis

is that despite an overlap in the terms, developers of one application might combine them

in completely di↵erent ways when creating the identifiers that may confuse other developers,

hence ask my following second sub-research question.

RQ1.2: What is the vocabulary similarity beyond the domain concepts, which may con-

tribute towards code comprehension?

When searching for source code files implementing the concepts at hand prior to perform-

ing software maintenance, the source code file names or bug reports reflecting the domain

concepts have a direct impact on the precision and recall performance of the search results.

I aim to investigate this impact and tailor the search so that developers have fewer classes to

inspect thus ask my third sub-research question as follows.

RQ1.3: How can the vocabulary be leveraged when searching for concepts to find the

relevant files for implementing bug reports?

In answering these research questions, I compared the project artefacts of eight applica-

tions of which two are conceptually related and address the same Basel-II Accord (Basel-II,

2006) in the finance domain. One of these applications is propriety, whose artefacts vocabu-

lary has been studied in my preliminary work (Dilshener and Wermelinger, 2011). The other

application is open-source, which is fortunate, as datasets from the finance domain are seldom

made available to the public. This enabled me to perform the designed study described in

this Chapter.

3.2 Previous Approaches

The case study conducted by Lawrie et al. (2006) investigated how usage of identifier nam-

ing styles (abbreviated, full words, single letters) assisted in program comprehension. The

57

authors concluded that although full words provide better results than single letters, use of

abbreviations are just as relevant and report high confidence. Additionally, the work ex-

perience and the education of the developers also play an important role in comprehension.

Lawrie et al. (2006) lobby for use of standard dictionaries during information extraction from

identifier names and argue that abbreviations must also be considered in this process. I in-

vestigate further in an environment where recognisable names are used, if the bug report and

domain concept terms result in higher quality of traceability between the source code and

the text documentation.

Haiduc and Marcus (2008) created a list of graph theory concepts by manually selecting

them from the literature and online sources. The authors first extracted identifier names and

comments representing those concepts from the source code, and then checked if the words,

i.e. terms, extracted from the comments are identifiable in the set of terms extracted from

the identifiers. In addition they measured to see the degree of lexical agreement between

the terms existing in both sets. The authors concluded that although comments reflect more

domain information, both comments and identifiers present a significant source of domain

terms to aid developers in maintenance tasks. I also check whether independently elicited

concepts, in my case from di↵erent domains, occur in identifiers, but I go further in my

investigation: I compare di↵erent artefacts beyond code, and I check whether the concepts

can be used to map bug reports to the code areas to be changed.

In that, my work is similar to that of Antoniol et al. (2002). Their aim was to see if

the source code files could be traced back to the functional requirements. The terms from

the source code were extracted by splitting the identifier names, and the terms from the

documentation were extracted by normalising the text using transformation rules. They

created a matrix listing the files to be retrieved by querying the terms extracted from the

text documents, i.e. functional requirements. The method relied on vector space information

retrieval and ranked the documents against a query. The authors compared VSM against

probabilistic IR model and measured the performance by applying precision/recall. In vector

space model (VSM) tf/idf1 score is used to calculate the similarity whereas probabilistic model

computes the ranking scores as the probability that a document is related to the source code

component. Antoniol et al. conclude that semi-automatically recovering traceability links

between code and documentation is achievable despite the fact that the developer has to

1
tf/idf (term frequency/inverse document frequency) is explained in Chapter 2, Sub-section 2.2.1

58

analyse a large number of source files during a maintenance task. My work di↵ers to that

introduced by Antoniol et al. (2000b) as I aim towards maintenance by attempting to recover

traceability between bug reports and source code files, instead of between requirements and

code.

Abebe and Tonella (2010) presented an approach that extracted domain concepts and

relations from program identifiers using natural language parsing techniques. To evaluate the

e↵ectiveness for concept location, they conducted a case study with two consecutive concept

location tasks. In the first task, only the key terms identified from the existing bug reports

were used to formulate the search query. In the second, the most relevant concept and its

immediate neighbour from a concept relationship diagram were used. The results indicate

improved precision when the search queries include the concepts. In this study, I also perform

concept location tasks using the identified concepts referred by the bug reports. However, I

have found situations where the relevant concept terms are not adequate enough to retrieve

the files a↵ected by a bug report, thus I demonstrate the use of bug report vocabulary together

with the relevant concept terms, additively rather than independently from each other, to

achieve improved search results.

3.3 My Approach

The subjects of this study are eight applications (see Table 2.1) of which seven are OSS

projects: the IDE tool Eclipse, the aspect-oriented programming library AspectJ, the GUI

library SWT, the bar-code tool ZXing, the UML diagraming tool ArgoUML and the servlet

engine Tomcat. These applications were chosen because other studies had used them (see

Section 2.4 in Chapter 2), which allowed me to compare performance of my results in Chapter

4 against the others. Additionally, I used an OSS financial application Pillar1 and a propriet-

ary financial application (due to confidentiality) referred as Pillar2. Both Pillar1 and Pillar2

implement the financial regulations for credit and risk management defined by the Basel-II

Accord (Basel-II, 2006).

Pillar12 is a client/server application developed in Java and Groovy by Munich Re (a

re-insurance company). The bug report documents are maintained with JIRA3, a public

tracking tool.

2
http://www.pillarone.org

3
https://issuetracking.intuitive-collaboration.com

59

Pillar2 is a web-based application developed in Java at our industrial partner’s site. It

was in production for 9 years. The maintenance and further improvements were undertaken

by five developers, including in the past myself, none of us being part of the initial team. The

bug report documents were maintained by a proprietary tracking tool. As Table 2.1 shows,

for both Pillar1 and Pillar2 I only have a small set of closed bug reports for which I also

have the source code version on which they were reported. Neither application is maintained

anymore.

Prior to starting the maintenance task, a developer who is new to the architecture and

vocabulary of these applications is faced with the challenge of searching the application

artefacts to identify the relevant sections. In order to assist the developer, I attempt to see

what information can be obtained from the vocabulary of the application domain.

3.3.1 Data Processing

I obtained the datasets for AspectJ, Eclipse, SWT and ZXing from the authors of Zhou et al.

(2012a), Tomcat from the authors of Ye et al. (2014) and ArgoUML from the authors of

Moreno et al. (2014). For Pillar1 and Pillar2, I have manually constructed the datasets from

their online resources. The datasets are also available online: AspectJ, SWT and ZXing at

BugLocator web-site4, Eclipse at BRTracer web-site5, ArgoUML at LOBSTER web-site6 and

Pillar1 at ConCodeSe web-site7. The Tomcat dataset is available directly from the authors of

Ye et al. (2014). Pillar2 is a proprietary software application thus its dataset is not publicly

available. Each dataset, consisting of source code files and bug reports with their known

a↵ected files identified as described in Zhou et al. (2012a), Ye et al. (2014) and Moreno et al.

(2014).

I created a toolchain to process the dataset for all 8 applications. My tool, called Con-

CodeSe (Contextual Code Search Engine), consists of data extraction, persistence and search

stages as illustrated in Figure 3.1 and discussed in detail below (Sub-sections 3.3.1.1, 3.3.1.2

and 3.3.1.3). ConCodeSe utilises state of the art data extraction, persistence and search APIs

(SQL, Lucene, Hibernate8). Each dataset was processed to extract words from project arte-

facts, e.g source code files and bug reports, to create a corpus. Searches were then undertaken

automatically for each dataset using the domain concepts of each dataset and vocabulary of

4
https://code.google.com/archive/p/bugcenter/wikis/BugLocator.wiki

5
https://sourceforge.net/projects/brtracer/files/?source=navbar

6
http://www.cs.wayne.edu/˜severe/icsme2014/#dataset

7
http://www.concodese.com/research/dataset

8
http://www.hibernate.org

60

Figure 3.1: ConCodeSe Data Extraction, Storage and Search stages

the bug reports as search terms. I use the word ‘term’ because it also covers non-English

words, prefixes, abbreviations and business terminology (Haiduc and Marcus, 2008).

Figure 3.1 shows that the left hand side (1) represents the extraction of terms from the

source code files and from the textual documents, e.g. bug reports and user guide. The

middle part (2) shows the storage of the extracted terms. Finally, in the search stage (3),

two types of search are performed: one for the occurrence of concepts in the project artefacts

i.e. bug reports, user guide and source files, and the other search is for the files a↵ected by

the bug reports.

3.3.1.1 Data Extraction Stage

In the first stage, information is extracted from the project artefacts, i.e. source code files

and textual documentation, i.e. user guide, domain concepts and bug reports, in following

process steps.

Source code file processing : The Java source code files are parsed using the source code

mining tool JIM9 (Butler, 2016), which automates the extraction and analysis of identifiers,

i.e. class, method and field names, from source files. It parses the source code files, extracts

the identifiers and splits them into terms, using the INTT10 tool (Butler et al., 2011) within

JIM. INTT uses camel-case, separators and other heuristics to split at ambiguous boundaries,

like digits and lower case letters. For example, camel-case style identifier financeEntityGrant-

FirCorrelation extracted from the Pillar2 source file K4MarketCapitalRisk.java, gets split

into 5 terms: finance, entity, grant, fir and correlation.

9
https://github.com/sjbutler/jim

10
https://github.com/sjbutler/intt

61

Many studies are done on identifier splitting techniques and conclude that accurate natural

language information depends on correctly splitting the identifiers into their component words

(Hill et al., 2013). The empirical study of state-of-the-art identifier splitting techniques

conducted by Hill et al. independently shows that INTT is on par with other splitting

techniques.

Since Pillar1 is partially programmed in Groovy, I developed a module in Java to parse,

extract and split the identifiers from the Groovy source code files using steps similar to JIM

and INTT as described earlier.

Bug reports processing : To process the text in the bug reports and extract terms from

the vocabulary, I developed a text tokenisation module by reusing Lucene’s StandardAnalyzer

because it tokenises alphanumerics, acronyms, company names, email addresses, etc. The

text tokenisation module includes stop-word removal to filter out those words without any

significant meaning in English, e.g. ‘a’, ‘be’, ‘do’, ‘for’. I used a publicly available stop-words

list11 to filter them out. For example, a bug report description as “We need to create a

component for calculating correlation.”, would get tokenised into 9 terms and after stop-word

removal only 5 terms are considered: need, create, component, calculating and correlation.

User guide processing : Additionally, I obtained the user guide of each application

from their online annex12 and saved it as a text file to ignore images, graphics, and tables.

I next extracted the words from the resulting text documents by applying the same process

as described above in the bug reports processing step. For Pillar2, since it is proprietary,

confidential information, names, email addresses and phone numbers were then manually

removed from its text file.

Comments processing : The text tokenisation module (developed in bug reports pro-

cessing step) is also used to extract terms (by tokenising words and removing stop-words)

from the source code file comments. The comments are generally coded in two styles; header

and inline (Etzkorn et al., 2001). In addition, the OOP guidelines define two comment

formats: Implementation comments (i.e. Block, Singe-Line, Trailing, End-of-Line) delimited

by “/*...*/”, and “//...”. Documentation comments (known as ”doc comments”) delimited

by “/**...*/” (Oracle, 1999). Based on these delimiter conventions a source code line is

identified as comment and the terms are extracted similar to the process described above for

the bug reports. For example, the terms here, block and comment are extracted from the

11
http://xpo6.com/list-of-english-stop-words/

12
http://www.concodese.com/research/dataset

62

/*
* Here is a block comment.
*/
if (customerAccountType == SAVINGS ACCOUNT) {
.... <rest of the code is not shown>

Figure 3.2: Block style comment example used in a source code file

block comment illustrated in Figure 3.2.

Domain concepts processing : Furthermore, I compiled the following list of concepts

used in each application’s domain based on my experience and online sources. The full list

of concepts are included in Appendix E.

1. For AspectJ, aspect oriented programming (AOP)13

2. For Eclipse, integrated development environment (IDE)14

3. For SWT, graphical user interface (GUI)15

4. For ZXing, barcode imaging/scanning16

5. For ArgoUML, unified modelling language17

6. For Tomcat, servlet container18

7. For Pillar1 and Pillar2, credit and risk management19

The concepts are made up of multiple words, e.g. “Investment Market Risk”, “Market

Value Calculation”, “Lambda Factors”. The list was distributed as a Likert type survey with

a“strongly agree” - “strongly disagree” scale amongst seven other developers and two business

analysts who were experts within the domains, to rate each concept and to make suggestions,

in order to reduce any bias I might have introduced. Only five developers and one business

analyst completed the survey. The turn around time for the whole process was less than

5 days. After evaluating the survey results and consolidating the suggestions, using the

text tokenisation module, I extracted the unique single words (like ‘market’ and ‘lambda’)

13
https://www.cs.utexas.edu/\%7erichcar/aopwisr.html

14
http://www.qnx.com/download/feature.html?programid=21031

15
http://www.ugrad.cs.ubc.ca/\%7ecs219/CourseNotes/Swing/intro-GUIConcepts.html

16
http://www.amerbar.com/university/dictionary.asp

17
http://www.uml-diagrams.org/uml-object-oriented-concepts.html

18
https://docs.oracle.com/cd/E19276-01/817-2334/Glossary.html

19
http://www.bis.org/publ/bcbs128.htm

63

occurring in the concepts as basis for further analysis. Henceforth, those words are called

concepts in this Chapter.

Word stem processing : During the previous processing steps, the text tokenisation

module also performs stemming of the terms to their linguistic root in English using Lucene’s

implementation of Porter’s stemmer (Porter, 1997). For example, term calculating extracted

from the bug report description example given earlier in the bug report processing step and the

term calculation extracted from the concept “Market Value Calculation” during the domain

concepts processing step are stemmed to their root calcu.

3.3.1.2 Persistence Stage

In the second stage, the information gathered in the previously described data extraction

steps are persisted in following steps.

Source code files: The information extracted from the source code files are stored

in a Derby 20 relational database within JIM. This includes the terms extracted from the

identifiers (i.e. class, method and field names), comments and their source code locations.

For example, recall in the source code file processing step, the terms“finance, entity, grant, fir

and correlation”were extracted from the identifier “financeEntityGrantFirCorrelation” found

in the source file “K4MarketCapitalRisk.java”. These details, i.e. terms, identifier and source

code file name, are stored in JIM Database tables Component Words, Identifiers and Files

respectively (see Figure 3.3).

Textual documentation: The information about the textual artefacts, i.e. user guides,

domain concepts and bug reports, are also stored into the same Derby database. For this,

I extended the JIM database with additional tables as illustrated in Figure 3.3. The terms

extracted from the textual documentation are stored into the existing JIM Component Words

table and the details (e.g. name, content) of the document being processed are saved into the

respective database tables User Guide, Domain Concepts or Change Requests (see Figure 3.3).

For example, the financial domain concept “Investment Market Risk” is stored in the Domain

Concepts table and its terms investment, market and risk are stored in the Component Words

table. This table also contains the source code comment terms.

Referential integrity: Subsequently, all of the terms are linked to their stem words

and to their source of origin, e.g. user guide, domain concepts, and/or bug reports. This

20
http://db.apache.org/derby

64

Figure 3.3: ConCodeSe database table extensions in addition to JIM database tables

allows the Component Words table to sustain referential links among the artefacts to provide

strong relational clues during search tasks as seen in Figure 3.4. For example, to find out

all the concept terms occurring in a change request, i.e. bug report, involves selecting all

the terms of a bug report from the Component Words table and then reducing the resulting

list of terms to those that have a referential link to the Domain Concepts table. Figure 3.5

illustrates the pseudo code of selecting only domain concept terms that occur in Pillar1 bug

report #PMO-2012, which results in 2 concept terms instead of 18 terms.

Since the source code file names changed to resolve the reported bug are already docu-

mented in the bug reports processed, a referential link from the persisted bug reports in the

Change Requests table to the relevant file name(s) stored in the Files table is also created

during this step as well.

To establish the referential constraints, the contextual model, i.e. the underlying database

tables (see Appendix A), is created in the following order.

1. JIM – Java source code terms processing

2. Contextual model table creation

3. Groovy - source code file terms processing

4. Change requests/Bug reports processing

5. Domain concepts processing

65

Figure 3.4: Referential relations linking the information stored in ConCodeSe and JIM data-
base tables.

6. User guide processing

7. Comments processing

8. Word stem processing

3.3.1.3 Search Stage

Finally, for the third stage of the process, I developed a search module in Java to read the

concept terms stored, and then run SQL queries to (1) search for the occurrences of the

concepts in the three artefacts (bug reports, user guide and code) and (2) search for all files

that included the terms matching the concepts found in bug reports. The second search

variant ranks all the files for each bug report as explained in the next Sub-section 3.3.2.

For this stage, I also coded a module in Java to select all the file names and their terms

from the JIM database and create a repository of terms per source code file, which is then

select change request key, component word from Change Requests table
join Component Words table using component word key and change request key
join Domain Concepts table using domain concept key and component word key
where change request key = ’PMO-2012’

Figure 3.5: Pseudo code example of an SQL select statement for finding domain concepts
that occur in bug report #PMO-2012

66

indexed by using Lucene’s VSM. The idea behind VSM is that the more times a query term

appears in a document relative to the number of times the term appears in all the documents

in the collection, the more relevant that document is to the query. Vectors represent queries

(concepts or bug reports) and documents (source code files). Each element of the vector

corresponds to a word or term extracted from the query’s or document’s vocabulary. The

relevance of a document to a query can be directly evaluated by calculating the similarity

of their word vectors. I chose to use VSM over more advanced IR techniques such as LSI

because it is simpler and known to be more e↵ective as shown by Wang et al. (2011).

The ranked search results are saved in a spreadsheet for additional statistical analysis like

computing the Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) values

(Boslaugh and Watters, 2008).

MAP provides a single-figure measure of quality across recall levels. Among evaluation

measures, MAP has been shown to have especially good discrimination and stability (Manning

et al., 2008). The MAP is calculated as the sum of the average precision value for each bug

report divided by the number of bug reports for a given project. The average precision (AP)

for a bug report is the mean of the precision values obtained for all a↵ected files listed in the

result set and computed as in equation 3.1. Then the MAP for a set of queries is the mean

of the average precision values for all queries, which is calculated as in equation 3.2.

AP (Relevant) =

P
r2Relevant

Precision(Rank(r))

|Relevant| (3.1)

MAP (Queries) =

P
q2Queries

AP (Relevant(q))

|Queries| (3.2)

MAP is considered to be optimal for ranked results when the possible outcomes of a query

are 5 or more (Lawrie, 2012). As Table 3.1 shows, very few bug reports have at least 5 a↵ected

files, but I still use the MAP to measure the performance of my approach for comparison

with previous approaches in Chapter 4. As I will show in Sub-section 4.4.1.5, for all eight

projects, I achieve the best MAP.

MRR is a metric for evaluating a process that produces a list of possible responses to

a query (Voorhees, 2001). The reciprocal rank RR(q) for a query q is the inverse rank of

the first relevant document found and computed as in equation 3.3. Then the MRR is the

67

average of the reciprocal ranks of results of a set of queries, and calculated as in equation 3.4.

RR(q) =

8
><

>:

if q retrieves no

relevant documents 0

otherwise

1
/TopRank(q)

(3.3)

MRR(Queries) =

P
q2Queries

RR(q)

|Queries| (3.4)

On the other hand, MRR is known to measure the performance of ranked results better

when the outcome of a query is less than 5 and best when just 1 (Lawrie, 2012), which is the

majority of cases for the datasets under study (Table 3.1). The higher the MRR value, the

better the bug localisation performance as I will show in my approach.

Table 3.1: Number of a↵ected files per bug report (BR) in each project under study
Project BRs with

only 1 file
BRs with
2-4 files

BRs with
>= 5 files

AspectJ 71 149 66
Eclipse 1525 1066 484
SWT 59 32 7
ZXing 14 5 1
Tomcat 690 281 85
ArgoUML 42 32 17
Pillar1 10 6 11
Pillar2 0 1 11

3.3.2 Ranking Files

In addition to searching for the occurrence of concepts in the project artefacts, I also use the

concepts that may be referred by a bug report to search for the files relevant for resolving the

reported bug. The results of this search ranks the files in the order of relevance from most

to least likely based on my scoring logic as follows.

Given a bug report and a source file, my approach computes two kinds of scores for the

file: (1) a lexical similarity score and (2) a probabilistic score given by VSM, as implemented

by Lucene. The two scorings are done with four search types, each using a di↵erent set of

terms indexed from the concept and the source file:

1. Full terms from the file’s code and the concept.

68

Table 3.2: Sample of ranking achieved by all search types in SWT project
BR # A↵ected Java file Con

CodeSe
1:

Full/
code

2:
Full/
all

3:
Stem/
code

4:
Stem/
all

100040 Menu 2 484 3 29 2
79107 Combo 3 26 29 3 8
84911 FileDialog 5 5 39 6 56
92757 StyledTextListener 3 4 3 75 72

2. Full terms from the file’s code and comments and the concept.

3. Stemmed terms from the file’s code and the concept.

4. Stemmed terms from the file’s code and comments and the concept.

For each of the 8 scorings, all files are ranked in descending order. Files with the same score

are ordered alphabetically, e.g. if files F and G have the same score, F will be ranked above

G. Then, for each file I take the best of its 8 ranks. If two files have the same best rank, then

I compare the next best rank, and if that is tied, then their 3rd best rank etc. For example,

if file B’s two best ranks (of the 8 ranks each file has) is 1 and 1, and if file A’s two best ranks

are 1 and 2, B will be ranked overall before A.

The rationale for this approach is that during experiments, I noticed that when a file

could not be ranked among the top-10 using the full terms from the file’s code, it was often

enough to use associated comments and/or stemming. As shown in Table 3.2, for SWT’s

bug report (BR) #100040, the a↵ected Menu.java file has a low rank (484th) using the first

type of search. When the search includes comments, stemming or both, it is ranked at 3rd,

29th and 2nd place respectively. The latter is the best rank for this file and thus returned by

ConCodeSe (3rd column of the table).

There are cases when using comments or stemming could deteriorate the ranking, for

example because it helps irrelevant files to match more terms with a bug report and thus

push a↵ected classes down the rankings. For example, in BR #92757, the a↵ected file Styled-

TextListener.java is ranked much lower (75th and 72nd) when stemming is applied. However,

by taking the best of the ranks, ConCodeSe is immune to such variations.

The lexical similarity scoring and ranking is done by a function, which takes as arguments

a bug report and the project’s files and returns an ordered list of files. The function assigns

a score to the source file based on where the search terms (without duplicates) occur in the

source file. Search terms can be the domain concepts referred by the bug report or all the

69

Algorithm 3.1 scoreWithFileTerms: Each matching term in the source file increments the
score slightly
input: file: File, queryTerms: concept or bug report terms:
output: score: float
for each query term in queryTerms do
if (query term = file.name) then

score := score + 2 return score
else

if (file.name contains query term) then
score := score + 0.025

else
for each doc term in file.terms do

if (doc term = query term) then
score := score + 0.0125

end if
end for

end if
end if

end for
return score

vocabulary of the bug report. The function is called 4 times, for each search type listed

previously. Each occurrence of each search term in the file increments slightly the score, as

shown in function scoreWithFileTerms (Algorithm 3.1). As explained before, the bug report

or domain concept terms and the source file terms depend on whether stemming and/or

comments are considered.

The rationale behind the scoring values is that file names are treated as the most important

elements and are assigned the highest score. When a query term is identical to a file name,

it is considered a full match (no further matches are sought for the file) and a relatively high

score (adding 2) is assigned. The occurrence of the query term in the file name is considered

to be more important (0.025) than in the terms extracted from identifiers, method signatures

or comments (0.0125).

Pure textual similarity may not be able to distinguish the actual buggy file from other

files that are similar but unrelated (Wang et al., 2015). Therefore, the scoring is stopped

upon full match because continuing to score a file using all its terms may deteriorate the

performance of the results: if a file has more matching terms with the bug report, it is scored

higher and falsely ranked as more relevant, which is also observed by Moreno et al. (2014).

For example, one of the a↵ected source code files (i.e. SWT.java) of SWT bug #103863 is

ranked in the 2nd position but if I continue with scoring all the terms available in the source

file, then SWT.java is ranked in the 3rd position. The reason is the irrelevant file Control.java

70

has more matching terms with the bug report and is ranked in the 1st position causing the

rank of the relevant file to degrade. This is prevented when the scoring is stopped because

the bug report search term“control”matches the file name early in the iterative scoring logic,

the current score is incremented by 2 and the file’s low score remains unchanged. In the

case of scoring SWT.java, the search term “swt”matches the file name much later, hence the

accumulated current score is much higher prior to incrementing it by 2 and stopping. Thus

the irrelevant file Control.java is ranked lower than the relevant file SWT.java.

The score values were chosen by applying the approach on a small sized training dataset,

consisting of randomly selected 51 bug reports from SWT and 50 bug reports from AspectJ

projects, i.e. (50+51)/4665=2.17% of all bug reports, and making adjustments to the scores

in order to tune the results for the training dataset.

3.4 Evaluation of the results

In this Section, I present my analysis results obtained by searching the concept occurrences

and the vocabulary coverage of the terms across the project artefacts. Using statistical

Spearman tests, I demonstrate how the concepts correlate in the project artefacts. In addition,

I show the results of searching for source code class file names matching the concepts referred

in the bug reports as may be performed by developers while executing a maintenance tasks.

3.4.1 RQ1.1: How Does the Degree of Frequency Among the Common

Concepts Correlate Across the Project Artefacts?

To answer my first research question, I first investigated whether independent applications

share key domain concepts. Again identifying any agreement between the artefacts may

lead to e↵ective maintenance. Table 3.3 shows the number of total words and the unique

words found in each project’s artefacts. In case of domain concepts, as they are made up of

multiple words, e.g. “Investment Market Risk”, the table first reports the total number of

concept words followed by the number of unique words, for example, the Pillar1 and Pillar2

applications implement the 50 financial domain concepts of Basel-II accord, which are made

up of 113 words in total and contain 46 unique words.

Searching for the exact occurrences of the concepts in the artefacts, I found that the

most frequently occurring (top-1) concept to be the same one in the bug reports (BR) as in

the user guides (UG) for three projects: AspectJ, ArgoUML and Pillar2. However, in these

71

Table 3.3: Total and unique number of word occurrences in project artefacts
Number of words in AspectJ Eclipse SWT ZXing Tomcat ArgoU Pillar1 Pillar2
Source code (SRC) 80480 460949 28322 14016 71743 29270 92499 14190
Unique SRC words 5153 7770 2477 1772 4111 2420 4143 701
Bug reports (BR) 26233 186032 5841 1867 41331 5717 1031 1652
Unique BR words 3491 12402 1496 765 5848 1345 433 189
Concepts (DC) 18 144 94 103 114 66 113 113
Unique DC words 18 104 67 84 63 40 46 46
User guide (UG) 2534 58132 4022 3383 41271 55799 22541 14197
Unique UG words 811 3029 1068 989 3883 4427 3630 722

projects the top-1 concept in the source code (SRC) was di↵erent compared to BR and UG.

For example, in AspectJ the concept of aspect is the top-1 concept in BR and in UG but

it is the 2nd frequently occurring concept in SRC. Similarly in Pillar2, market is the top-1

concept in BR and UG but moves to 2nd position in SRC. For ArgoUML diagram is the

top-1 concept and becomes the 5th frequently occurring in SRC. In the case of other projects,

all three artefacts (BR, UG, SRC) has di↵erent top-1 frequently occurring concept.

Subsequently, searching for stemmed occurrences of the concepts resulted the same top-1

concept in BR and UG also for Eclipse (file) and ZXing (code), however at the same time

it changed the common top-1 concept for Pillar2. Analysing the reason why the concept

of market was no longer the common top-1 concept in BR and UG revealed that stemming

returned additional variations for the concept value in BR and calculation in UG, thus

changed the relative ranking of the common concepts. For example, there are 513 exact

occurrences of concept calculation in the UG, but searching for the concept’s stem ‘calcul ’

returns 207 additional instances (for calculate, calculated, calculating and calculation), thus

changes the relative ranking of calculation to top-1 and moves market to 2nd position.

Interestingly, I noticed that Pillar1 and Pillar2, two independent applications implement-

ing the concepts of the same financial domain, have the same most frequently occurring

concepts, value and label , ranked at the 3rd and 18th position in their source codes (SRC)

respectively. In Appendix B, Tables B.1 and B.2 list the top-5 concepts occurring across all

the projects artefacts.

As the majority of projects share the same frequently occurring concepts between the BRs

and the UGs indicate the vocabulary alignment among these documents written in natural

language, i.e. English. On the other hand, it is acceptable to have di↵erent frequently

occurring terms between the SRC and other artefacts as programming languages have their

own syntax and grammar.

I found that while each concept occurred in at least one artefact, only a subset of the

72

Figure 3.6: Distribution of concepts among AspectJ, Eclipse, SWT and ZXing projects

concepts occurred in all three artefacts (see Figures 3.6 and 3.7). The concept occurrences

in single project artefacts, e.g. BR or UG on its own, is also very low and for some projects

none at all. This also applies for the combination of two project artefacts, e.g. BR and

UG. However, for Pillar1 and Pillar2 projects almost half of the concepts (21/46 or 46%,

and 20/46 or 43%, respectively) occur in the intersecting set between the UG and the SRC

(Figure 3.7). This is an indication towards good alignment between the source code and the

user guide.

On the contrary, in ZXing more than half of the barcode domain concepts are absent from

the artefacts. One of the reasons for this is that ZXing is a small size bar-code application

with 391 source code files, thus does not implement all of the bar-code domain concepts. The

73

Figure 3.7: Distribution of concepts among Tomcat, ArgoUML, Pillar1 and Pillar2 projects

common concepts between the BR and the SRC alone is also very low, and for ArgoUML

and Pillar1, it is none. This may lead to inconsistencies when searching for relevant source

files unless the common concepts between those two artefacts are also the same ones as those

between the UG, i.e. the intersecting concepts between the artefacts.

Additionally, I noticed that all three artefacts share a very high number of common domain

concepts, e.g. 9/18 or 50% in AspectJ, 80/96 or 76% in Eclipse, 52/63 or 82% in Tomcat

and 26/40 or 65% in ArgoUML. This is a good indicator for leveraging domain concepts to

search for the source files that may be relevant for a bug report.

Furthermore, I noticed that 6 out of 46 Basel-II financial domain concepts are missing in

Pillar1. Through investigating the reasons, I found that this is due to the naming conventions,

74

Table 3.4: Spearman rank correlation of common concepts between the project artefacts using
exact concept terms

Project
Between
==>

Exact Search (full concept term)
BR and

User Guide
BR and
Source

User Guide
and Source

AspectJ
Correlation 0.2590 0.5247 -0.0344
p value 0.3327 0.0369 0.8995

Eclipse
Correlation 0.6174 0.7237 0.5380
p value 0 0 0

SWT
Correlation 0.5351 0.4261 0.3783
p value 0.0002 0.0035 0.0104

ZXing
Correlation 0.4910 0.4096 0.1404
p value 0.0011 0.0078 0.3814

Tomcat
Correlation 0.4596 0.5938 0.6375
p value 0.0002 0 0

ArgoUML Correlation 0.7214 0.8037 0.6963
p value 0 0 0

Pillar1
Correlation 0.1958 0.3136 0.4741
p value 0.2260 0.0488 0.0020

Pillar2
Correlation 0.4146 0.4434 0.5064
p value 0.0046 0.0023 0.0004

for example the financial concept ‘pd/lgd ’ is referenced as ‘pdlgd ’ and ‘sub-group’ as ‘subgroup’

in the projects artefacts. In Pillar2 only 36/45 or 80% of concepts also occur both in the

code and the documentation. Since the latter is consulted during maintenance, this lack of

full agreement between both artefacts may point to potential ine�ciencies.

3.4.1.1 Correlation of common concepts across artefacts

Subsequently, I wanted to identify if the concepts also have the same degree of importance

across artefacts, based on their occurrences. For example, among those concepts occurring

both in the code and in the guide, if a concept is the n-th most frequent one in the code, is it

also the n-th most frequent one in the guide? I applied Spearman’s rank correlation coe�cient,

to determine how well the relationship between two variables in terms of the ranking within

each artifactual domain can be described (Boslaugh and Watters, 2008). The correlation was

computed pair-wise between artefacts, over the instances of the concepts common to both

artefacts, i.e. between the bug reports and the user guide, then between the bug reports and

the source code, and finally between the user guide and the source code. Table 3.4 shows the

results using the online Wessa statistical tool (Wessa, 2016).

Except for AspectJ, the correlation between the artefacts is moderate and statistically

significant (p-value < 0.05). In case of AspectJ, the correlation among all of the artefacts is

75

Table 3.5: Spearman rank correlation of common concepts between the project artefacts using
stemmed concept terms

Project
Between
==>

Stem Search (stemmed concept term)
BR and

User Guide
BR and
Source

User Guide
and Source

AspectJ
Correlation 0.1643 0.4382 0.0284
p value 0.5431 0.0895 0.9169

Eclipse
Correlation 0.5392 0.5526 0.5264
p value 0 0 0

SWT
Correlation 0.5208 0.4063 0.4549
p value 0.0002 0.0042 0.0012

ZXing
Correlation 0.4585 0.4741 0.1495
p value 0.0020 0.0013 0.3385

Tomcat
Correlation 0.4424 0.5775 0.5611
p value 0.0004 0 0

ArgoUML Correlation 0.7310 0.8291 0.7493
p value 0 0 0

Pillar1
Correlation 0.3268 0.4225 0.5517
p value 0.0370 0.0059 0.0002

Pillar2
Correlation 0.4544 0.5047 0.5897
p value 0.0020 0.0005 3.0E-05

weak and not statistically significant (p-value > 0.05) except between BR and SRC where

the correlation is moderate and statistical significant. I also note that for exact search type

the correlation between BR and UG for Pillar1, and between UG and SRC for ZXing is weak

and statistically not significant. This is because there are very few common concepts with

exact occurrences in bug reports.

For stem search, Table 3.5, the correlation decreases in most cases except for ArgoUML,

Pillar1 and Pillar2 where for exact search, the correlation is low, however for stem search, the

correlation becomes stronger. This is because the stemming increased the number of matched

words, i.e. the stemming of words into their root increases their instances in the artefacts,

hence changed the relative ranking of the common concepts and the Spearman correlation

became stronger and statistically more relevant as Table 3.5 shows compared to Table 3.4.

3.4.2 RQ1.2: What is the Vocabulary Similarity Beyond the Domain Con-

cepts, which may Contribute Towards Code Comprehension?

By answering my first sub-research question in previous Sub-section, I identified that the

projects artefacts share common domain concepts and the conceptual agreement between

the artefacts correlate well. My second sub-research question investigates any vocabulary

similarity beyond the domain concepts that may contribute towards code comprehension.

76

Table 3.6: Common terms found in source files of each application across all projects
Application Pillar2 Pillar1 ArgoU Tomcat ZXing SWT Eclipse AspectJ
Unique words 701 4143 2420 4111 1772 2477 7770 5153

AspectJ
531 1899 1503 2166 1117 1333 3128

-
76% 46% 62% 53% 63% 54% 40%

Eclipse
582 2525 1859 2716 1341 2387

-
3071

83% 61% 77% 66% 76% 96% 60%

SWT
416 1172 1030 1280 836

-
2394 1305

59% 28% 43% 31% 47% 31% 25%

Zxing
394 530 822 1099

-
837 1344 1096

56% 13% 34% 27% 34% 17% 21%

Tomcat
526 1873 1360

-
1090 1273 2724 2126

75% 45% 56% 62% 51% 35% 41%
ArgoUML 445 1375

-
1381 832 569 1886 1490

63% 33% 34% 47% 23% 24% 29%

Pillar1
520

-
1374 1903 1048 1193 2563 1889

74% 57% 46% 59% 48% 33% 37%

Pillar2 -
520 437 525 390 415 577 517
13% 18% 13% 22% 17% 7% 10%

To address RQ1.2, I searched the contextual model, i.e. repository of source code terms,

of each application using the source code terms of other applications, excluding the concepts

to see if there are some common vocabulary outside the concepts. I identified several common

terms between each application with varying frequency (see Table 3.6).

The search results show that a high percentage of common terms exist between the ap-

plications especially when searching the contextual model of a large application with the

source code terms of a smaller one. For example, out of 2477 unique SWT source code terms

2387 or 96% exists in Eclipse. Investigating the reasons revealed that the SWT code base is

included in the Eclipse dataset because SWT is a sub-project of Eclipse. I also noticed that

83% of Pillar2 terms are present in Eclipse. Curious to find what kind of terms a proprietary

application may share with a FLOSS application of a di↵erent domain, I performed a manual

analysis and found that those common terms are the ones generally used by the developers,

e.g. CONFIG, version, read, update, etc.

I also cross-checked the validity of the identified common terms by repeating the search

over the contextual model of the other application (i.e. reverse search) and obtained varied

number of common words (see the right cross section of Table 3.6) due to following two

reasons.

1. When searching the repository of one application with the terms of another one, the

number of common terms may be the same but the percentage value may di↵er due

to the size of the applications. For example, Pillar1 and Pillar2 applications have 520

77

Table 3.7: Common identifiers found in source files of each application across all projects
Application Pillar2 Pillar1 ArgoU Tomcat ZXing SWT Eclipse AspectJ
Identifiers 4394 27174 11435 25300 5550 10979 140991 27970

AspectJ
164 1399 1199 1987 592 746 4413

-
4% 5% 10% 8% 11% 7% 3%

Eclipse
326 2583 2137 3534 1072 10902

-
4380

7% 10% 19% 14% 19% 99% 16%

SWT
117 645 564 717 416

-
10905 736

3% 2% 5% 3% 7% 8% 3%

Zxing
101 542 419 618

-
419 1069 580

2% 2% 4% 2% 4% 1% 2%

Tomcat
180 1584 1088

-
619 708 3534 1962

4% 6% 10% 11% 6% 3% 7%
ArgoUML 134 989

-
1100 426 574 2149 1192

3% 4% 4% 8% 5% 2% 4%

Pillar1
187

-
988 1600 550 655 2608 1395

4% 9% 6% 10% 6% 2% 5%

Pillar2 -
187 130 178 101 114 323 161
1% 1% 1% 2% 1% 0% 1%

common terms so the distribution is 73% (520/701) when Pillar1 code base is searched

with Pillar2 terms and 13% (520/4143) when Pillar2 is searched with Pillar1 terms.

2. For certain applications, reverse search resulted in common term size to vary. For ex-

ample, searching Pillar2 with Tomcat found 525 common terms but 526 when searching

the other way around. This is because the term “action” is a concept in Tomcat and

it is excluded from the search. I found the same irregularities also in other applications,

which caused common term size to vary.

Subsequently, I wanted to find out if the common vocabulary also contributes towards ease

of code understanding by developers. Since identifiers are made up of compound terms, I

looked at overall vocabulary of all the identifiers and not just component terms that occur

in the source. After all, even if there is an overlap, one application might combine them

in completely di↵erent ways to make identifiers that other developers will find confusing.

Indeed, all applications combine the words di↵erently: only a small percentage of common

identifiers exists between the applications as seen in Table 3.7.

Again, when searching Eclipse with SWT identifiers, 99% (10,902/10,979) of them are

found in Eclipse because all of SWT source files are included as a sub-project within Eclipse.

Conversely when the SWT code base is searched with Eclipse identifiers then 10,905 are

found. The reason for finding 3 additional identifiers is because those identifiers are SWT

concepts and are excluded when searching the Eclipse code base as explained previously.

Furthermore, during the search to find the number of common identifiers, I noticed that

78

when two applications did not share any concept terms on their identifier names then none of

the identifiers were excluded from the search, which resulted in the same number of common

identifiers between both applications. For example, Tomcat and Eclipse do not share any

concepts so no identifier was excluded during the search, which resulted in 3534 common

identifiers. Conversely, when both applications share concept terms then exact number of

identifiers are excluded from the comparison resulting also in the same number of common

identifiers, e.g. Pillar1 and Pillar2 implement the same concepts of the financial domain, thus

have 187 common identifiers.

I also found that the common identifiers between other applications outside the Eclipse

and the financial domain, are made up of terms commonly used by developers during pro-

gramming, e.g. array, index, config, insert, delete, etc. This is also the reason why Pillar2, a

proprietary software not publicly available, share terms with publicly available applications.

For example, entity is a common term shared between Eclipse and Pillar2, but in Pillar2

the entity is a financial concept that represents a risk object and in Eclipse the entity is a

programming concept that represents a database entry.

3.4.3 RQ1.3: How can the Vocabulary be Leveraged When Searching for

Concepts to Find the Relevant Files?

The results to my previous sub-research questions revealed that (1) the project artefacts and

source code files have good conceptual alignment, which is a good indicator for leveraging

domain concepts to search for the source files that may be relevant for a bug report, and that

(2) there is vocabulary similarity beyond domain concepts, which may contribute towards

code comprehension. Henceforth, my third sub-research question seeks to answer whether

searching with domain concepts only is adequate enough to find the relevant files for a given

bug report.

As described in Sub-section 3.3.1.2, ConCodeSe stores referential links to aid identifying

relations among project artefacts like the concept terms occurring in each bug report. To

address my third research question, I did a search using the domain concepts each bug report

refers to among the terms extracted from the source files using my tool. The retrieved files

were compared to those that should have been returned, i.e. those that were a↵ected by

implementing the bug report as listed in the datasets of the projects (see Table 2.1).

Looking at the search results in Table 3.8, my approach achieved the best performance

79

Table 3.8: Bug reports for which at least one a↵ected file placed into top-N using concept
terms only search

Application Top-1 Top-5 Top-10 MAP MRR
AspectJ 2% 13% 26% 0.04 0,.10
Eclipse 2% 6% 11% 0.03 0.06
SWT 19% 38% 45% 0.22 0.32
ZXing 0% 20% 25% 0.07 0.10
Tomcat 3% 11% 16% 0,06 0.08
ArgoUML 3% 11% 12% 0.04 0.10
Pillar1 4% 4% 7% 0.01 0.11
Pillar2 17% 58% 83% 0.18 0.63
On Average 6% 20% 28% 0.08 0.19

in SWT and Pillar2. In the remainder of the projects, the performance is very poor. On

average I find one or more a↵ected files in the top-10 ranked files for 28% of the bug reports

due to very terse distribution of the concepts in the bug reports (see Figures 3.6 and 3.7).

To improve precision (MAP), so that developers have to inspect fewer source code files

for their relevance to the bug report, I ran my approach using the actual words of the bug

report, rather than its associated concepts, because they better describe the concept’s aspects

or actions to be changed.

Table 3.9 shows that in all projects for over 30% of the bug reports at least one relevant

source file was placed in Top-1. The simple fact of considering all the vocabulary of a bug

report during search ranked at least one or more relevant file in the top 10 ranks, on average,

for 76% of the bug reports. In addition the MAP and MRR values are substantially improved

(on average from 0.08 to 0.39 for MAP and from 0.19 to 0.69 for MRR) compared to Table

3.8. The improved results confirm that bug reports contain information that may boost the

performance when properly evaluated.

Table 3.9: Bug reports for which at least one a↵ected file placed into top-N using all of the
bug report vocabulary

Project Top-1 Top-5 Top-10 MAP MRR
AspectJ 35% 67% 78% 0.30 0.62
Eclipse 35% 60% 70% 0.35 0.55
SWT 59% 89% 93% 0.62 0.85
ZXing 55% 75% 80% 0.55 0.68
Tomcat 49% 69% 75% 0.51 0.65
ArgoUML 32% 62% 66% 0.30 0.55
Pillar1 30% 59% 63% 0.22 0.69
Pillar2 33% 67% 83% 0.26 0.92
On average 41% 68% 76% 0.39 0.69

80

Table 3.10: Recall performance at top-N with full bug report vocabulary search

Project
Top-5 Top-10

Mean Median Mean Median
AspectJ 36% 29% 46% 40%
Eclipse 44% 33% 53% 50%
SWT 73% 100% 83% 100%
Zxing 62% 75% 67% 100%
Tomcat 58% 100% 66% 100%
ArgoUML 39% 25% 43% 40%
Pillar1 35% 29% 43% 40%
Pillar2 19% 18% 31% 31%
On average 46% 51% 54% 63%

3.4.3.1 Performance

Although Table 3.9 shows that by using all the vocabulary of a bug report on average for 76%

of the bug reports at least one file was placed in the top-10, it does not actually tell the true

recall performance, which is calculated as the number of relevant files placed in the top-N out

of all the e↵ected relevant files. To find out the recall at top-N, I calculated the min, max,

mean and median values of the results for each project. The recall is capped at 10 (N=10),

which means that if a bug report has more than 10 relevant files only the 10 are considered.

The min and max values were always 0 and 1 respectively because for each bug report my

approach is either able to position all files in top-10 or none, therefore I only report the mean

and median values in Table 3.10.

For Eclipse, SWT, ZXing and Tomcat my approach placed at least one of the relevant

files in the top-10 when all of the bug report vocabulary is used during the search. Also on

average for almost one quarter (46%) of the bug reports at least one relevant file is placed

in the top-5. These two findings prove that my approach successfully positions on average

54% of the relevant files for a bug report in the top-10, thus provides a reliable focal point

for developers to locate a↵ected files without going through all of the files in the results list.

3.4.3.2 Contribution of VSM

As described in Section 3.3.2, out of 8 rankings of a file, 4 are obtained with the VSM

probabilistic method available in the Lucene library, and the other 4 with my lexical similarity

ranking method (Algorithm 3.1), which then take the best of the 8 ranks. To find out the

added value of VSM, I performed two runs, one with VSM only and the other with lexical

similarity scoring only using the domain concepts.

81

Table 3.11: Bug reports for at least one a↵ected file placed into top-N using VSM vs lexical
similarity scoring using concept terms only search

Project Approach Top-1 Top-5 Top-10 MAP MRR

AspectJ
lexical 2% 12% 24% 0.04 0.10
vsm 0% 1% 3% 0.02 0.03

Eclipse
lexical 1% 4% 7% 0.02 0.04
vsm 1% 3% 5% 0.02 0.03

SWT
lexical 17% 36% 42% 0.20 0.30
vsm 5% 11% 18% 0.09 0.11

ZXing
lexical 0% 10% 15% 0.05 0.06
vsm 0% 10% 10% 0.04 0.06

Tomcat
lexical 2% 9% 12% 0.05 0.06
vsm 1% 4% 6% 0.02 0.03

ArgoUML
lexical 2% 4% 7% 0.03 0.06
vsm 1% 7% 7% 0.03 0.06

Pillar1
lexical 4% 4% 4% 0.01 0.08
vsm 0% 4% 7% 0.01 0.04

Pillar2
lexical 8% 33% 50% 0.12 0.41
vsm 8% 42% 58% 0.12 0.39

On average
lexical 5% 14% 20% 0.06 0.14
vsm 2% 10% 14% 0.04 0.09

Table 3.11 shows that lexical scoring outperforms VSM in all projects except for Pillar1 in

top-10 and Pillar2 in top-5. As to be expected, each scoring by itself has a poorer performance

than the combined score, whilst the total number of bug reports located by ConCodeSe (Table

3.8) is not the sum of the parts. In other words, many files are ranked in the top-N by both

scoring methods, and each is able to locate bug reports the other can’t. ConCodeSe literally

takes the best of both worlds, which shows the crucial contribution of lexical similarity scoring

for the improved performance of my approach.

VSM is known to achieve a bigger contribution for projects with a large number of files,

which makes the use of term and document frequency more meaningful. However, in my case

using a handful of concepts that refer to a bug report (see Figures 3.6 and 3.7) as search

terms, reveals the shortcomings of VSM over lexical search.

I repeated the search to compare the lexical match against VSM but this time using all

of the vocabulary extracted from the bug report. As Table 3.12 shows the lexical search

performed superior to VSM only in smaller size projects, i.e. SWT, ZXing, Tomcat and

Pillar2. This confirms that VSM achieves a bigger contribution for projects with a large

number of file only when the search terms are also more than just a couple of concept terms.

I also confirm that the VSM advantage is paramount since it only has on average 2.4%

improvement across all performance metrics, i.e. top-N, MAP and MRR, over the lexical

82

Table 3.12: Bug reports for at least one a↵ected file placed into top-N using VSM vs lexical
similarity scoring using full bug report vocabulary search

Project Approach Top-1 Top-5 Top-10 MAP MRR

AspectJ
lexical 14% 44% 59% 0.17 0.34
vsm 28% 47% 60% 0.22 0.49

Eclipse
lexical 18% 35% 48% 0.20 0.32
vsm 23% 46% 57% 0.25 0.41

SWT
lexical 43% 77% 89% 0.50 0.69
vsm 40% 71% 84% 0.46 0.66

ZXing
lexical 40% 65% 80% 0.45 0.53
vsm 40% 60% 70% 0.41 0.50

Tomcat
lexical 34% 56% 64% 0.38 0.48
vsm 28% 48% 58% 0.32 0.43

ArgoUML
lexical 12% 48% 56% 0.20 0.33
vsm 24% 52% 58% 0.24 0.45

Pillar1
lexical 7% 33% 41% 0.10 0.36
vsm 26% 48% 56% 0.18 0.59

Pillar2
lexical 25% 67% 75% 0.20 0.71
vsm 8% 67% 75% 0.18 0.62

On average
lexical 24% 53% 64% 0.27 0.47
vsm 27% 55% 65% 0.28 0.52

search alone, however, lexical search on its own still has a weak performance.

3.4.3.3 Searching for AspectJ and SWT in Eclipse

In Section 3.4.2, I found that Eclipse contains the SWT source files. Since AspectJ is also

a sub-eclipse project and 60% of AspectJ terms are present in Eclipse (see Table 3.6), I

searched the source files of Eclipse using the actual words extracted from the bug reports of

SWT and AspectJ. The results for SWT are very close to those obtained by the search over

the application’s own source files (last row in Table 3.13). This indicates that given a large

search space with many source files, e.g. 12,863 in Eclipse, my approach successfully retrieves

the relevant files for the bug reports of a smaller sub-set of the search space, e.g. SWT with

484 files, without retrieving many false positives.

Table 3.13: Search performance for SWT and AspectJ bug reports within Eclipse code base
Project Search Top-1 Top-5 Top-10 MAP MRR

AspectJ
Eclipse 2% 3% 4% 0.01 0.02
AspectJ 35% 67% 78% 0.30 0.62

SWT
Eclipse 51% 81% 85% 0.55 0.71
SWT 59% 89% 93% 0.62 0.85

In case of AspectJ, the search performance was poor compared to the search over the

application’s own source files (first row in Table 3.13). Analysing this revealed that some of

83

the relevant files listed in the bug reports of Aspectj are source code class files that test the

actual code, e.g. MainTest.java that tests Main.java, and the test files are excluded from the

AspectJ version that is embedded in the Eclipse.

3.5 Threats to validity

The internal validity concerns claims of causality to verify that the observed outcomes are

the natural product of the implementation. I only used single-word concepts, while business

concepts are usually compound terms. This threat to internal validity is partially addressed

by using tall the words found in the bug reports during the search task. My approach also

relies on developers practicing good programming standards, particularly when naming source

code identifiers, otherwise the performance of my approach may deteriorate. I minimised

this threat by identifying the presence of common vocabulary beyond the domain concepts

between di↵erent applications that developed independently.

The construct validity addresses biases that might have been introduced during the op-

erationalisation of the theories. As software development consultant, I listed the concepts.

This threat to construct validity was partly addressed by having the concepts validated by

other stakeholders. During creation of the searchable corpus, I developed my own modules to

interact with di↵erent tools: (1) parser to process source code comments and Groovy files; (2)

JIM tool to extract the terms from the identifiers; (3) Lucene’s Porter Stemmer to find the

root of a word; and (4) Lucene’s VSM module to index the repository of terms by source file.

It is possible that other tools to (1) parse, (2) extract, (3) stem and (4) index the artefacts

may produce di↵erent results. I catered for this threat by using the same dataset originally

provided by Zhou et al. (2012a) and used by others (see Table 2.1), to which I added two of

my own. I also used the same evaluations metrics that match those used by others in their

prior work for fairness.

The external validity concerns generalisation, i.e. the possibility of applying the study

and results to other circumstances. The characteristics of the projects (the domain, the

terse bug reports (see Table C.1 in Appendix C) with sometimes misspelled text21, the

naming conventions, the kind of documentation available) are a threat to external validity, I

addressed this by repeating the experiment with other projects and artefacts from di↵erent

domains for comparison. Although ConCodeSe only works on Java projects for the purpose

21
Pillar2 BR #2010 has incorrect spelling in the original document (see Appendix B)

84

of literature comparison, which may limit its generalisability, the principles are applicable to

other object-oriented programming languages.

3.6 Discussion

From all the results shown, I can answer RQ1 a�rmatively: project artefacts share domain

concepts and vocabulary that may aid code comprehension when searching to find the relevant

files during software maintenance. I o↵er further explanations as follows.

Regarding my first aim, I note that, together, the three artefacts (user guide, bug reports

and source code) explicitly include large number of the domain concepts agreed upon by seven

developers and a business analyst (see Figures 3.6 and 3.7). This indicates (a) full domain

concept coverage, and (b) in these projects abbreviations are not required to retrieve such

concepts from the artefacts. Those are two good indicators for maintenance. However, only

a handful of concepts occur both in the code and the documentation. Since the latter is con-

sulted during maintenance, this lack of full agreement between both artefacts, regarding the

concepts in the developers’ heads, may point to potential ine�ciencies during maintenance.

On the other hand, and using stemming to account for lexical variations, except for As-

pectJ, those common concepts correlate well (with a high statistical significance of p<0.05

as per Table 3.4) in terms of relative frequency, taken as proxy for importance, i.e. the more

important concepts in the user guide tend to be the more important ones in the code. Con-

ceptual alignment between documentation and implementation eases maintenance, especially

for new developers. The weak conceptual overlap and correlation between bug reports and

the other two artefacts is not a major issue. Bug reports are usually specific for a particular

unit of work and may not necessarily reflect all implemented or documented concepts.

Regarding my second aim, I found that mapping a bug report’s wording to domain con-

cepts and using those to search for files to be changed, achieved to position a relevant file

into top-10 on average for only 28% of the bug reports and resulted in very poor MAP (0.08)

and MRR (0.19) values as seen in Table 3.8. I found both MRR and MAP can be improved

by using the actual bug report vocabulary (Table 3.8) and is enough to achieve very good

recall of 54% on average (Table 3.10). I note that such project specific, simple, and e�cient

techniques can drastically reduce the false positives a developer has to go trough to find the

files a↵ected by a bug report.

My study showed that despite good concept coverage among the project artefacts and

85

vocabulary similarity between the source code files, it is challenging to find the files referred

by a bug report. Although reflecting the daily tasks of the developers, bug reports of action

oriented nature are not a better source for traceability than user guides and domain concepts.

I found that these two types of documentations, i.e. bug reports and user guides, describe

the usage scenarios and may account for the improved traceability.

In this study, I also investigated the vocabulary of two independent financial applications,

Pillar1 and Pillar2, covering the same domain concepts. I found that artefacts explicitly

reflect the domain concepts and that paired artefacts have a good conceptual alignment,

which helps maintenance when searching for files a↵ected by a given bug report.

3.7 Concluding Remarks

This Chapter presented an e�cient approach to relate the vocabulary of information sources

for maintenance: bug reports, code, documentation, and the concepts in the stakeholders’

minds. The approach consists of first extracting and normalising (incl. splitting identifiers

and removing stop words) the terms from the artefacts, while independently eliciting domain

concepts from the stakeholders. Secondly, to account for lexical variations, I did exact and

stemmed searches of the concepts within the terms extracted from artefacts. I found that one

can check whether (a) the artefacts explicitly reflect the stakeholders’ concepts and (b) pairs

of artefacts have good conceptual alignment. Both characteristics help maintenance, e.g. (b)

facilitates locating code a↵ected by given bug reports.

Although the investigation described in this Chapter is only a preliminary exploration of

the vocabulary relationships between artefacts and the developers’ concepts, it highlights that

better programming guidelines and tool support are needed beyond enforcing naming con-

ventions within code, because that by itself doesn’t guarantee a good traceability between the

concepts and the artefacts, which would greatly help maintenance tasks and communication

within the team.

The importance of descriptive and consistent identifiers for program comprehension, and

hence software maintenance, has been extensively argued for in the academic literature, e.g.

Deißenböck and Pizka (2006), and the professional literature, e.g. Martin (2008). I applied

my approach to OSS projects and to an industrial code that follows good naming conventions,

in order to investigate whether they could be leveraged during maintenance. I observed that

the conceptual alignment between documentation and code could be improved, and that

86

descriptive identifiers support high recall of files a↵ected by bug reports, but mean average

precision (MAP) is low (on average 0.08), which is detrimental for maintenance. I found

simple techniques to improve the MAP (on average 0.39), however further research is needed,

for example, heuristics based on words in key positions within the context of a bug report

could be developed.

In the next Chapter, I investigate the additional sources of information available in project

artefacts that may be leveraged to improve the traceability between the artefacts during bug

localisation. I extend my approach to consider words in certain positions of the bug report

summary and of the stack trace (if available in a bug report) as well as source code comments,

stemming, and a combination of both independently, to derive the best rank for each file.

I compare the results of my approach to eight existing ones, using the same bug reports,

applications and evaluation criteria to measure the improvements.

87

88

Chapter 4

Locating Bugs without Looking

Back

In previous Chapter, I explored the conceptual alignment of vocabulary in project artefacts

and introduced a novel approach to search for source code files that may be relevant for fixing

a bug. I found good conceptual alignment among the artefacts. However, using domain

concepts when searching for the source files revealed low precision and recall. I was able to

improve the recall by simply using all of the vocabulary found in the bug report but precision

remains low. I concluded that to improve the traceability between the artefacts during bug

localisation, heuristics based on words in certain key positions within the context of bug

reports may be developed.

Most state-of-the-art IR approaches rely on additional sources of information like project

history, in particular previously fixed bugs and previous versions of the source code to improve

the traceability. However, it is reported that neither of these sources guarantee to provide

an advantage. In fact it is observed that considering past version history beyond 20 days or

evaluating more than 30 previously fixed similar bug reports cause the performance of the

search results to deteriorate (Wang and Lo, 2014; Nichols, 2010).

I take a more pragmatic approach to address RQ2 and hence investigate how file names

found in bug reports can be leveraged during bug localisation to support software mainten-

ance. I extend my approach presented in Chapter 3 to consider the file names in key positions

when directly scoring each current file against the given report, thus without requiring past

code or bug reports. The scoring method is based on heuristics identified through manual

inspection of a small sample of bug reports.

89

I compare my approach to eight others, using their own five metrics on their own six open

source and two new projects of my own. Out of 30 performance indicators, I improve 27

and equal 2. Over the projects analysed, on average my approach positions an a↵ected file

in the top-1, top-5 and top-10 ranks for 44%, 69% and 76% of the bug reports respectively.

This is an improvement of 23%, 16% and 11% respectively over the best performing current

state-of-the-art tool. These results show the applicability of my approach also to software

projects without history.

In this Chapter, Section 4.1 gives a brief introduction and defines how RQ2 is going to

be addressed. Section 4.2 revisits the IR-based approaches against which I compare mines.

In Section 4.3, I explain how I extended my approach and present the results of addressing

the research questions in Section 4.4. I discuss why the approach works and the threats to

validity in Section 4.5, and conclude with remarks in Section 4.6.

4.1 Introduction

In Chapter 1, I defined the common view that the current state-of-the-art IR approaches

see the bug report as the query, and the source files as the documents to be retrieved,

ranked by relevance. Such approaches have the advantage of not requiring expensive static or

dynamic analysis of the code. However, these approaches rely on project history, in particular

previously fixed bugs and previous versions of the source code.

The study in (Li et al., 2006), performed with two OSS projects, showed that 81% of all

bugs in Mozilla and 87% of those in Apache are semantics related. These percentages increase

as the applications mature, and they have direct impact on system availability, contributing

to 43–44% of crashes. Since it takes a longer time to locate and fix semantic bugs, more e↵ort

needs to be put into helping developers locate the bugs.

Recent empirical studies provide evidence that many terms used in bug reports are also

present in the source code files (Saha et al., 2013; Moreno et al., 2013). Such bug report terms

are an exact or partial match of program elements (i.e. class, method or variable names and

comments) in at least one of the files a↵ected by the bug report, i.e. those files actually

changed to address the bug report.

Moreno et al. (2013) showed that (1) the bug report documents share more terms with

the corresponding a↵ected files and (2) the shared terms were present in the source code file

names. The authors evaluated six OSS projects, containing over 35K source files and 114

90

bug reports, which were solved by changing 116 files. For each bug report and source file

combination (over 1 million), they discovered that on average 75% share between 1–13 terms,

22% share nothing and only 3% share more than 13 terms. Additionally, the study revealed

that certain locations of a source code file, e.g. a file name instead of a method signature,

may have only a few terms but all of them may contribute to the number of shared terms

between a bug report and its a↵ected files. The authors concluded that the bug reports have

more terms in common with the a↵ected files and the common terms are present in the names

of those a↵ected files.

Saha et al. (2013) claimed that although file names of classes are typically a combination

of 2–4 terms, they are present in more than 35% of the bug report summary fields and 85%

of the bug report description fields of the OSS project AspectJ. Furthermore, the exact file

name is present in more than 50% of the bug descriptions. They concluded that when the

terms from these locations are compared during a search, the noise is reduced automatically

due to reduction in search space. For example, in 9% (27/286) of AspectJ bug reports, at

least one of the file names of the fixed files was present as-is in the bug report summary,

whereas in 35% (101/286) of the bug reports at least one of the file name terms was present.

Current state-of-the-art approaches for Java programs, e.g. BugLocator (Zhou et al.,

2012a), BRTracer (Wong et al., 2014), BLUiR (Saha et al., 2013), AmaLgam (Wang and Lo,

2014), LearnToRank (Ye et al., 2014) BLIA (Youm et al., 2015) and Rahman et al. (2015)

rely on project history to improve the suggestion of relevant source files. In particular they

use similar bug reports and recently modified files. The rationale for the former is that if a

new bug report x is similar to a previously closed bug report y , the files a↵ected by y may

also be relevant to x . The rationale for the latter is that recent changes to a file may have

led to the reported bug (Wang and Lo, 2014). However, the observed improvements using

the history information have been small. Thus my hypothesis is that file names mentioned in

the bug report descriptions can replace the contribution of historical information in achieving

comparable performance and asked, in Chapter 1, my second research question as follows.

RQ2: Can the occurrence of file names in bug reports be leveraged to re-

place project history and similar bug reports to achieve improved IR-based bug

localisation?

To address the second RQ in this Chapter, I aim to check if the occurrence of file names

in bug reports can be leveraged for IR-based bug localisation in Java programs. I restrict the

91

scope to Java programs, where each file is generally a class or interface, in order to directly

match the class and interface names mentioned in the bug reports to the files retrieved by

IR-based bug localisation. If file name occurrence can’t be leveraged, I look more closely at

the contribution of past history, in particular of considering similar bug reports, an approach

introduced by BugLocator and adopted by others. Henceforth I ask in my first sub-research

question:

RQ2.1: What is the contribution of using similar bug reports to the results performance

in other tools compared to my approach, which does not draw on past history?

IR-based approaches to locating bugs use a base IR technique that is applied in a context-

specific way or combined with bespoke heuristics. However, (Saha et al., 2013) note that the

exact variant of the underlying tf/idf1 model used may a↵ect results. In particular they find

that the o↵-the-shelf model used in their tool BLUiR already outperforms BugLocator, which

introduced rVSM, a bespoke VSM variant. My approach also uses an o↵-the-shelf VSM tool,

di↵erent from the one used by BLUiR. In comparing my results to theirs I aim to distinguish

the contribution of file names, and the contribution of the IR model used. Thus I ask in my

second sub-research question:

RQ2.2: What is the overall contribution of the VSM variant adopted in my approach,

and how does it perform compared to rVSM?

To address RQ2, I extend my approach introduced in Chapter 3 and then evaluate it

against existing approaches (Zhou et al., 2012a; Saha et al., 2013; Moreno et al., 2014; Wong

et al., 2014; Wang and Lo, 2014; Ye et al., 2014; Youm et al., 2015; Rahman et al., 2015)

on the same datasets and with the same performance metrics. Like other approaches, mine

scores each file against a given bug report and then ranks the files in descending order of score,

aiming for at least one of the files a↵ected by the bug report to be among the top-ranked

ones, so that it can serve as an entry point to navigate the code and find the other a↵ected

files. As we shall see, my approach outperforms the existing ones in the majority of cases. In

particular it succeeds in placing an a↵ected file among the top-1, top-5 and top-10 files for

44%, 69% and 76% of bug reports, on average.

My scoring scheme does not consider any historical information in the repository, which

contributes to an ab-initio applicability of my approach, i.e. from the very first bug re-

port submitted for the very first version. Moreover, my approach is e�cient, because of

1
tf/idf (term frequency/inverse document frequency) is explained in Chapter 2, Sub-section 2.2.1

92

the straightforward scoring, which doesn’t require any further processing like dynamic code

analysis to trace executed classes by re-running the scenarios described in the bug reports.

To address RQ2.1, I compare the results of BugLocator and BRTracer using SimiScore

(the similar bug score), and the results of BLUiR according to the literature, showing that

SimiScore’s contribution is not as high as suggested. From my experiments, I conclude that

my approach localises many bugs without using similar bug fix information, which were only

localised by BugLocator, BRTracer or BLUiR using similar bug information.

As for RQ2.2, through experiments I found that VSM is a crucial component to achieve

the best performance for projects with a larger number of files where the use of term and

document frequency is more meaningful, but that in smaller projects its contribution is rather

small. I chose the Lucene VSM, which performs in general better than the bespoke rVSM.

4.2 Existing Approaches

In this Section, I summarise the key points from the academic literature discussed in Chapter

2 that relate to my proposed approach. Nichols (2010) argued that utilising additional sources

of information would greatly aid IR models to relate bug reports and source code files. One

of the information sources available in well-maintained projects is the past bug details and to

take advantage of this, the author proposes an approach that mines the past bug information

automatically. The author concludes that search results from the repository augmented with

up to 14 previous bug reports were the same as those from the non augmented one (Sub-

section 2.3.4).

Zhou et al. (2012a) proposed an approach consisting of the four traditional IR steps

(corpus creation, indexing, query construction, retrieval & ranking) but using a revised Vector

Space Model (rVSM) to score each source code file against the given bug report. In addition,

each file gets a similarity score (SimiScore) based on whether the file was a↵ected by one

or more closed bug reports similar to the given bug report (Section 2.4). The approach,

implemented in a tool called BugLocator, was evaluated using over 3,400 reports of closed

bugs and their known a↵ected files from four OSS projects (see Table 2.1). The authors

report superior performance of the results compared to traditional VSM only approach.

Bettenburg et al. (2008) disagree with the treatment of a bug report as a single piece of

text document and source code files as one whole unit by existing approaches, e.g. Poshyvanyk

et al. (2007); Ye et al. (2014); Kevic and Fritz (2014); Abebe et al. (2009). Bettenburg et al.

93

(2008) argue that a bug report may contain a readily identifiable number of elements including

stack traces, code fragments, patches and recreation steps each of which should be treated

separately for analytical purposes (Sub-section 2.3.3).

Saha et al. (2013) presented BLUiR, which leverages the structures inside a bug report and

a source code file by computing a similarity score between each of the 2 fields (summary and

description) of a bug report and each of the 4 parts of a source file (class, method, variable

names, and comments) as described in Sub-section 2.3.5. The results were evaluated using

BugLocator’s dataset and performance indicators. For all but one indicator for one project,

ZXing’s mean average precision (MAP), BLUiR matches or outperforms BugLocator, hinting

that a di↵erent IR approach might compensate for the lack of history information, namely

the previously closed similar bug reports.

Moreno et al. (2014) presented LOBSTER, which leverages the stack trace information

available in bug reports to suggest relevant source code files. The approach first calculates a

textual similarity score between the words extracted by Lucene, which uses VSM, from bug

reports and files. Second, a structural similarity score is calculated between each file and

the file names extracted from the stack trace. The authors conclude that considering stack

traces does improve the performance with respect to only using VSM (Sub-section 2.3.3). I

also leverage stack trace and compare the performance of both tools using their dataset for

ArgoUML, a UML tool (Table 2.1).

Wong et al. (2014) proposed BRTracer, which also leverages the stack trace information

and performs segmentation of source files to reduce any noise due to varying size of the

file lengths (Bettenburg et al., 2008). The stack trace score is calculated by evaluating the

files listed in the stack trace and the files referenced in the source code file. The authors

claim that the segmentation or the stack trace analysis is an e↵ective technique to boost bug

localisation (Sub-section 2.3.3). Since I also evaluate my approach with BugLocator ’s dataset

and leverage stack traces, I compare the performance of my approach against BRTracer and

report on the improvements gained.

Wang and Lo (2014) proposed AmaLgam for suggesting relevant buggy source files by

combining BugLocator’s SimiScore and BLUiR’s structured retrieval into a single score using

a weight factor, which is then combined (using a di↵erent weight) with a version history score

that considers the number of bug fixing commits that touch a file in the past k days. The

evaluation shows that considering historical commits up to 15 days increased the performance,

94

15 to 20 days did not make much di↵erence and considering up to 50 days deteriorated the

performance. Thus they conclude that the most important part of the version history is

between 15–20 days (Sub-section 2.3.5).

Ye et al. (2014) defined a ranking model that combines six features measuring the re-

lationship between bug reports and source files, using a learning-to-rank (LtR) technique

(Sub-section 2.3.5). Their experimental evaluations show that the approach places the rel-

evant files within the top-10 recommendations for over 70% of the bug reports of Tomcat

(Table 2.1). My approach is much more lightweight: it only uses the first of Ye et al.’s six

features, lexical similarity, and yet provides better results on Tomcat.

Recently, Youm et al. (2015) introduced an approach where the scoring methods utilised

in previous studies (Zhou et al., 2012a; Saha et al., 2013; Wong et al., 2014; Wang and Lo,

2014) are first calculated individually and then combined together by varying alpha and beta

parameter values. The approach, implemented in a tool called BLIA, is compared against

the performance of the other tools where the original methods were first introduced. The

authors found that stack-trace analysis is the highest contributing factor among the analysed

information for bug localisation (Section 2.4).

In another recent study, Rahman et al. (2015) extended the approach introduced in Zhou

et al. (2012a) by considering file fix frequency and file name match (Section 2.4). Independ-

ently of Rahman et al. (2015) (of which I became aware only recently), I decided to use file

names because of the study Saha et al. (2013) that shows many bug reports contain the file

names that need to be fixed. The two main di↵erences are (1) in Rahman et al. (2015) the

file names are extracted from the bug report using very simple pattern matching technique

and (2) only one constant value is used to boost a file’s score when its name match one of

the extracted file names. On the contrary, my approach (1) uses a more sophisticated file

matching regular expression pattern to extract file names from the bug report and (2) treat

the extracted file name’s position in the bug report with varying importance when scoring a

file, as we will see later.

4.3 Extended Approach

Each approach presented in the previous section incorporates an additional information source

to improve results, as shown in Table 4.1. I list the tools against which I evaluate my

approach (ConCodeSe), by using the same datasets (Table 2.1) and metrics. So far my

95

Table 4.1: Comparison of IR model and information sources used in other approaches
Approach Underlying

IR
logic/model

Version
History

Similar
Report

Structure File
Name

Stack
Trace

BugLocator rVSM no yes no no no
BRTracer rVSM +

segmentation
no yes yes no yes

BLUiR Indri no yes yes no no
AmaLgam Mixed yes yes yes no no
BLIA rVSM+

segmentation
yes yes yes no yes

Rahman rVSM yes yes no yes no
LtR VSM yes yes yes no no
LOBSTER VSM no no yes no yes
ConCodeSe lexicalScore +

VSM
no no yes yes yes

approach introduced in Chapter 3 ranks the source code files of an application based on

lexical similarity between the vocabulary of the bug reports and the terms found in the

source files. In this Section, I describe how I extend my approach to also consider additional

information like file names and stack trace details available in bug reports during scoring.

4.3.1 Ranking Files Revisited

As explained in Chapter 3, Sub-section 3.3.2, given a bug report and a file, my approach

computes two kinds of scores for the file: a lexical similarity score and a probabilistic score

given by VSM, as implemented by Lucene.

The two scorings are done with four search types, each using a di↵erent set of terms

indexed from the bug report and the file:

1. Full terms from the bug report and from the file’s code.

2. Full terms from the bug report and the file’s code and comments.

3. Stemmed terms from the bug report and the file’s code.

4. Stemmed terms from the bug report, the file’s code and comments.

Recall that for each of the 8 scorings, all files are ranked in descending order and then, for each

file the best of its 8 ranks is taken (Sub-section 3.3.2). Henceforth I introduce a new function

searchAndRankFiles (Algorithm 4.1), which encapsulates the function scoreWithFileTerms

(Algorithm 3.1), and still performs the lexical similarity scoring and ranking by taking as

96

Algorithm 4.1 searchAndRankFiles : Main logic for scoring and ranking of project’s files
per bug report

input: files: List<File>, br: BR // one bug report
output: ranked: List<File>
for each file in files do do
file.score := scoreWithKeyPositionWord(file.name, br.summary) // KP Score

if file.score = 0 and br.stackTrace exists then then
file.score := scoreWithStackTrace(file.name, br.stackTrace) // ST Score

end if
if file.score = 0 then then

file.score := scoreWithFileTerms(file, br.terms) // TT Score
end if

end for
return files in descending order by score

arguments a bug report and the project’s files and returns an ordered list of files. The function

is called 4 times, for each search type listed previously and goes through the following steps

for each source code file.

1. Check if its name matches one of the words in key positions (KP) of the bug report’s

summary, and assign a score accordingly (Section 4.3.1.1).

2. If no score was assigned and if stack trace is available, check if the file name matches one

of the file names listed in the stack trace and assign a score (ST) accordingly (Section

4.3.1.2).

3. If there is still no score then assign a score based on the occurrence of the search terms,

i.e. the bug report text terms (TT) in the file (Algorithm 3.1 in Chapter 3).

Once all the files are scored against a bug report, the list is sorted in descending order so that

the files with higher scores are ranked at the top. Ties are broken by alphabetical order.

4.3.1.1 Scoring with Key Positions (KP score)

By manually analysing all SWT and AspectJ bug reports and 50 random Eclipse bug reports,

i.e. (98+286+50)/4665=9.3% of all bug reports (Table 2.1), I found that the word in first,

second, penultimate or last position of the bug report summary may correspond to the a↵ected

file name. For example, Table 4.2 shows that in the summary sentence of bug report #79268,

the first word is already the name of the a↵ected source file, i.e. Program.java.

Overall, my manual analysis of SWT revealed that in 42% (42/98) of the bug reports the

first word and in 15% (15/98) of the bug reports the last word of the summary sentence was

97

Table 4.2: Sample of words in key positions showing presence of source file names
BR# Summary Position

79268 Program API does not work with
GNOME 2.8 (libgnomevfs-WARNING)

First

78559 [consistency] Slider fires two selection
events before mouse down

Second

92341 DBR - Add SWT.VIRTUAL style to
Tree widget

Pen-
ultimate

100040 Slow down between 3.1 RC1 and
N20050602 due to change to ImageList

Last

the a↵ected source file (see Table 4.3). I found similar patterns in AspectJ: 28% (81/286)

as the first word and 5% (15/286) as the last word. The frequency for the second and

penultimate words being the a↵ected file was 4% and 11% respectively.

Table 4.3: Summary of file names at key positions in the analysed bug reports
Project # of BRs

Analysed
First

Position
Second
Position

Pen-
ultimate

Last
Position

AspectJ 286 81 (28%) 12 (4%) 39 (11%) 15 (5%)
Eclipse 50 7 (14%) 4 (8%) 3 (6%) 4 (8%)
SWT 98 42 (42%) 7 (7%) 4 (4%) 15 (15%)

I also observed that some key position words come with method and package names in

the bug report summary, e.g. Class.method() or package.subpackage.Class.method(). They

hence required parsing using regular expressions. Based on these patterns I assign a high score

to a source file when its name matches the words in the above described four key positions

of the bug report summary sentence. The earlier the file name occurs, the higher the score:

the word in first position gets a score of 10, the second 8, the penultimate 6 and the last 4

(see Algorithm 4.2).

Algorithm 4.2 scoreWithKeyPositionWord : Scores a file based on terms matching four key
positions of the bug report summary sentence

input: fileName: String, summary: String // BR summary sentence
output: score: int
n := numWords(summary) //number of words
p := summary.find(fileName)
if (p = 1) return 10
if (p = 2) return 8
if (p = n -1) return 6
if (p = n) return 4
return 0

Note that the key positions are scored in a di↵erent order (1st, 2nd, penultimate, last) from

their frequency (1st, penultimate, last, 2nd), because while experimenting with di↵erent score

98

Table 4.4: Stack trace information available in bug reports (BR) of each project
Project # of

BRs
of BRs with
Stack Traces

% of BRs with
Stack Traces

AspectJ 286 67 23%
Eclipse 3075 435 14%
SWT 98 4 4%
ZXing 20 1 5%
Tomcat 1056 83 8%
ArgoUML 91 5 5%
Pillar1 27 1 4%
Pillar2 12 0 0%

values for SWT and AspectJ I found the ‘natural’ order to be more e↵ective. Disregarding

other positions in the summary prevents non-a↵ected files that occur in those other positions

from getting a high KP score and thus a higher ranking.

4.3.1.2 Scoring with Stack Traces (ST score)

Stack traces list the files that were executed when an error condition occurs. During manual

analysis of the same bug reports as for KP score, I found several included a stack trace in

the description field (see Table 4.4).

I noticed that especially for NullPointerException, the a↵ected file was often the first one

listed in the stack trace. For other exceptions such as UnsupportedOperationException or

IllegalStateException, however the a↵ected file was likely the 2nd or the 4th in the trace.

I first use regular expressions (see Figure D.1 in Appendix D) to extract from the stack

trace the application-only source files, i.e. excluding third party and Java library files, and

then put them into a list in the order in which they appeared in the trace. I score a file if its

name matches one of the first four files occurring in the list. The file in first position gets a

score of 9, the second 7, the third 5 and the fourth 3 (see Algorithm 4.3).

Algorithm 4.3 scoreWithStackTrace: Score a file based on terms matching one of the four
files occurring in the stack trace

input: fileName: String, stackTrace: List<String> // BR stack trace
output: score: int
p := stackTrace.find(fileName)
if (p = 1) return 9
if (p = 2) return 7
if (p = 3) return 5
if (p = 4) return 3
return 0

99

4.3.1.3 Rationale behind the scoring values

As mentioned in the previous subsections, values for the KP scoring (10, 8, 6, 4), ST scoring

(9, 7, 5, 3) and TT scoring (2, 0.025, 0.0125) were obtained heuristically, whilst reflecting

the importance of the summary, the stack trace and the description, in this order, and of the

di↵erent parts of each. The scoring values are weights that give more importance to certain

positions in the summary and stack trace, or to certain kinds of words (class names). As

such, they are in essence not di↵erent from other weights used by other authors, which they

also obtained heuristically. For example, Hill et al. (2007) assigned weights 2.5 and 0.5 to

terms based on whether they match those extracted from the file name or method name,

respectively, and Uneno et al. (2016) summed the scores of three tools adjusted by weights

0.5, 0.3, and 0.1 or 1.0, based on manual experiments and observations. Methodologically,

my approach therefore does not deviate from established practice.

Some authors automatically determine the best weight values, e.g. by using machine

learning. However, the optimal weights obtained from a particular collection of projects are

not necessarily the best weights for other projects. For example, in Tomcat the bug reports

have very detailed and long descriptions but in Pillar2 they are tersely written. Optimising

weights (via machine learning or some other technique) must therefore be done separately for

each project, and only for projects that have su�cient history, i.e. su�cient past bug reports

that can be used as training set.

Since I am interested in a specific approach that does not rely on history to provide the

best results for the 8 projects at hand, I aim to see whether using the least information

possible (bug reports and source code files) and using a light-weight IR approach, I can

achieve similar performance to other approaches that use more data sources (similar past

bug reports, past code versions). As I will show in Sub-section 4.4.1.5, my approach surpass

the performance of other approaches.

4.4 Evaluation of the Results

In this Section, I address my research questions. Since they ask for the e↵ects of various

scoring components, I had to run ConCodeSe, BugLocator and BRTracer (the other tools

were unavailable) in di↵erent ‘modes’, e.g. with and without stack trace information or with

and without SimiScore (similar bug reports), to observe the e↵ect on the ranking of individual

100

files. I ran BugLocator and BRTracer without SimiScore by setting the alpha parameter to

zero, as described in (Zhou et al., 2012a; Wong et al., 2014). I also ran both tools with

SimiScore, by setting alpha to the value reported in the corresponding paper. I confirmed

that I obtained the same top-N, MAP and MRR results as reported in the papers. This

reassured that I was using the same tool versions, datasets and alpha values as the authors

had, and that the results reported in the rest of this section for BugLocator and BRTracer

are correct.

As I derived my heuristics by manually analysing the bug reports of AspectJ and SWT,

and some from Eclipse, to avoid bias, I evaluated my approach using additional OSS and

industrial projects: ArgoUML, Tomcat, ZXing, Pillar1 and Pillar2. As already described in

Section 4.2, all but the last two projects were also used by the approaches I compare my

tool’s performance against.

4.4.1 RQ2: Scoring with File Names in Bug Reports

As described throughout Section 4.3, my lexical similarity scoring mainly considers whether

the name of the file being scored occurs in the bug report, giving more importance to certain

positions in the summary or in the description’s stack trace. The rationale is of course that

a file explicitly mentioned in the bug report is likely to require changes to fix the bug.

RQ2 asks whether such an approach, although seemingly sensible, is e↵ective. To answer

the question I compare my results to those of BugLocator, BRTracer, BLUiR, AmaLgam,

LtR, BLIA and Rahman using the same 5 metrics (Top-1, Top-5, Top-10) and for LOBSTER

using only the MAP and MRR metrics (as given in their paper). I look at the separate and

combined e↵ect of using file names for scoring.

4.4.1.1 Scoring with Words In Key Positions (KP score)

To see the impact of considering occurrences of the file name in certain positions of the bug

report summary, I ran ConCodeSe with and without assigning a KP score, whilst keeping

all the rest as described in Section 4.3.1. Table 4.5 shows how evaluating the words in key

positions improved results for the a↵ected classes of the bug reports given in Table 4.2. In the

cases of BugLocator and BRTracer, I obtained the ranks by running their tool, and obtained

the ones for BLUiR from their published results.

As Table 4.5 illustrates, in some cases (like for Program.java) the summary scoring can

101

Table 4.5: Example of ranking achieved by leveraging key positions in SWT bug reports
compared to other tools

SWT
BR#

A↵ected file
Bug
Locator

BR
Tracer

BLUiR
ConCodeSe

without with
79268 Program.java 21 11 - 19 1
78559 Slider.java 2 4 1 5 1
92341 Tree.java 1 1 5 4 2
100040 ImageList.java 7 1 9 2 1

make the di↵erence between the file not even making into the top-10 or making into the top-5.

In other cases, the change in ranking is small but can be significant, making the a↵ected file

become the top ranked, which is always the most desirable situation, as the developer will

not have to inspect any irrelevant files.

To have an overall view, I also ran ConCodeSe using just KP and TT scores together

(KP+TT) against only using TT score, i.e. in both runs stack trace (ST score) and VSM

scoring were not used. Table 4.6 shows that compared to TT score alone, KP+TT score

provides an advantage in positioning files of a bug report in the top-1 for SWT and ZXing,

and in the top-5 for AspectJ, Eclipse and Tomcat. On the contrary, in the cases of Pillar1

and Pillar2 using KP+TT score did not make a di↵erence and the results remained the same

as the TT score in all top-N categories. Further analysis revealed the reason: in Pillar 2

the bug report summaries do not contain source code file names and in Pillar1 only 3 bug

reports contain file names in their summaries, but they are not the files changed to resolve

the reported bug and the TT score of the relevant files is higher.

On average for 64% of bug reports a relevant file can be located in the top-10 by just

assigning a high score to file names in certain positions of the bug report summary, confirming

the studies cited in the introduction (Section 4.1) that found file names mentioned in a large

percentage of bug reports (Saha et al., 2013; Schröter et al., 2010). The file name occurrences

in other places of the bug report will also be scored by comparing bug report and file terms

in function scoreWithFileTerms (see Sub-section 3.3.2 in Chapter 3), but irrelevant files that

match several terms may accumulate a large score that pushes the a↵ected classes down the

ranking.

Recall Table 4.2, the first word in the summary field of the bug #79268 in SWT is the

relevant file name (see Figure 1.4 in Chapter 1). The existing tools rank this file at 21st and

11th position respectively. One of the reasons for this is that the word Program is considered

as being too ambiguous and gets a lower score. However based on KP score logic in Algorithm

102

Table 4.6: Performance comparison of scoring variations: Key Position (KP+TT) vs Stack
Trace (ST+TT) vs Text Terms (TT only)

Project Scoring Top-1 Top-5 Top-10 MAP MRR

AspectJ
KP+TT only 12.9% 43.0% 59.1% 0.17 0.33
ST+TT only 21.7% 45.1% 59.4% 0.20 0.40
TT only 13.6% 43.7% 59.1% 0.17 0.34

Eclipse
KP+TT only 19.5% 35.2% 48.0% 0.21 0.32
ST+TT only 19.9% 35.92% 48.0% 0.21 0.33
TT only 18.3% 34.7% 48.0% 0.20 0.32

SWT
KP+TT only 62.2% 79.6% 89.8% 0.60 0.81
ST+TT only 43.9% 76.5% 88.8% 0.50 0.70
TT only 42.9% 76.5% 88.8% 0.50 0.69

ZXing
KP+TT only 40.0% 65.0% 80.0% 0.46 0.53
ST+TT only n/a n/a n/a n/a n/a
TT only 25.0% 60.0% 75.0% 0.38 0.42

Tomcat
KP+TT only 36.2% 56.3% 64.1% 0.39 0.49
ST+TT only 34.8% 56.3% 64.3% 0.39 0.49
TT only 34.0% 55.7% 64.0% 0.38 0.48

ArgoUML
KP+TT only 12.1% 48.4% 56.0% 0.19 0.32
ST+TT only 13.2% 48.4% 56.0% 0.20 0.33
TT only 12.1% 48.4% 56.0% 0.19 0.32

Pillar1 TT only 7.4% 33.3% 40.7% 0.10 0.36
Pillar2 TT only 25.0% 66.7% 75.0% 0.20 0.71

4.2, my approach matches the relevant file in the first position of the summary sentence and

assigns a high score of 10, thus ranks it at the 1st position in the result list (see first row, last

column in Table 4.2).

4.4.1.2 Scoring with Stack Trace Information (ST score)

To see the impact of considering file names occurring in a stack trace, if it exists, I ran

ConCodeSe with and without assigning an ST score, but again leaving all the rest unchanged,

i.e. using key position (KP) and text terms (TT) scoring. Table 4.7 shows results for some

a↵ected classes obtained by BugLocator, BRTracer and BLUiR.

Again, the rank di↵erences can be small but significant, moving a file from top-10 to top-5

(ResolvedMemberImpl.java) or from top-5 to top-1 (EclipseSourceType.java). In some cases

the file goes from not being in the top-10 to being in the top-1 (ReferenceType.java), even if

it is in the lowest scoring fourth position in the stack.

Table 4.6 also shows the e↵ect of running ConCodeSe just with ST and TT scores together

(ST+TT) against only using TT score, i.e. without KP and VSM scoring methods, except for

ZXing and Pillar1, which don’t have any stack traces in its bug reports (Table 4.4). ST+TT

scoring provides significant advantage over the TT score alone in positioning a↵ected files of

103

Table 4.7: Example of ranking achieved by leveraging stack trace information in AspectJ bug
reports compared to other tools
AspectJ
BR#

Exception
Description

A↵ected file
Stack
pos.

Bug
Locator

BR
Tracer

BLUiR
ConCodeSe

without with

138143
NullPointer
Exception

EclipseSourceType 1st 1 2 5 5 1

158624
Unsupport
edOperation

ResolvedMemberImpl 2nd 16 6 56 7 2

153490
IllegalState
Exception

ReferenceType 4th 122 3 74 11 1

a bug report in top-1. In particular for AspectJ, Eclipse, Tomcat and ArgoUML, ST scoring

places more bug reports in all top-N categories indicating that giving file names found in

stack trace a higher score contributes to improving the performance of the results, which is

also in line with the findings of previous studies (Schröter et al., 2010; Moreno et al., 2014;

Wong et al., 2014).

Note that there is no significant di↵erence between ST+TT and TT scoring for SWT and

ArgoUML. Only 4 of SWT’s bug reports have a stack trace and it happens that in those cases

the lower TT score value of 2 for the files occurring in the stack trace is still enough to rank

them highly. For ArgoUML, 5 bug reports contain stack trace information and using ST+TT

scoring adds only one more bug report to the top-1 compared to other two scoring variations.

The small di↵erence is due to the relevant file for the other 4 bug reports not being among

the ones listed in the stack trace or being listed at a position after the 4th. Since ST scoring

only considers the first 4 files, in that case the a↵ected file gets a TT score, because its name

occurs in the bug report description.

Again, for Pillar1 and Pillar2 using ST+TT scoring alone did not make a di↵erence and

the results remained constant in all top-N categories. None of the Pillar2 bug reports contains

stack traces and in the case of Pillar1 only 1 bug report description contains stack traces but

the relevant file is listed after the 4th position and gets a ST score of zero (Section 4.3.1.2).

Recall Figure 1.3 in Chapter 1, the AspectJ bug #158624 contains a detailed stack trace.

When the search results between the tools that utilises the stack trace in bug reports (Wong

et al., 2014) and the other tool that does not (Zhou et al., 2012a) are compared, the ranking

of the relevant file improves from 16th to 6th position. However based on ST score logic in

Algorithm 4.3, my approach finds the relevant file listed in the second position of the stack

trace and assigns a high score of 7, thus ranks it at the 2nd position.

104

Table 4.8: Performance comparison between using combination of all scores vs only TT score
during search with only concept terms

Project Scoring Top-1 Top-5 Top-10 MAP MRR

AspectJ
TT Only 2% 13% 26% 0.04 0.10

All (KP+ST+TT) 9% 19% 31% 0.09 0.18

Eclipse
TT Only 2% 6% 11% 0.03 0.06

All (KP+ST+TT) 11% 18% 22% 0.10 0.16

SWT
TT Only 19% 38% 45% 0.22 0.32

All (KP+ST+TT) 45% 54% 59% 0.39 0.54

Tomcat
TT Only 3% 10% 11% 0.06 0.08

All (KP+ST+TT) 15% 23% 27% 0.16 0.20

Average
TT Only 7% 17% 23% 0.09 0.14

All (KP+ST+TT) 16% 27% 33% 0.16 0.24

4.4.1.3 KP and ST Score improvement when Searching with Concepts Only vs

all Bug Report Vocabulary

Table 3.8 in Chapter 3 showed that the TT score, i.e. function scoreWithFileTerms (Al-

gorithm 3.1), placed at least one a↵ected file into top-10, on average for 28% of the bug

reports when only the domain concept terms are used during the search. To find out any

advantage the KP and ST scores provide, I repeated the search performed in Sub-section

3.4.3 again using only the concept terms. Table 4.8 shows the improvements when the KP

and ST scores are also utilised together with the TT score to rank files during the search.

In the case of AspectJ, Eclipse, SWT and Tomcat, on average 10% more (23% vs 33%) bug

report files are positioned into the top-10.

In the case of ArgoUML, ZXing, Pillar1 and Pillar2, the KP and ST scores did not provide

any performance advantage over the TT score thus not listed in Table 4.8. Investigating the

reasons revealed that the Pillar2 bug reports don’t contain any stack trace thus can not take

advantage of the ST scoring, and the bug reports of Pillar1 and ZXing contain only one

stack trace where the relevant file already gets scored in the top-10 via the TT score. In the

case of ArgoUML only 5 bug reports contain stack trace but the a↵ected files are either not

those listed in the stack trace or they are listed after the 4th position. Furthermore, the bug

summary sentences in Pillar1 and Pillar2 do not refer to any source code file names, thus

the KP score has no e↵ect. In the case of ArgoUML and ZXing, the a↵ected files of the bug

reports are still ranked in the top-N via the TT score.

Recall in Sub-section 3.4.3, to improve the performance, I enhanced my approach to search

using the actual words of the bug report rather than its associated concepts. Table 3.9 in

Chapter 3 shows that the simple fact of considering all the vocabulary of a bug report during

105

Table 4.9: Performance comparison between using combination of Key Word and Stack Trace
scoring On vs O↵

Project KP + ST Top-1 Top-5 Top-10 MAP MRR

AspectJ
on 42.3% 68.2% 78.3% 0.32 0.67
o↵ 35.0% 67.1% 78.3% 0.30 0.62

Eclipse
on 37.6% 61.2% 69.9% 0.37 0.57
o↵ 34.6% 59.6% 69.7% 0.35 0.55

SWT
on 72.4% 89.8% 92.9% 0.68 0.94
o↵ 59.2% 88.8% 92.9% 0.62 0.85

ZXing
on 55.0% 75.0% 80.0% 0.55 0.68
o↵ 35.0% 70.0% 80.0% 0.45 0.52

Tomcat
on 51.5% 69.2% 75.4% 0.52 0.66
o↵ 49.1% 68.6% 75.3% 0.51 0.65

ArgoUML any 31.9% 61.5% 65.9% 0.30 0.55
Pillar1 any 29.6% 59.3% 63.0% 0.22 0.69
Pillar2 any 33.3% 66.7% 83.3% 0.26 0.92

the search ranked at least one or more relevant files in the top 10, on average for 76% of the

bug reports. Thus, I end the analysis of the contributions of positional scoring of file names

in bug report summaries (key position) and stack trace (ST) with Table 4.9, which shows the

combined rank ‘boosting’ e↵ect of positional scoring, i.e. using KP and ST scoring together

vs not using it. For example, in the case of the SWT project, using summary and stack trace

scoring places an a↵ected source file in the top-1 for 72% of the bug reports compared to the

base case (TT score) of 59%. This performance advantage remains noticeable high for all the

projects except for Pillar1 and Pillar2 due to the stated reasons, i.e. setting the KP+ST

scoring to on or o↵ did not provide any advantage. Therefore only one set of values are

presented for those projects (see row ‘any’ in Table 4.9).

4.4.1.4 Variations of Score Values

The KP and ST scores are computed in very simple ways, which may a↵ect the performance

of the outcome. Variations to those scores may or may not further enhance the performance.

I experimented further to evaluate the e↵ects of my scoring mechanism by assigning di↵erent

scores to the four positions in the summary and in the stack trace. Table 4.10 shows the

results obtained after performing the following changes:

1. The scores were halved, e.g. 10, 8, 6, 4 became 5, 4, 3, 2.

2. The scores were reversed, i.e. 4, 6, 8, 10 and 3, 5, 7, 9.

3. All 8 positions (4 in the BR summary and 4 in the ST) have a uniform score of 10.

106

Table 4.10: Performance comparison of using variable values for KP, ST and TT scores
Project Approach Top-1 Top-5 Top-10 MAP MRR

Aspectj

halved 42.0% 68.5% 78.3% 0.33 0.67
reversed 34.6% 65.0% 77.6% 0.30 0.61
uniform 37.4% 68.2% 78.3% 0.31 0.64
close2base 41.6% 68.2% 78.3% 0.33 0.67

Eclipse

halved 37.2% 61.1% 69.8% 0.37 0.57
reversed 35.7% 61.2% 69.9% 0.36 0.56
uniform 36.6% 61.2% 69.9% 0.36 0.56
close2base 37.8% 67.8% 78.3% 0.36 0.57

SWT

halved 71.4% 89.8% 92.9% 0.68 0.93
reversed 69.4% 88.8% 92.9% 0.66 0.92
uniform 71.4% 89.8% 92.9% 0.68 0.94
close2base 72.4% 89.8% 92.9% 0.68 0.94

Tomcat

halved 50.9% 68.8% 75.5% 0.52 0.65
reversed 50.5% 68.8% 75.5% 0.52 0.65
uniform 51.0% 69.2% 75.4% 0.52 0.66
close2base 51.7% 69.1% 75.4% 0.52 0.66

ArgoUML any 31.9% 61.5% 65.9% 0.30 0.55
ZXing any 55.0% 75.0% 80.0% 0.51 0.63
Pillar1 any 29.6% 59.3% 63.0% 0.22 0.69
Pillar2 any 33.3% 66.7% 83.3% 0.26 0.92

4. The scores were made closer to those of TT (close2base):

(a) for the summary positions: 3.00, 2.80, 2.60, 2.40

(b) for the stack positions: 2.90, 2.70, 2.50, 2.30

Halving and close2base keeps the order of each set of 4 positions and the results obtained are

similar to those obtained with the original score values, which are 10, 8, 6, 4 for summary

position and 9, 7, 5, 3 for stack trace positions. The reversed and uniform scoring break that

order and led to the worst results. This confirms that the relative importance of the various

positions (especially the first position) found through inspection of SWT and AspectJ applies

to most projects.

In the cases of Pillar1 and Pillar2 changing the KP and ST scoring doesn’t make a

di↵erence because none of the Pillar2 bug reports contained stack traces and only 1 of the

Pillar1 bug report description contained stack traces. In the case of ZXing neither of the

scoring variations made a di↵erence due to the small number of bug reports so only one set

of performance results are reported (see row ‘any ’ in Table 4.10). In the case of SWT, it

made little di↵erence as it has only a few more bug reports than ArgoUML.

Looking closer at Table 4.10, I note that in the cases of Eclipse, SWT and Tomcat,

close2base places more bug reports in top-1 than any other variation. Investigating more

107

closely, I found that one additional bug report for SWT and two for Tomcat are placed in

top-1. In the case of SWT, the only a↵ected source code file, Spinner.java for bug report

#96053, achieved a TT score of 2.56 by function scoreWithFileTerms (Algorithm 3.1) and

is ranked in the 2nd position whereas the file Text.java achieved a KP score of 4 and is

ranked 1st. Analysing further revealed that the last word “text” in the bug report summary

sentence matches the file name, thus assigning a high KP score value of 4 to the file Text.java.

However, when close2base scores are used, the KP score value for the last word position is

set to 2.40 (see point 4a in the variations list above), which is lower than the TT score (2.56),

thus ranking Spinner.java as 1st and Text.java as 2nd. Similar patterns were discovered in

Eclipse and Tomcat.

Comparing Table 4.10 to the results achieved by other approaches (Figure 4.3, 4.4and

4.5 in the next Sub-section), I note that the halved and close2base variations outperform

the other approaches in most cases, showing that the key improvement is the higher and

di↵erentiated scoring of the 4 positions in the summary and stack trace, independently of the

exact score.

To sum up, the four systematic transformations of the score values and the better perfor-

mance of the halved and close2base transformations provide evidence that the precise value

of each score is not the main point but rather their relative values. Moreover, the heuristics

(the more likely occurrence of relevant file names in certain positions) were based on the

analysis of only 10% of the bug reports. Especially for large projects like Eclipse, with many

people reporting bugs, one can reasonably expect that many bug reports will deviate from

the sample. The similar behaviour of the variants across all projects and all bug reports

(close2base and halved are better than uniform, which is better than reversed) therefore pro-

vides reassurance that the chosen values capture well the heuristics and that the heuristics

are valid beyond the small sample size used to obtain them.

4.4.1.5 Overall Results

Finally, I compare the performance of ConCodeSe against the state-of-the-art tools using

their datasets and metrics (Figures 4.1, 4.2, 4.3, 4.4 and 4.5).

As mentioned before, I was only able to obtain BugLocator and BRTracer2, which meant

that for the other approaches I could only refer to the published results for the datasets

2
Although BLIA is available online, I was unable to run it on datasets other than the ones used by its

authors (AspectJ, SWT and ZXing)

108

Figure 4.1: Performance comparison of MAP and MRR values per tool for AspectJ, Eclipse
and SWT (n=number of BRs analysed)

they used. This means I could compare my Pillar1 and Pillar2 results only against those

two approaches and couldn’t for example run BLUiR and AmaLgam on the projects used by

LOBSTER and LtR and vice versa. LtR’s top-N values for Tomcat were computed from the

ranking results published in LtR’s online annex (Ye et al., 2014). LtR also used AspectJ,

Eclipse and SWT but with a di↵erent dataset to that of BugLocator. The online annex

only included the Tomcat source code, so I was unable to rank the bug reports for the other

projects with LtR.

Figures 4.1, 4.2, 4.3, 4.4 and 4.3 show that except for AmaLgam’s top-1 performance on

AspectJ, ConCodeSe outperforms or equals all tools on all metrics for all projects, including

BugLocator’s MAP for ZXing, which BLUiR and AmaLgam weren’t able to match. For

LOBSTER, the authors report MAP and MRR values obtained by varying the similarity

distance in their approach, and I took their best values (0.17 and 0.25). LOBSTER only

investigates the added value of stack traces so to compare like for like, I ran ConCodeSe on

their ArgoUML dataset using only the ST scoring and improved on their results (Figure 4.2

ConCodeSe-(ST) row).

109

Figure 4.2: Performance comparison of MAP and MRR values per tool for Tomcat, ArgoUML,
Pillar1 and Pillar2 (n=number of BRs analysed)

I note that ConCodeSe always improves the MRR value, which is an indication of how

many files a developer has at most to go through in the ranked list before finding one that

needs to be changed. User studies (Kochhar et al., 2016; Xia et al., 2016) indicate that

developers only look at the top-10, and especially the top-5, results. ConCodeSe has the best

top-5 and top-10 results across all projects.

I also get distinctly better results than Rahman et al. (2015), the only approach to ex-

plicitly use file names found in bug reports. Looking at the largest project Eclipse (Figure

4.3) reveals that even small 1.7% top-1 improvement over the second best approach (BLUiR)

represents 52 more bug reports for which the first recommended file is relevant, thus helping

developers save time.

I also notice that my tool performs almost 2% worse than AmaLgam (42.3% vs 44.4%) for

AspectJ when placing relevant files in top-1. Investigating the reasons revealed that in 2 of

AspectJ bug reports a FileNotFound exception is reported and the changed file is ranked in

2nd position despite being listed in the stack trace. This is because the stack trace lists a utility

file in the 1st position but the a↵ected file in the 2nd position. For example, in AspectJ bug

report #123212, the file AjBuildManager.java uses FileUtil.java to write information to an

external file and the FileNotFound exception is thrown by FileUtil first and then propagated

110

Figure 4.3: Performance compare of the tools for AspectJ and Eclipse (n=BRs analysed)

to its users like AjBuildManager. Since ST scores are assigned based on the order of each

file appearing in the stack trace, in the case of AspectJ bug report #123212, FileUtil gets a

higher score than AjBuildManager. To handle this scenario, I experimented by adjusting my

ST scoring values but the overall results deteriorated.

In the case of Pillar1, my tool achieves a significantly higher performance over BugLocator

and BRTracer in all top-N categories (Figure 4.5). It is also interesting to see that BugLocator

outperforms BRTracer in the top-1 and top-5 metrics despite that BRTracer is reported to

be an improvement over BugLocator. In the case of Pillar2, although my approach achieves

identical performance to the second best in the top-5 and top-10 metrics, it is far superior

111

Figure 4.4: Performance compare of the tools for SWT and ZXing (n=BRs analysed)

in the top-1 metric and thus outperforms the other approaches in terms of MAP and MRR

(Figures 4.1 and 4.2).

Recall Figure 1.2 in Chapter 1, the SWT bug report #92757 has a very terse description,

BugLocator (Zhou et al., 2012a) and BRTracer (Wong et al., 2014) rank the relevant file at

88th and 75th positions respectively. However my approach matches the relevant file based on

the stemmed terms from the bug report and the file’s code, thus ranks it in the 5th position.

Pillar1 and Pillar2 are evidence that my approach performs well even if a bug report

doesn’t mention file names. As a further example, SWT bug report #58185 mentions no

files and yet ConCodeSe places 3 of the 4 relevant files in the top-5, whereas BugLocator and

BRTracer only place 2 files. Similarly, AspectJ bug report #95529 contains no file names but

out of the 11 relevant files, ConCodeSe ranks 3 files in the top-5 and 1 in the top-10 whereas

BugLocator and BRTracer only rank 1 relevant file in the top-5. In all these cases the KP

112

Figure 4.5: Performance compare of the tools for Tomcat, ArgoUML, Pillar1 and Pillar2
(n=number of BRs analysed)

and ST scores are zero and Algorithm 4.1 uses the lexical (TT) score. The TT and VSM

scores are computed with and without using the file’s comments, with and without stemming.

Thus, even if a bug report doesn’t mention file names, my approach still obtains 2*2*2 = 8

ranks for each file, to choose the best of them.

Having always 8 ranks to choose from also helps with the other extreme: the bug report

includes many file names, but most are irrelevant. For example, SWT bug report #83699

mentions 14 files but only 1 is relevant. I rank it in the 4th position using the file’s comments,

whereas BugLocator and BRTracer rank it 9th and 14th, respectively. Similarly, AspectJ bug

report #46298 has a very verbose description that mentions 9 files, none relevant. I list the

only relevant file in the 2nd position using VSM and comments; BugLocator and BRTracer

list it in 6th and 12th position respectively.

A bug report can be very terse, e.g. a short sentence in the summary and an empty

description field, like SWT bug report #89533. In this example my tool ranks the only

relevant file in 3rd position, by applying VSM and stemming to the bug report summary

and the file’s comments, whereas BugLocator and BRTracer rank the same file in 305th and

19th position respectively. Similarly, for AspectJ bug report #39436, the only relevant file is

ranked in the top-5, based on the comments in the file, whereas BugLocator and BRTracer

rank the same file below the top-10.

113

Table 4.11: Number of files for each bug report placed in the top-10 by ConCodeSe vs
BugLocator and BRTracer

Project
BugLocator BRTracer

Better Same Worse Better Same Worse
AspectJ 45% 48% 7% 30% 55% 15%
Eclipse 23% 64% 13% 22% 65% 13%
SWT 24% 69% 6% 21% 74% 4%
ZXing 10% 85% 5% 20% 75% 5%
Tomcat 22% 66% 12% 56% 37% 7%
ArgoUML 25% 62% 13% 29% 59% 12%
Pillar1 48% 48% 4% 48% 48% 4%
Pillar2 58% 33% 8% 50% 33% 17%

4.4.1.6 Performance

Figures 4.3, 4.4 and 4.5 only counts for how many bug reports at least one a↵ected file was

placed in the top-N. The MAP and MRR values indicate that ConCodeSe tends to perform

better for each bug report compared to other tools, so I additionally analysed the per bug

report performance to measure the number of files for each bug report placed in the top-10.

This analysis required access to per bug report results and the only publicly available tools

that functioned once installed were BugLocator and BRTracer.

Table 4.11 shows, for example, that for 128/286=45% (resp. 85/286=30%) of AspectJ’s

bug reports, my tool placed more files in the top-10 than BugLocator (resp. BRTracer). This

includes bug reports in which ConCodeSe placed at least one and the other tools placed none.

The ‘same ’ columns indicate the percentage of bug reports for which both tools placed the

same number of a↵ected files in the top-10. This includes cases where all approaches can

be improved (because neither ranks an a↵ected file in the top-10), and where none can be

improved (because all tools place all the a↵ected files in the top-10).

Neither Figures 4.3,4.4, 4.5 nor Table 4.11 show the recall, i.e. the number of relevant

files out of all the e↵ected relevant files placed in the top-N. To find out the recall at top-N,

similar to Sub-section 3.4.3.1 in Chapter 3, I have calculated the min, max, mean and median

values of the results for each project (Table 3.10). Again, the recall is capped at 10 (N=10),

which means that if a bug report has more than 10 relevant files only the 10 are considered.

The min and max values were always 0 and 1 respectively because my approach is either

able to position all the relevant files in top-10 or none. I found that the top-10 recall per-

formance remained the same between all combined scores (KP+ST+TT) compared to the

TT score alone in all of the projects as reported in Table 3.10.

114

On the contrary, the recall at top-5 marginally improved (1%) for AspectJ, Eclipse, SWT

and Tomcat. In the case of ZXing, ArgoUML, Pillar1 and Pillar2, the recall at top-5 between

the combined scores and the TT score alone remains the same due to the reasons explained

in Sub-section 4.4.1.3, i.e. absence of file names or stack trace in the summary or description

of the bug reports.

Figure 4.6: Recall performance of the tools for top-5 and top-10 for AspetcJ, Eclipse, SWT
and ZXing (n=number of BRs analysed)

Furthermore, I compared the recall performance of ConCodeSe against BugLocator and

BRTracer as they were the only available tools. Once again, the min and max values were

always 0 and 1 respectively because the tools are either able to position all the relevant files

in top-10 or not. Therefore in Figures 4.6 and 4.7, I report only the average (mean) for the

top-5 and the top-10 metrics.

The results reveal that ConCodeSe performance is significantly superior to the other two

current state-of-the-art tools even when a di↵erent metric, i.e. recall, is used to measure the

performance instead of MAP and MRR as reported in their respective studies (Zhou et al.,

2012a; Wong et al., 2014).

115

I also note that BRTracer performance is weaker than BugLocator in Tomcat, Pillar1 and

ZXing. Since BRTracer improves upon BugLocator by using segmentation and stack trace,

in the case of smaller size projects, i.e. Pillar1 and ZXing (Table 2.1) or due to fewer stack

traces in the bug reports (Table 4.4), the improvements fall short over BugLocator.

Figure 4.7: Recall performance of the tools for top-5 and top-10 for Tomcat, ArgoUML,
Pillar1 and Pillar2 (n=number of BRs analysed)

From all the results shown I can answer RQ2 a�rmatively: leveraging the occurrence of

file names in bug reports leads in almost every case to better performance than using project

history.

4.4.2 RQ2.1: Scoring without Similar Bugs

In previous Section, I confirmed that file names occurring in bug reports provide improved

performance, thus in this Section, I seek to evaluate the contribution of using similar bug

reports to the results performance in other tools compared to my approach, as asked by my

first sub-research question in Section 4.1. Earlier I described that BugLocator, BRTracer,

BLUiR, AmaLgam, BLIA and Rahman et al. (2015) utilise a feature called SimiScore, which

116

Table 4.12: Example of ranking achieved by leveraging similar bug reports in other tools vs
not in ConCodeSe

BR#
A↵ected
Java Files

BugLocator BRTracer BLUiR Con
CodeSerVSM Simi

Score
no Simi
Score

Simi
Score

struc-
ture

Simi
Score

78856 OS.java 37 36 89 88 3 6 1

79419
Link.java 18 18 4 4 31 6 1
OS.java 58 58 48 47 11 21 1

83262
RTFTransfer 224 224 214 214 43 79 35
TextTransfer 202 202 198 197 - - 36

87676 Tree.java 49 21 10 6 4 3 2

uses the bug report terms to find similar closed bug reports. The files changed to fix those

bug reports are suggested as likely candidates for the current bug report being searched. To

answer RQ2.1 I ran BugLocator and BRTracer with and without SimiScore, as explained at

the start of Section 5.4.

Unfortunately, I was unable to obtain Rahman et al ’s tool, BLUiR and AmaLgam to

perform runs without SimiScore, but I do not consider this to be a handicap because from

the published results it seems that SimiScore benefits mostly BugLocator and BRTracer.

I selected the SWT bug reports reported in the BLUiR paper (#78856, #79419, #83262

and #87676) and then ran BugLocator and BRTracer to compare their performance. As

shown in Table 4.12, BugLocator placed the file Tree.java in the 49th and 21st positions in

the ranked list by using their revised VSM (rVSM) approach first and then by considering

similar bug reports. In the case of BRTracer, the introduced segmentation approach already

ranked the file in the top-10 (10th position) and SimiScore placed the same file at an even

higher position (6th). In the case of BLUiR, the same file is placed at 4th and 3rd positions

respectively. For the other cases in the table, SimiScore doesn’t improve (or only slightly so)

the scoring for BugLocator. In the case of BLUiR, apart from the great improvement for

Link.java, SimiScore leads to a lower rank than structural IR.

It can be seen in Table 4.13 that ConCodeSe achieves on average 46% (0.40/0.25) and

35% (0.57/0.40) superior results to BugLocator in terms of MAP and MRR respectively, thus

allowing my approach to be more suitable in projects without closed bug reports similar to

the new bug reports.

I run BugLocator and BRTracer without SimiScore on all projects, to have a more like-

for-like comparison with ConCodeSe in terms of input (no past bug reports). Comparing

Figures 4.3, 4.4, 4.5 (with SimiScore) and Table 4.13 (without) shows a noticeable perform-

ance decline in BugLocator and BRTracer when not using similar bug reports and thus even

117

Table 4.13: Performance of ConCodeSe compared to BugLocator and BRTracer without using
similar bug reports score across all projects

Project Approach Top-1 Top-5 Top-10 MAP MRR

AspectJ
BugLocator 22.7% 40.9% 55.6% 0.19 0.18
BRTracer 38.8% 58.7% 66.8% 0.27 0.47
ConCodeSe 42.3% 68.2% 78.3% 0.33 0.67

Eclipse
BugLocator 24.4% 46.1% 55.9% 0.26 0.35
BRTracer 29.6% 51.9% 61.8% 0.30 0.40
ConCodeSe 37.6% 61.2% 69.9% 0.37 0.57

SWT
BugLocator 31.6% 65.3% 77.6% 0.40 0.47
BRTracer 46.9% 79.6% 88.8% 0.53 0.59
ConCodeSe 72.4% 89.8% 92.9% 0.68 0.94

ZXing
BugLocator 40.0% 55.0% 70.0% 0.41 0.48
BRTracer 45.0% 70.0% 75.0% 0.46 0.55
ConCodeSe 55.0% 75.0% 80.0% 0.55 0.68

Tomcat
BugLocator 42.1% 62.4% 71.0% 0.26 0.33
BRTracer 36.6% 57.3% 65.6% 0.45 0.56
ConCodeSe 49.9% 69.2% 75.4% 0.52 0.66

ArgoUML
BugLocator 18.7% 42.9% 54.9% 0.11 0.48
BRTracer 18.7% 46.2% 54.9% 0.20 0.38
ConCodeSe 31.9% 61.5% 65.9% 0.30 0.55

Pillar1
BugLocator 18.5% 29.6% 33.3% 0.17 0.37
BRTracer 14.8% 29.6% 29.6% 0.14 0.31
ConCodeSe 29.6% 59.3% 63.0% 0.22 0.69

Pillar2
BugLocator 16.7% 58.3% 66.7% 0.17 0.61
BRTracer 16.7% 66.7% 83.3% 0.17 0.61
ConCodeSe 33.3% 66.7% 83.3% 0.26 0.69

Average
BugLocator 27% 50% 61% 0.25 0.40
BRTracer 31% 57% 65% 0.33 0.50
ConCodeSe 44% 69% 76% 0.40 0.57

greater improvement achieved by ConCodeSe. BLUiR without SimiScore also outperforms

BugLocator and BRTracer with SimiScore. Interestingly BRTracer and ConCodeSe perform

equally well in top-5 and top-10 for Pillar2.

I answer RQ2.1 by saying that although the contribution of similar bug reports signific-

antly improves the performance of BugLocator and BRTracer, it is not enough to outperform

ConCodeSe. The large contribution of SimiScore for BugLocator and BRTracer is mainly

due to the lower baseline provided by rVSM, as reinforced by the results in the next section.

4.4.3 RQ2.2: VSM’s Contribution

As described in Sub-section 4.3.1, 4 of a file’s 8 rankings are obtained with the VSM probabil-

istic method available in the Lucene library, and the other 4 with my lexical similarity ranking

method (Algorithm 4.1). To find out the added value of VSM, my second sub-research ques-

tion aims to evaluate the overall contribution of the VSM variant adopted in my approach,

118

Table 4.14: Performance comparison between Lucene VSM vs lexical similarity scoring within
ConCodeSe

Project Approach Top-1 Top-5 Top-10 MAP MRR

AspectJ
VSM 28.0% 47.2% 60.1% 0.22 0.49

lexical similarity 20.6% 44.4% 59.4% 0.20 0.39

Eclipse
VSM 23.3% 45.7% 56.6% 0.25 0.41

lexical similarity 18.6% 36.3% 48.2% 0.21 0.32

SWT
VSM 39.8% 71.4% 82.7% 0.46 0.66

lexical similarity 63.3% 79.6% 89.8% 0.60 0.82

ZXing
VSM 35.0% 55.0% 65.0% 0.37 0.45

lexical similarity 40.0% 70.0% 80.0% 0.47 0.54

Tomcat
VSM 28.1% 47.7% 57.6% 0.32 0.43

lexical similarity 34.0% 56.6% 64.0% 0.38 0.48

ArgoUML
VSM 24.2% 51.6% 58.2% 0.24 0.45

lexical similarity 13.2% 48.4% 56.0% 0.20 0.33

Pillar1
VSM 25.9% 48.1% 55.6% 0.18 0.59

lexical similarity 7.4% 33.3% 40.7% 0.10 0.36

Pillar2
VSM 8.3% 66.7% 75.0% 0.18 0.62

lexical similarity 25.0% 66.7% 75.0% 0.20 0.71

and how it performs compared to rVSM. I performed two runs, one with VSM only and the

other with lexical similarity scoring only (Table 4.14).

VSM outperforms the lexical scoring for the larger projects (AspectJ and Eclipse), i.e.

with most code files (Table 2.1), and underperforms for small projects (SWT, ZXing and Pil-

lar2). In cases of medium size projects (Tomcat and ArgoUML), lexical scoring outperforms

VSM for Tomcat and underperforms for ArgoUML. As to be expected, each scoring by itself

has a poorer performance than ConCodeSe, which combines both, whilst the total number

of bug reports located by ConCodeSe (Figures 4.3, 4.4 and 4.5) is not the sum of the parts.

In other words, many files are ranked in the top-N by both scoring methods, and each is able

to locate bug reports the other can’t. ConCodeSe literally takes the best of both worlds.

For all projects except ArgoUML, VSM by itself performs poorer than the best other

approach (Figure 4.5), which shows the crucial contribution of lexical similarity scoring for

the improved performance of my approach.

The VSM variant I adopt outperforms in many cases rVSM, introduced in BugLocator

and also utilised in BRTracer.Even ConCodeSe’s lexical similarity by itself outperforms rSVM

in most cases. This can be seen by comparing the VSM (or lexical similarity) rows of Table

4.14 against the BugLocator rows of Table 4.13, where SimiScore is turned o↵ to only use

rVSM. Lexical similarity alone in ConCodeSe also outperforms rVSM for the two small and

medium projects, except top-1 for ArgoUML.

119

I thus answer RQ2.2 by concluding that VSM provides a bigger contribution for projects

with a large number of files, which makes the use of term and document frequency more

meaningful. I also confirm that the exact IR variant used is paramount: Lucene’s VSM and

my simple lexical matching outperform BugLocator’s bespoke rVSM in many cases as well

as BLUiR’s Okapi especially for SWT and ZXing. However, VSM on its own isn’t enough to

outperform other approaches.

4.5 Discussion

It has been argued that textual information in bug report documents is noisy (Zimmermann

et al., 2010). My approach is partly based on focussing on one single type of information in

the bug report: the occurrence of file names. The assumption is that if a file is mentioned

in the bug report, it likely needs to be changed to fix the bug. Manual inspection of only

9.4% of the bug reports, reinforced that assumption and revealed particular positions in the

summary and in the stack trace where an a↵ected file occurs. My improved results provide

further evidence of the relevance of the assumption.

On the other hand, it has been argued that if bug reports already mention the relevant

files, then automated bug localisation provides little benefit (Kochhar et al., 2014). This

would indeed be the case if almost all files mentioned in a bug report were true positives. As

Table 3.1 shows, most bug reports only a↵ect a very small number of files, and yet they may

mention many more files, especially if they contain stack traces (Table 4.4). In Section 4.4.1.5

I gave two examples, both placed in the top-5 by ConCodeSe: one bug report mentioning 9

files, all irrelevant, and another mentioning 14, of which only one was relevant. Developers

are interested in finding out focus points and how files relate to each other, especially when

working in unfamiliar applications (Sillito et al., 2008). Automated bug localisation can help

developers to evaluate the information when looking at the files mentioned in bug reports,

and even suggest relevant files not mentioned in the reports.

I o↵er some reasons why my approach works better.

First, other approaches combine scores using weight factors that are fixed. I instead take

always the best of several ranks for each file. In this way, my approach is not a priori fixing for

each file whether the lexical scoring or the probabilistic VSM score should take precedence.

I also make sure that stemming and comments are only taken into account for files where

it matters. The use of the best of 8 scores is likely the reason for improving the key MRR

120

metric across all projects.

Second, I leverage structure further than other approaches. Like BLUiR, I distinguish the

bug report’s summary and description, but whereas BLUiR treats each bug report field in

exactly the same way (both are scored by Indri against the parts of a file) I treat each field

di↵erently, through the key position and stack trace scoring.

Third, my approach simulates the selective way developers scan bug reports better than

other approaches. It has been argued that developers may not necessarily need automated

bug localisation tools when file names are present in the bug reports (Kochhar et al., 2014)

because they may be able to select which information in the bug report is more relevant, based

on the structure of the sentences and their understanding of the reported bug (Wang et al.,

2015). ConCodeSe first looks at certain positions of the bug report and then, if unsuccessful,

uses all terms in the bug report, stopping the scoring when a full file name match is found.

However, the same cannot be said for most automated tools: they always score a file against

all the bug report terms, which may deteriorate the performance if a file has more matching

terms with the bug report, as it is scored higher and falsely ranked as more relevant (Moreno

et al., 2014).

Fourth, my approach addresses both the developer nature and the descriptive nature

of bug reports, which I observed in the analysis of the bug reports for these projects and

in particular for Pillar1 and Pillar2 (Dilshener and Wermelinger, 2011). Bug reports of a

developer nature tend to include technical details, like stack traces and class or method

names, whereas bug reports of a descriptive nature tend to contain user domain vocabulary.

By leveraging file (class) names and stack traces when they occur in bug reports, and by

otherwise falling back to VSM and a base lexical similarity scoring (Chapter 3, Sub-section

3.3.2), I cater for both types of bug reports. As the non-bold rows of Table 4.9 show, the

fall-back scoring alone outperforms all other approaches in terms of MAP and MRR (except

AmaLgam’s MAP score for AspectJ).

Although LOBSTER doesn’t use historical information either, it was a study on the value

of stack traces over VSM, and thus only processes a subset of developer-type bug reports,

those with stack traces.

To sum up, I treat each bug report and file individually, using the summary, stack trace,

stemming, comments and file names only when available and relevant, i.e. when they improve

the ranking. This enables my approach to deal with very terse bug reports and with bug

121

reports that don’t mention files.

As for the e�ciency of my approach, creating the corpus from the application’s source

code and bug reports takes, on a machine with a 3GHz i3 dual-core processor and 8GB RAM,

3 hours for Eclipse (the largest project, see Table 2.1). Ranking (8 times!) its 12,863 files for

all 3075 bug reports takes about 1.5 hours, i.e. on average almost 2 seconds per bug report.

I consider this to be acceptable since my tool is a proof of concept and developers locate one

bug report at a time.

4.5.1 Threats to Validity

During creation of the searchable corpus, I relied on regular expressions for extracting the

stack trace from the bug report descriptions. It is possible that other techniques may produce

di↵erent results. Also, the queries (i.e. search terms) in my study were taken directly from

bug reports. The developers may formulate their queries di↵erently when locating bugs in an

IDE and that the use of di↵erent queries with vocabularies more in line with the source code

would yield better results. However, I catered for all these threats to construct validity by

using the bug report summaries and descriptions as queries instead of manually formulated

queries avoided the introduction of bias on my behalf.

I addressed internal validity by comparing the search performance of ConCodeSe like for

like (i.e., using the same datasets and the same criteria) with eight existing bug localisation

approaches (Zhou et al., 2012a; Saha et al., 2013; Wong et al., 2014; Moreno et al., 2014; Wang

and Lo, 2014; Ye et al., 2014; Youm et al., 2015; Rahman et al., 2015) as well as assessing

the contribution of the o↵-the-shelf Lucene library’s VSM. Therefore, the improvement in

results can only be due to my approach. I also used fixed values to score the files, obtained

by manually tuning the scoring on AspectJ and SWT. I confirmed the rationale behind those

values (namely, distinguish certain positions and assign much higher scores than base term

matching) led to the best results, by trying out scoring variations.

I catered for the conclusion validity by using a non-parametric Wilcoxon matched pairs

statistical test since no assumptions were made about the distribution of the results. This

test is quite robust and has been extensively used in the past to conduct similar analyses

(Schröter et al., 2010; Moreno et al., 2014). Based on the values obtained as shown in Table

4.15, I conclude that on average ConCodeSe locates significantly (p 0.05) more relevant

source files in the top-N, which confirms that the improvement in locating relevant files for a

122

Table 4.15: Wilcoxon test comparison for top-5 and top-10 performance of BugLocator and
BRTracer vs ConCodeSe

Statistics
BugLocator BRTracer

Top-1 Top-10 Top-1 Top-10
Z-value -4.2686 -3.2351 -2.73934 -3.9656
W-value 254 576 487 543
p-value 0.047504 0.0326 0.043432 0.0067

bug report in the top-N position by my tool over the state of the art is significant.

The characteristics of the projects (e.g. the domain, the identifier naming conventions,

and the way comments and bug reports are written, including the positions where file names

occur) are a threat to external validity. I reduced this threat by repeating the search exper-

iments with di↵erent applications, developed independently of each other, except for SWT

and Eclipse. Although ConCodeSe only works on Java projects for the purpose of literature

comparison, the principles (take the best of various rankings, score file names occurring in

the bug report higher than other terms, look for file names in particular positions of the sum-

mary and of the stack trace if it exists) are applicable to other object-oriented programming

languages.

4.6 Concluding Remarks

This Chapter contributes a novel algorithm that, given a bug report and the application’s

source code files, uses a combination of lexical and structural information to suggest, in a

ranked order, files that may have to be changed to resolve the reported bug. The algorithm

extends my previously proposed approach introduced in Chapter 3 by considering words in

certain positions of the bug report summary and of the stack trace (if available in a bug report)

as well as source code comments, stemming, and a combination of both independently, to

derive the best rank for each file.

I compared the results to eight existing approaches, using their 5 evaluation criteria and

their datasets (4626 bug reports, from 6 OSS applications), to which I added 39 bug reports

from 2 other applications. I found that my approach improved the ranking of the a↵ected files,

increasing in a statistical significant way the percentage of bug reports for which a relevant

file is placed among the top-1, 5, 10, which is respectively 44%, 69% and 76% , on average.

This is an improvement of 23%, 16% and 11% respectively over the best performing current

state-of-the-art tool. I also improved, in certain cases substantially, the mean reciprocal rank

123

value for all eight applications evaluated, thereby reducing the number of files to inspect

before finding a relevant file.

My approach not only outperforms other approaches, it does so in a simpler, faster,

and more general way: it uses the least artefacts necessary (one bug report and the source

codebase it was reported on), not requiring past information like version history or similar

bug reports that have been closed, nor the tuning of any weight factors to combine scores,

nor the use of machine learning.

Like previous studies, my approach shows that it is challenging to find the files a↵ected by

a bug report: in spite of my improvements, for larger projects, e.g. Eclipse, 30% of bugs are

not located among the top-10 files. Adding history-based heuristics and learning-to-rank, as

proposed by other approaches, will certainly further improve the bug location performance.

In order to help develop new search approaches, I o↵er in an online companion to this thesis,

the full results as an improved baseline for further bug localisation research 3.

Since I used only one industrial application (Pillar2) to evaluate my approach and to

gain a broader understanding of how it may perform with other commercial applications, I

conducted user studies in 3 di↵erent companies. In the following Chapter, I report on the

performance of my tool in industrial settings and how the ranked result list sorted in the

order of relevance is perceived by professional developers.

3
http://www.concodese.com

124

Chapter 5

User studies

In the previous Chapter, I evaluated my approach with a range of OSS projects and showed

it outperformed current state-of-the-art tools in a simpler, faster, and more general way that

does not require history. To investigate the generalisability of my approach, I conducted user

studies in three di↵erent companies with professional developers. The first aim of the study

was to demonstrate the applicability of my approach in industrial environments. Commer-

cial applications and bug reports may have di↵erent characteristics to the OSS applications

investigated in Chapter 4, thus impacting the performance of my approach.

Previous user studies of reveal that large search results returned by the integrated devel-

opment environment (IDE) tools cause developers to analyse several files before performing

bug-fixing tasks (Sillito et al., 2008; Starke et al., 2009). Thus the second aim of the study was

to know how developers perceive the search results of ConCodeSe, which presents a ranked list

of candidate source code files that may be relevant for a bug report at hand during software

maintenance.

In this Chapter, Section 5.1 gives an introduction by describing the challenges faced

by developers when searching for relevant source code files as identified by current studies.

Subsequently, I describe my study design in Section 5.2 and present the results of the study

in Section 5.3. Finally, I evaluate the findings in Section 5.4, and conclude with remarks in

Section 5.5.

5.1 Background

Sillito et al. (2008) conducted two di↵erent studies, one in a laboratory setting with 9 de-

velopers who were new to the code base and the other in an industrial setting with 16

125

developers who were already working with the code base. In both studies developers were

observed performing change tasks to multiple source files within a fairly complex code base

using modern tools. The findings reveal that text-based searches available in current IDEs are

inadequate because they require search terms to be precisely specified, otherwise irrelevant

or no results are returned. The study claims that developers repeatedly perform discovery

tasks in a trial and /error mode, which causes additional e↵ort and often results in several

failed attempts.

Starke et al. (2009) performed a study with 10 developers to find out how developers

decide what to search for and what is relevant for the maintenance change task at hand.

Participants were randomly assigned one of 2 closed bug descriptions selected from the Sub-

Eclipse tool’s issue repository and instructed to carry out search tasks in the Eclipse IDE

using the available search tools. The findings highlight that formulating a search query is the

most challenging task for the developers since Eclipse search tools require the search terms

to be precisely specified otherwise no relevant results are returned. The authors also state

that when many search results are returned, developers tend to lose confidence in the query

and decide to search again rather than investigate what was returned. They propose future

research on tool support for the developers to provide more contextual information and to

present results in a ranked order.

Both studies (Sillito et al., 2008; Starke et al., 2009) articulate that providing developers

with automated code search tools that presents results in a ranked order would be of great

benefit in performing their daily tasks. In addition, Xia et al. (2016) and Kochhar et al.

(2016) found top-5 to be the magic number of results that developers deem acceptable to

inspect. Furthermore, Kochhar et al. (2016) observed that almost all developers ‘refuse’ to

inspect more than 10 items. None of those studies used IR-based bug localisation. Thus the

second aim of my study was to see how developers perceive and use the ranked search results

of ConCodeSe.

After obtaining better results than the state-of-the-art literature on bug localisation using

open-source benchmark projects, I was interested in finding how my approach performs in

industrial environments with proprietary business applications. Hence I asked my research

question in Chapter 1 as follows.

RQ3: How does my approach perform with industrial applications and does it benefit

developers by presenting the search results in ranked order of relevance?

126

In order to not require users to modify ConCodeSe to interface with their software repos-

itories and issue trackers, I implemented a simple front-end (GUI) panel to my tool for users

to paste the summary and description of a bug report and search for the candidate source

code files. The results are displayed in the ranked order of relevance from most to least likely.

5.2 Study Design

Based on the works of Sillito et al. and Starke et al., I designed a study with professional

software developers with their a priori consent on the followings:

1. Data collected:

(a) How useful was the ranked list?

(b) How accurate was the ranking?

(c) How much were you confident on the list?

(d) How intuitive was it compared to an IDE search tool?

(e) What did work best?

2. Data collection method;

(a) Pre session interview

(b) Each search session: choosing the bug reports, running the tool, evaluating the

results.

(c) Post session interview

I contacted five di↵erent companies where I formerly worked as a freelance software de-

veloper, explaining the study. I sent each company an information leaflet explaining that I

was looking for participants to take part in a study where my tool will be used to search source

code files of a software application with descriptions available in a bug report document. The

leaflet informed interested parties how the study unfold:

1. I would conduct a 30-45min pre-session interview to explain how to use ConCodeSe.

2. Afterwards, the participants would be required to try the tool for 7–10 business days in

their own time and document their experience on the relevance of the suggested source

files for the search tasks performed.

127

Table 5.1: Business nature of the companies and professional experience of the participants
involved in the user study

Company
Business
Nature

Study Dates
(2015)

Participant
Id

Years of
Experience

Years of IDE
Experience

time spent on
maintenance

U Finance 29.06 - 03.07
1 20 10 30%
2 15 10 70%

S Logistic 06.07 - 04.08 3 9 9 20%

A
Software
Services

05.06 - 16.10 4 11 11 40%

3. Finally, at the end of the trial period a post-session interview lasting for 30–45min

would be conducted to collect details on their usage experience.

The leaflet further explained that the participation would be treated in strict confidence

in accordance with the UK Data Protection Act and no personal information could be passed

to anyone outside the research team. It also informed that I would aim to publish the findings

from the study, but no individual would be identifiable. Participants were allowed to answer

questions with “not-applicable” if they did not intend to provide an answer during both

interview sessions.

Out of the five contacted companies, only three agreed to participate and two of them

agreed to have the post-session interview session recorded as video. Upon receiving the par-

ticipation agreement from each company, I obtained written consent from each participant

prior to the study. Table 5.1 shows the participant profile information at each company

and Table 5.2 details the artefacts used in the study: the size of the industrial applications

is comparable to the medium-sized OSS projects (Table 2.1), All participants were profes-

sional software developers and did not require compensation since they were recruited on

volunteering basis.

Although I had worked for the three companies in the past, I did not have prior knowledge

of the applications used in the case study nor had I previous contact with the participants.

I went to each company, and presented ConCodeSe and the aim of the study, which was to

identify the benefits provided by a ranked list of candidate source code files that may be

Table 5.2: Project artefact details used in the study at the participating companies
Company Application in

production since
of source

code class files
of bug

reports used

U 2014 2840 10
S 2009 2240 10
A 2013 4560 10

128

relevant for a bug report at hand during software maintenance. Subsequently, I conducted a

pre-session interview with the developers to collect information about their experience and

their thought process on how they performed their tasks during daily work. One of the

intentions of this pre-session interview was to make developers aware of their working habits

so that they could document their experience with my tool more accurately.

5.3 Results

I present the information collected during the pre- and post-interviews. Throughout both

sessions developers referred to a source code file as class and to a bug report as defect.

5.3.1 Pre-session Interview Findings

Based on the observations made by Starke et al., I designed the pre-interview questions in

order to obtain a summative profile of developers and their working context. Below I list the

questions asked and the general answers given to each of these questions.

1. How do you go on about solving defects? All developers indicated that they read

bug report descriptions and log files looking for what to fix based on experience. They

also try to reproduce the bug to debug the execution steps and look at the source code

to see what is wrong. Only one developer indicated that he compares the version of the

application where the bug has occurred against a version where the bug hasn’t been

reported yet to detect any changes that might have caused the reported bug.

2. How would you go on about solving a defect in an unfamiliar application?

In general developers responded that they search code by using some words (e.g. nouns

and action words) from the bug description to pick a starting point. They also read

the user guide to understand the behaviour of the application and technical guide to

understand the architecture. One developer indicated that he would attempt to simulate

the reported behaviour if he could understand the scenario described in the bug report

and some test data is provided.

3. What about when you cannot reproduce or haven’t got a running system? At

least to get an idea of a starting point, developers look for some hints in class and method

names. One developer stated that he would include logging statements in certain classes

129

to print out trace information and collect details of execution in production so that he

could see what was happening during run time.

4. In order to find starting points to investigate further, what kind of search

tools do you use? Although all developers said that they use search functions avail-

able in IDEs, e.g. full text, references, inheritance chain and call hierarchies, one said

that he prefers to use the Mac OS Spotlight desktop search because in addition to source

files, it indexes other available artefacts like the configuration files, GUI files (e.g. html,

jsp and jsf) as well as the documentation of the application.

5. How do you evaluate a call hierarchy? Developers explained that they would

start by performing a ‘reference ’ search of a class and browse through the results.

One said that “I also look to see if method and variable names that are surrounding the

search words also make sense for the bug description that I am involved with”.

6. What do you consider as being important, callers of a class or the called

classes of a class? Each reply started with “That depends on...”. It seems that

each participant has a di↵erent way of assessing the importance of the call hierarchy.

For some developers the importance is based on the bug description, e.g. if the bug

description indicated that some back-end modules are the culprit, then they would

look to see where the control flows are coming from, while for others, it is based on

architecture, e.g. if a certain class is calling many others then they would consider this

to be a bad architecture and ignore the caller.

7. How do you decide which classes to investigate further, i.e. open to look

inside, and which to skip? Almost all developers answered first by saying “gut

feeling” and then went on to describe that they quickly skim through the results list

and look for clues on package or file names to determine whether it makes sense to

further investigate the file contents or not.

8. Do you consider descriptive clues? Once again developers replied that they rely

on their experience of the project to relate conceptual words found in the bug reports

to file names.

9. When do you decide to stop going through the path and start from the begin-

ning? All participants indicated that after browsing through the search results looking

130

at file names, they may open 3 or 4 files to skim through their content and when no

clues were detected, they would decide to start a new search with di↵erent words.

10. What kind of heuristics do you use when considering concepts implemented

by neighbouring classes? In general, developers indicated that they look at the

context of a source file within the bug that they are working on, i.e. relevance of a

file based on the bug report vocabulary. One developer said that project vocabulary

sometimes causes ambiguity because in the application he works with, certain file names

contain the word Exception, which refers to a business exception rule and not to an

application exception, i.e. error, condition.

The pre-session interview answers confirmed the challenges highlighted by previous stud-

ies (Sillito et al., 2008; Starke et al., 2009). I asked developers to try out ConCodeSe by

downloading, installing and performing search tasks in their own time. I decided to perform

an uncontrolled study because I felt that this would provide a more realistic environment and

also allow developers to have adequate time to utilise my tool without negatively impacting

their daily workload.

I asked them to collect screen shots showing the information they entered as search text

and the results listed. I instructed them to use closed bug reports for search query where the

a↵ected files were also documented so that they can prove whether the results contained the

relevant files or not.

I arranged to meet them in 7–10 business days for a 30–45min post-session interview to

gather their experiences and to inspect the screen shots.

5.3.2 Post-session Findings

Below, I list the questions asked during the post-interview sessions and the general answers

given to each of these questions.

1. How did you go on using the tool? All indicated that they first used a few

bug reports with which they previously worked on to become familiar with my tool

and its performance. Afterwards they have randomly chosen closed bug reports that

they had not previously worked with, performed search by using the words found in

the summary and description fields of the bug reports and then compared the search

results against the files identified as a↵ected in the issue-tracking tool. One developer

131

said, “I performed search tasks by selecting a few words, i.e. 2–3, from the bug report,

which I knew would lead to relevant results. However this did not work very well so I

have gradually increased the search terms with additional ones found in the bug report

descriptions. This provided more satisfactory results and the relevant classes started

appearing in the result list”.

2. Did the tool suggest relevant classes in the ranked list? Inspecting the screen-

shots of the results, I found that in Company-U, for 8 out of 10 bug reports at least one

file was in the top-10 and for the remaining 2 no file made it to top-10. In Company-S,

for 9 out of 10 bug reports the tool ranked at least one a↵ected file at top-1. Developer

in Company-A said that “The relevant file was always ranked among the top-3. I never

needed to investigate files which were ranked beyond top-3”.

3. Were there relevant classes in the result list, which you might not have

thought of without the tool? All participants replied with ‘yes’. One developer

said that “I have also opened up the files listed at top-2 and top-3, despite that they

were not changed as part of the bug report at hand. However looking at those files would

have also led me to the relevant one, assuming that the relevant file was not in the result

list”. Another indicated that “a bug report description had a file name which got ranked

at top-1 but did not get changed. However it was important to consider that class during

bug fixing”.

4. Did the ranked list provide clues to formulate search descriptions di↵er-

ently? Developers indicated that most of the time they had a clue to what they were

looking for but were not always certain. However, seeing file names with a rank allowed

them to consider those files with a degree of importance as reflected by the ranking. In

case of one defect, the description caused a lot of noise and resulted in the top 5 files

being irrelevant but 3 relevant files were placed in the top-10.

5. What did you add to or remove from the description to enhance the search?

Developers indicated that the search led to better results when the query included pos-

sible file names, exceptions and stack trace information. However, in one case ignoring

the description and searching only with the summary resulted in 4 out of 8 relevant files

to be ranked at top-5 and one file between top-5 and top-10. One developer indicated

132

that in one case despite changing search words, the relevant file was still not found

because the bug report did not provide any clues at all.

6. What would you consider to reduce false positives in search results? In

general, all participants suggested that project specific vocabulary mapping should be

used to cover cases when concepts in file names cause misleading results. For example,

batch jobs are named as Controller, so when a bug report describes a batch job without

using the word controller, then those classes are not found if there are no comments

indicating additional clues. In such case, only 5 out of 18 a↵ected files were found.

7. How comfortable were you with the ranked list? All developers indicated that

the tool was easy to use and after performing 3–4 searches to become familiar with the

tool, they were satisfied with the results since the files at the first 5 positions were most

often relevant ones. Despite their comfort with the tool, all participants indicated that

if a bug report description contained fewer technical details, e.g. fewer file names, and

more descriptive information, e.g. test scenario steps, the tool was not useful. In fact

they felt that in such cases any tool would fail to suggest the relevant file(s).

8. Were you able to get to the other relevant classes based on the suggested

ones that were relevant? All participants expressed that the ranked list helped

them to consider other focal points and gave them a feel for what else to look for that

might be relevant. One said that “Most of the cases I browsed through the results and

opened only the top-1 and top-2 files to see if they were the relevant ones or to see if

they can lead me to the file that may be more appropriate”.

9. Would you consider such a tool to support you in the current challenges you

have? In general, all indicated that the ranked list would benefit anyone who is new

to a project since it could guide novice developer to the parts of the application when

searching for files that may be relevant to solve a defect. This would in turn allow the

novice developers to rapidly build up application knowledge. One said “The tool would

definitely speed up the learning curve for a new team member who is not familiar with

the architecture and code structure of our project. It would save him a lot of time during

the first few weeks. After that due to the small size of the project (12000 LOC) it would

not provide much significance because the developer would become familiar with the code

anyway”. I was told that as a research product my prototype tool was very stable. They

133

experienced no failures, i.e. crashes or error exceptions. One developer said that even

when running the tool in a virtual machine (VM) environment, suspending and then

resuming the VM, my tool continued to function.

To my final 10th question, “What would you suggest and recommend for future

improvements?”, I have received a lot of valuable suggestions. First of all, I was told by all

developers that the biggest help would be to write better bug descriptions and to introduce a

defect template to solicitate this. They noticed that defect descriptions containing test steps

entered by 1st level support is noise. For example, in case of one defect, the relevant file is

ranked in top-5 and its test file in top-1 so the relevant files were obscured by test files.

I was also suggested to include in the search the content of configuration files, e.g. con-

fig.xml, DB scripts and GUI files. One developer noticed that the words on the first search

field (bug report summary) are given more importance. He wished that the second field (bug

report description) is treated with the same importance as the first search field.

In addition I have received several cosmetic suggestions for presenting the results and

interacting in search fields, like proposing keywords, e.g. auto complete based on terms

found in the source code. Participants also felt that it would be helpful to display, next to the

ranked files, the words in those files that match the bug report so that the user can determine

whether it really makes sense to investigate the content of the file or not. Interestingly one

developer said that sometimes he did not consider the ranking as an important factor and

suggested to group files into packages, based on words matching the package name and then

rank the files within that group.

Most of the suggestions concern the developer interface and are outside the scope of

ConCodeSe. I intend to investigate whether configuration files can be matched to bug reports

in future work.

5.4 Evaluation of the Results

Modern IDE search tools o↵er limited lexical similarity function during a search. The de-

velopers are required to specify search words precisely in order to obtain accurate results,

which may require developers to be familiar with the terminology of the application and the

domain. The success of modern IDE search tools depend on the clarity of the search terms

otherwise the results may contain many false positives. To compensate for these weaknesses,

134

developers choose to specify on average 3 words (see post-session interview Answer 1) when

searching for relevant files in IDEs instead of using all the words available in a bug report.

Since current IDE search tools deprive developers from the advantage of utilising the full in-

formation available in bug reports, developers may search outside of the IDE (see pre-session

interview Answer 4).

Furthermore, in current IDEs, the search results are not displayed in a ranked order of

relevance causing developers to go through several irrelevant files before finding relevant ones

as entry points for performing bug-fixing tasks. Since developers are faced with the challenge

of manually analysing a possibly long list of files, they usually tend to quickly browse through

the results and decide on its accuracy based on their gut feeling as revealed during my pre-

session interview. They also prefer to perform a new search query using di↵erent words

rather than opening some files to investigate their content. These repetitive search tasks cost

additional e↵ort and add burden on the productivity of the developers causing them to lose

focus and introduce errors due to fatigue or lack of application knowledge.

I set out to explore whether my ranking approach would benefit developers. Based on

the post-session interview answers provided by developers working in di↵erent industrial

environments with di↵erent applications, I confirm that developers welcomed the ranked

result list and stated that since most of the relevant files were positioned in the top-5, they

were able to avoid the error prone tasks of browsing long result lists and repetitive search

queries by focusing on the top-5 portion of the search results.

I was interested in finding out whether the ranked list would point developers to other

files that might be of importance but were not initially thought to be relevant. After trying

out my tool, at the post-session interview, the developers said that the result list contained

other relevant files that they would not have thought of on their own without my tool (see

post-session interview Answer 3). Developers stated that those additional and not thought of

files would not have appeared in the result of the IDE search tool they use because those files

do not contain the search terms. However my tool was able to localise those files because my

approach combines VSM probabilistic scoring with lexical similarity match. Hence I advocate

strongly for making a VSM based IR model as part of any modern search tool.

Finally, I wanted to see whether my tool, which leverages the textual information avail-

able in bug reports, encourages developers to use the full description of a bug report when

formulating search queries. During the pre-session interview, developers told us that they

135

use their gut feeling and experience when selecting words to use on the search query. At

the post-session interview, I was told by developers that incrementing the search words with

additional ones from the bug reports improved the results.

In software projects, a developer may get assistance from other team members or expert

users when selecting the initial entry points to perform the assigned maintenance tasks. I was

told that my tool complements this by providing a more sophisticated search during software

maintenance. Thus the bug report vocabulary can be seen as the assistance provided by the

expert team members and the file names in the search results can be seen as the initial entry

points to investigate additional relevant files.

Furthermore, I was told that search results still depend on the quality of bug descriptions.

In case of tersely described bug reports, even experienced developers find it challenging to

search for relevant files. In addition, I found that bug reports can be of (1) developer nature

with technical details, i.e. references to code files and stack traces or (2) descriptive nature

with business terminology i.e. use of test case scenarios. Since bug report documents may

come from a group of people who are unfamiliar with the vocabulary used in the source code,

I propose that bug report descriptions contain a section for describing the relevant domain

vocabulary. For example a list of domain terms implemented by an application can be semi-

automatically extracted and imported into the bug report management tool. Subsequently,

when creating a bug report, the user may choose from the list of relevant domain terms or

the tool may intelligently suggest the terms for selection.

From all these results, I can answer my research question a�rmatively: in case of business

applications, my tool also achieves to place at least one file into top-10 for 88% of the bug

reports (see post-session interview Answer 2 and Chapter 4, Figure 4.3: 83% in Pillar2, 80%

in Company U, 90% in S and 100% in A) into top-10. My study also confirms that users will

focus on the first 10 suggestions and that therefore presenting the search results ranked in

the order of relevance for the task at hand benefits developers.

5.4.1 Threats to Validity

The queries (i.e. search terms) in my studies performed in Chapter 3 and Chapter 4 were

taken directly from the bug reports. This threat to construct validity is addressed by the user

studies in this Chapter, which showed that the developers formulate their queries di↵erently

when locating bugs in an IDE and that the use of di↵erent queries with vocabularies more in

136

line with the source code would yield better results.

In the user study, the bug localisation was uncontrolled, to avoid disturbing the daily

activities of the developers. This may be a potential threat to construct validity. I partially

catered for this threat by asking developers to make screen shots of the results, which they

showed during the post-session interview.

Bug location techniques poses a di�cult challenge because of the inherent uncertainty and

subjectivity. One programmer may think a source file is relevant to a feature while another

may not. In my study I catered for this threat to internal validity by asking developers to

use closed bugs that they did not work on previously and instructed them to document their

results to avoid any bias.

The small size of the user study (4 participants from 3 companies) and the characteristics

of the projects (e.g. the domain, the identifier naming conventions, and the way comments

and bug reports are written, including the positions where file names occur) are a threat to

external validity. I reduced threat to external validity by repeating the search experiments

with developers at three di↵erent companies evaluating my tool using industrial applications,

developed independently of each other.

5.5 Concluding Remarks

Chapters 3 and 4 have introduced a novel algorithm that, given a bug report and the applic-

ation’s source code files, uses a combination of lexical and structural information to suggest,

in a ranked order, files that may have to be changed to implement the bug report. The al-

gorithm considers words in certain positions of the bug report summary and of the stack trace

(if available in a bug report) as well as source code comments, stemming, and a combination

of both independently, to derive the best rank for each file.

In this Chapter, I evaluated the algorithm on four very di↵erent industrial applications

(Pillar2 in Chapter 4 and from the three user studies), and placed at least one file in the

top-10 for 83% of bug reports on average, thus confirming the applicability of my approach

also in commercial environments.

Text-based searches available in current integrated development environments (IDE) are

inadequate because they require search terms to be precisely specified otherwise irrelevant or

no results are returned (Sillito et al., 2008; Starke et al., 2009). Developers stated that since

most of the relevant files were positioned in the top-5, they were able to avoid the error prone

137

tasks of browsing long result lists and performing repetitive search queries. This confirms

that presenting the search results ranked in the order of relevance for the task at hand aids

developers during maintenance.

138

Chapter 6

Conclusion and Future Directions

In Chapter 1, I argued that current state-of-the-art IR approaches in bug localisation rely on

project history, in particular previously fixed bugs and previous versions of the source code.

However, existing studies (Nichols, 2010; Wang and Lo, 2014) show that considering similar

bug reports up to 14 days and version history between 15—20 days does not add any benefit

to the use of IR alone. Furthermore, the techniques can only be used where great deal of

maintenance history is available but the same studies also show that considering history up

to 50 days deteriorates the performance.

In addition, Bettenburg et al. (2008) argued that a bug report may contain a readily

identifiable number of elements including stack traces, code fragments, patches and recreation

steps each of which should be treated separately. The previous studies also show that many

bug reports contain the file names that need to be fixed (Saha et al., 2013) and that the bug

reports have more terms in common with the a↵ected files, which are present in the names

of those a↵ected files (Moreno et al., 2014).

In this Chapter, I revisit my hypothesis and describe how it was addressed by the arising

research questions in Section 6.1. Subsequently, I highlight the contributions, and give recom-

mendations to practitioners and future research in Section 6.2. Finally, I end this Chapter

thus my thesis with concluding remarks in Section 6.3.

6.1 How the Research Problem is Addressed

Bettenburg et al. (2008) disagree with the treatment of a bug report as a single piece of

text document and source code files as one whole unit by existing approaches (Poshyvanyk

et al., 2007; Ye et al., 2014; Kevic and Fritz, 2014; Abebe et al., 2009). Furthermore, the

139

existing approaches treat comments as part of the vocabulary extracted from the source

code, but since comments are sublanguage of English, they may deteriorate the performance

of the search results due to their imperfect nature, i.e. terse grammar (Etzkorn et al., 2001;

Arnaoudova et al., 2013).

The hypothesis I investigated is that superior results can be achieved without drawing

on past history by utilising only the information, i.e. file names, available in the current

bug report and considering source code comments, stemming, and a combination of both

independently, to derive the best rank for each file.

In this section I summarise how I addressed my research hypothesis as follows.

6.1.1 Relating Domain Concepts and Vocabulary

Motivated to address my hypothesis, I first intended to discover whether vocabulary alone

provides a good enough leverage for maintenance. I was determined to explore whether (1)

the source code identifier names properly reflect the domain concepts in developers’ minds

and (2) identifier names can be e�ciently searched for concepts to find the relevant files for

implementing a given bug report. Thus asked my first research question as follows.

RQ1: Do project artefacts share domain concepts and vocabulary that may

aid code comprehension when searching to find the relevant files during software

maintenance?

To address RQ1, in Chapter 3 I undertook a preliminary investigation of eight applications

and compared the vocabularies of project artefacts (i.e. text documentation, bug reports and

source code) by asking three sub-research questions as follows.

RQ1.1: How does the degree of frequency among the common concepts correl-

ate across the project artefacts? I investigated whether independent applications share

key domain concepts and how the shared concepts correlate across the project artefacts. The

correlation was computed pairwise between artefacts, over the instances of the concepts com-

mon to both artefacts, i.e. between the bug reports and the user guide, then between the

bug reports and the source code, and finally between the user guide and the source code. I

argued that identifying any agreement between the artefacts may lead to e�cient software

maintenance.

I found that while each concept occurred in at least one artefact, only a subset of the

concepts occurred in all three artefacts (Sub-section 3.4.1). Also the three artefacts explicitly

140

include all the domain concepts, however only a handful of the concepts occur both in the code

and in the documentation, which may point to potential ine�ciencies during maintenance.

On the other hand, I found that the common concepts correlate well in terms of relative

frequency, taken as proxy for importance, i.e. the more important concepts in the user guide

tend to be the more important ones in the code (Sub-section 3.4.1.1). This good conceptual

alignment between documentation and implementation may ease maintenance, especially for

new developers.

RQ1.2: What is the vocabulary similarity beyond the domain concepts, which

may contribute towards code comprehension? Subsequently, I aimed at discovering any

common terms, i.e. words extracted from the source code identifiers, other then the domain

concepts between the source code files of di↵erent applications. I found that the application

source files share common terms beyond the domain concepts (Sub-section 3.4.2) and manual

analysis revealed that those common terms are the ones generally used by the developers dur-

ing programming, e.g. CONFIG, version, read, update, etc., which may contribute towards

code comprehension.

Additionally, I investigated overall vocabulary of all the identifiers because despite an

overlap in the terms, developers of one application might combine them in completely di↵erent

ways when creating the identifiers that may confuse other developers. Indeed, all applications

combine the words di↵erently: only a small percentage of common identifiers exists between

the applications.

Furthermore, I discovered that Eclipse source code also contains the source files of two

smaller applications, SWT and AspectJ. Searching the source code of Eclipse using the actual

words extracted from the bug reports of the smaller sub-set revealed that given a large search

space with many source files, e.g. 12,863 in Eclipse, my approach successfully retrieves the

relevant files for the bug reports of a smaller sub-set, e.g. SWT with 484 files, within the same

search space without retrieving many false positives (Sub-section 3.4.3.3). This indicates that

like finding a needle in a hay stack, my scoring performs independently of any artefact’s size.

RQ1.3: How can the vocabulary be leveraged when searching for concepts to

find the relevant files for implementing bug reports? Finally, I investigated whether

searching with domain concepts only is adequate enough to find relevant files for a given bug

report. For this, I used my novel IR approach that I introduced in Sub-section 3.3.2, which

directly scores each current file against the given bug report by assigning a score to a source

141

file based on where the search terms occur in the source code file, i.e. class file names or

identifiers.

The conceptual overlap and correlation between the bug reports and the other two arte-

facts revealed that searching with only the domain concepts referred by a bug report, achieved

very poor MAP and MRR results (Sub-section 3.4.3). However, both can be improved by

using all of the vocabulary found in the bug report and achieved on average 54% recall when

positioning the relevant files into top-10 (Sub-section 3.4.3.1). Such a simple, and e�cient

technique can drastically reduce the false positives a developer has to go trough to find the

files a↵ected by a bug report, thus confirming that bug reports contain information that may

boost the performance when properly evaluated.

In the data sets analysed on average only 3 files were listed as being changed but multiple

files may implement a concept (Section 2.1). This suggests that bug reports are for a unit-

of-work and searching for the relevant files using concepts find all the files implementing that

concept. Nevertheless a bug report may require only a subset of those files to be changed.

Hence in the context of a bug report this may lead to many false positives as seen by the

poor MAP values obtained during concept-only search (Sub-section 3.4.3).

Based on the answers to all sub-research questions, I answer RQ1 a�rmatively: project

artefacts share domain concepts and vocabulary that may aid code comprehension when

searching the relevant files during software maintenance.

6.1.2 Locating Bugs Without Looking Back

Answering RQ1 in Chapter 3 revealed that artefacts explicitly reflect the domain concepts

and that paired artefacts have a good conceptual alignment, which should help maintenance

when searching for files a↵ected by given bug report. However, the studies I conducted to

address RQ1.1–RQ1.3 showed that despite good vocabulary coverage, it is challenging to find

the files referred by a bug report. To improve the suggestion of relevant source files during

bug localisation, I argued that heuristics based on information available within the context

of bug reports, e.g. words in certain key positions, be developed.

Current state-of-the-art approaches for Java programs (Zhou et al., 2012a; Wong et al.,

2014; Saha et al., 2013; Wang and Lo, 2014; Ye et al., 2014) rely on project history to

improve the suggestion of relevant source files. In particular they use similar bug reports and

recently modified files. However, the observed improvements using the history information

142

have been small (Sub-section 2.3.4). I thus argued that file names mentioned in the bug report

descriptions can replace the contribution of historical information in achieving comparable

performance and asked my second research question as follows.

RQ2: Can the occurrence of file names in bug reports be leveraged to re-

place project history and similar bug reports to achieve improved IR-based bug

localisation?

To address RQ2 in Chapter 4, I extended my approach introduced in Sub-section 3.3.2

to consider words in certain positions of the bug report summary and of the stack trace (if

available in a bug report).

Results showed that my approach located on average for 64% of the bug reports a relevant

file in the top-10 by just assigning a high score to file names in the bug report summary

(see row ‘KP only’ in Table 4.6, Sub-section 4.4.1.1), confirming the studies cited in the

introduction that found file names mentioned in a large percentage of bug reports (Saha

et al., 2013; Schröter et al., 2010). In addition evaluating the stack trace further increased

the number of relevant files placed in all top-N categories indicating that assigning a higher

score to file names found in stack trace improves the performance of the results (Sub-section

4.4.1.2), which is also in line with the findings of previous studies (Schröter et al., 2010;

Moreno et al., 2014; Wong et al., 2014).

I compared the performance of my extended approach against the existing ones, i.e.

BugLocator (Zhou et al., 2012a), BRTracer (Wong et al., 2014), BLUiR (Saha et al., 2013),

AmaLgam (Wang and Lo, 2014), LearnToRank (Ye et al., 2014), BLIA Youm et al. (2015),

and Rahman et al. (2015), on the same datasets, using the same performance metrics, and

outperformed them in the majority of cases without considering any historical information.

In particular my approach succeeded in placing an a↵ected file among the top-1, top-5 and

top-10 files on average for 44%, 69% and 76% of bug reports, improving the best performing

current state-of-the-art tool by 23%, 16% and 11% respectively (Sub-section 4.4.1.5).

Additionally, I compared the recall1 performance of ConCodeSe against BugLocator and

BRTracer. The results were significantly superior to the other two current state-of-the-art

tools (Sub-section 4.4.1.6) providing further evidence that even when a di↵erent metric (i.e.

recall instead of MAP and MRR) is used to measure the performance, my approach still

outperforms the existing ones.

1
the number of relevant files placed in the top-N out of all the e↵ected relevant files.

143

Furthermore in Chapter 4, I investigated the answers to the following two questions.

RQ2.1: What is the contribution of using similar bug reports to the results

performance in other tools compared to my approach, which does not draw on

past history? I looked more closely at the contribution of past history, in particular of

considering similar bug reports, an approach introduced by BugLocator and adopted by

others. I compared the results of BugLocator and BRTracer using SimiScore (the similar bug

reports score), and the results of BLUiR according to the literature, showing that SimiScore’s

contribution is not as high as suggested.

Through my experiments, I found that ConCodeSe achieves on average superior results

to BugLocator and BRTracer in terms of MAP and MRR respectively (Sub-section 4.4.2),

thus allowing my approach to be more suitable in projects without closed bug reports similar

to the new bug reports. Hence I concluded that my approach localises many bugs without

using similar bug fix information, which were only localised by BugLocator, BRTracer or

BLUiR using similar bug information, thus confirming the applicability of my approach also

to software projects without history.

RQ2.2: What is the overall contribution of the VSM variant adopted in my

approach, and how does it perform compared to rVSM? IR-based approaches to

locating bugs use a base IR technique that is applied in a context-specific way or combined

with bespoke heuristics. However, the exact variant of the underlying tf/idf2 model used

may a↵ect results (Saha et al., 2013). The o↵-the-shelf model VSM used in BLUiR already

outperforms BugLocator, which introduced rVSM, a bespoke VSM variant.

Since my approach also uses an o↵-the-shelf VSM tool, di↵erent from the one used by

BLUiR, I conducted experiments to determine the contribution of the file names, i.e. lexical

similarity, and the contribution of the IR model, i.e. VSM. I found that VSM is a crucial

component to achieve the best performance for projects with a larger number of files, which

makes the use of term and document frequency more meaningful, but that in smaller projects

it is rather small, which showed the crucial contribution of lexical similarity scoring for the

improved performance of my approach.

I also confirm that the exact IR variant used is paramount: Lucene’s VSM and my

simple lexical matching outperform BugLocator’s bespoke rVSM in many cases as well as

BLUiR’s Okapi (Sub-section 4.4.3). However, VSM on its own isn’t enough to outperform

2
tf/idf (term frequency/inverse document frequency) is explained in Chapter 2, Sub-section 2.2.1

144

other approaches.

6.1.3 User Studies

Evaluating my approach in Chapter 4, with one commercial and a range of open source

projects showed it outperformed current state-of-the-art tools in a simpler, faster, and more

general way that does not require history. To investigate the generalisability of my approach

particularly in other commercial environments, I asked my third research question as follows.

RQ3: How does the approach perform in industrial applications and does it

benefit developers by presenting the results ranked in the order of relevance for

the bug report at hand?

To address RQ3 in Chapter 5, I conducted user studies in three di↵erent companies with

professional developers. The first part of RQ3 aimed to demonstrate the applicability of

my approach in industrial environments. Commercial applications and bug reports may have

di↵erent characteristics to the OSS applications investigated in Chapter 4, thus impacting the

performance of my approach. The results of the user study showed that in case of business

applications, my tool also achieved to place at least one file in the top-10 for 90% of bug

reports on average (see Answer 4 in Sub-section 5.3.2), thus confirming the first part of RQ3

in that my approach is applicable also in commercial environments.

The second part of RQ3 aimed to investigate how developers perceive the search results of

ConCodeSe, which presents a ranked list of candidate source code files that may be relevant

for a bug report at hand during software maintenance. Developers stated that since most of

the relevant files were positioned in the top-5, they were able to avoid the error prone tasks

of browsing long result lists and performing repetitive search queries (Sub-section 5.4). This

confirms that presenting the results ranked in the order of relevance for the task at hand aids

developers during maintenance, thus a�rmatively answers the second part of RQ3.

6.1.4 Validity of My Hypothesis

From all the results obtained by answering my research questions as summarised in the

previous Sub-sections, I conclude that leveraging the occurrence of file names in bug reports

leads in most cases to better performance than using project history and contribution of

similar bug reports.

Therefore I can answer my hypothesis a�rmatively: superior results can be achieved

145

without drawing on past history by utilising only the information, i.e. file names, available in

the current bug report and considering source code comments, stemming, and a combination

of both independently, to derive the best rank for each file.

6.2 Contributions

My research o↵ers a more e�cient and light-weight IR approach, which does not require any

further analysis, e.g. to trace executed classes by re-running the scenarios described in the

bug reports, and makes the following contributions.

1. A novel algorithm, which scores source code files relevant for a reported bug based on

key positions and stack trace information found in the bug report without requiring

any project history.

2. Implementation of the algorithm in a tool together with the datasets and the results, for

example, the findings of the vocabulary study showing the concept correlation among

project artefacts and vocabulary similarity for future research.

Given a bug report and the application’s source code files, my approach uses a combination

of lexical and structural information to suggest, in a ranked order, files that may have to be

changed to resolve the reported bug. The algorithm considers heuristics based on contextual

information, i.e. words in certain positions of the bug report summary and of the stack trace

(if available in a bug report), as well as source code comments, stemming, and a combination

of both independently, to derive the best rank for each file.

Moreover my approach not only outperforms other approaches, it does so in a simpler,

faster, and more general way: it doesn’t require past information like version history or similar

bug reports that have been closed, nor the tuning of any weight factors to combine scores,

nor the use of machine learning.

6.2.1 Recommendations for Practitioners

The search results still depend on the quality of bug descriptions. In case of tersely described

bug reports, even experienced developers find it challenging to search for relevant files (Sub-

section 5.3.2). In addition to the previous studies which argue that the textual descriptions

in bug reports are noisy (Zimmermann et al., 2010), I also found that bug reports reveal two

146

characteristics: (1) developer nature with technical details i.e. references to code files or (2)

descriptive nature with business terminology i.e. use of test case scenarios.

Since bug report documents may come from a group of people who are unfamiliar with

the vocabulary used in the source code, I propose that bug report descriptions contain a

section for describing the relevant domain vocabulary. For example, a list of domain terms

implemented by an application can be semi-automatically extracted and imported into the

bug report management tool. Subsequently, when creating a bug report, the user may choose

from the list of relevant domain terms or the tool may intelligently suggest the terms for

selection.

To deal with crosscutting concerns — functionality implemented in multiple source code

files of an application rather than in one isolated file — as illustrated by Shepherd et al.

(2005), I recommend packaging the source files in architectural layers based on conceptual

responsibility instead of technical functionality. This would first mediate improved commu-

nication with business users, since such communications take place at a conceptual level

rather than technical level, and second assist in finding relevant files by considering the OOP

architectural relations, e.g. abstraction, inheritance, when no call-relations exist.

In my user studies, the developers stated that some files would not have appeared in the

result of the IDE search tool they use because those files do not contain the search terms.

Hence I advocate combining lexical search with probabilistic methods like VSM should be an

integral part of any modern search tool and that the search results should be presented in a

ranked order of relevance from most to least important.

6.2.2 Suggestions for Future Research

Based on the results of my experiments conducted during my study, I suggest the following

strands for future research.

Genetic algorithm: In my algorithm, I used arbitrary values to score the files obtained

by manually tuning the scoring on two moderate size projects: AspectJ and SWT. I confirmed

the rationale behind those values (namely, distinguish certain positions and assign much

higher scores than base term matching) that led to the best results after trying out scoring

variations (Sub-Section 4.4.1.4). Future research can apply a genetic algorithm (GA) to

automatically derive the best fit combination of score values for each key position, stack

trace and text term location.

147

Asadi et al. (2010) define GA as “an iterative procedure that searches for the best solution

to a given problem among a constant-size population, represented by a finite string of symbols,

the genome”. For example, an iterative search may start with an initial set of values (genomes)

for the KP, ST and TT scores. At the end of each run, two utility functions, one for MAP

and the other for MRR, could compare the performance of the results against the previous

run and start a new search using a di↵erent combination of genomes. After a predetermined

number of iterations, the utility functions could select the genome that resulted in the most

performant MAP and MRR results. This would facilitate an automated generation of score

values independently tailored for a project.

Feature requests: Although the evaluation datasets I used only include bug reports, my

IR-based approach can be also applied to feature requests and not just bug reports, as it does

not depend on past bug reports. Feature requests necessarily don’t include a stack trace and

they may not mention specific files. Hence future research investigating the performance of

my approach with feature requests may benefit from evaluating the content of configuration

files (e.g. config.xml, DB scripts, GUI files) as suggested during the user studies.

For example, in applications that utilise declarative configuration, the dependent class

files are specified in a configuration file. This file could be analysed to discover how each

file relates to one another within the context of the application’s business domain. Also, in

web based applications, the control flow between the GUI and the class files that process the

submitted information is declared in the configuration files. Subsequently, the configurative

relations and the control flow relations can be considered during the search when scoring a

file. Finally, showing the relational flows, e.g. how a class file is associated with a GUI file,

in the result list may point the developer directly to the location of the implementation for

the new feature.

Term co-occurrences: I only used single-word concepts during the search, while busi-

ness concepts are usually compound terms. Considering term co-occurances by evaluating

also the words that are surrounding the search terms may lead to improved results. To facilit-

ate this, future research may introduce, for example, project specific vocabulary dictionaries

in the form of ontologies (Sub-Section 2.2.5) that define how concepts relate to each other.

During the search, using the queried concept other related concepts can be considered to

retrieve additional relevant files that may not have matching terms with the queried term

but still may be relevant within the context of the business domain of the application for the

148

bug report at hand.

Furthermore, it is conceivable that an IR engine using the LSI model (Sub-Section 2.2.2),

for example, instead of VSM, to index the terms extracted from the source code identifiers,

may produce more or less sensitive results to using file names in bug reports.

Call relations: Additional future research would be to identify the opportunities of

using files in the results list as seed files to find other relevant files using call relations.

It is acknowledged that during maintenance, developers perform search tasks using lexical

information as well as navigate the structural information (Hill et al., 2007), thus these two

information sources can be combined to refine the search results by utilising any additional

clues that call relations may provide.

For example, during the user studies, developers indicated that if the bug description

revealed some back-end modules are the culprit, then they would look to see where the

control flows are coming from, i.e. the callers (Sub-Section 5.3.1). They also said that if a

certain class is calling many others then they would consider this to be a bad architecture and

ignore the callees. Based on these two insights, call relations can be evaluated for importance

and a score can be assigned to boost or penalise the rank of a file accordingly. Subsequently,

the relevant files can be grouped together within the context of the search by leveraging the

call-relations without deteriorating the performance.

Furthermore, in the case of bug reports requiring multiple files to be changed, investigating

to see if the files that are scored in top-5 are also in the order of importance (e.g. high

priority) for the developers compared to other tools would greatly benefit further research.

For example, files A, B and C may be scored in the top-5 but file C may be the most important

one within the context of the bug report at hand, thus positioned in the top-1.

GUI enhancements: Several cosmetic suggestions arose from the user studies for

presenting the results and interacting in search fields, like proposing keywords, e.g. auto

complete based on terms found in the source code (Sub-Section 5.3.1). Participants felt that

it would be helpful to display, next to the ranked files, the words in those files that match

the bug report so that the user can determine whether it really makes sense to investigate

the content of the file or not. Interestingly one developer said that sometimes he did not

consider the ranking as an important factor and suggested to group files into packages, based

on words matching the package name and then rank the files within that group.

Future research may investigate di↵erent approaches to rank relevant files and present

149

them in a user interface integrated into modern IDEs. Subsequently, for each ranked file, the

matching words resulted in the ranking may be displayed as a teaser (preview) so that the

developers would not need to open each file to examine its content.

Attachments in bug reports: Davies and Roper (2014) examined 1600 bug reports

from Eclipse, Firefox3, Apache4 and Facebook API5 to understand what information users

provide. The authors found that three of the most important features are (1) observed

behaviour: What the user saw happen in the application as a result of the bug; (2) expected

behaviour: What the user expected to happen, usually contrasted with observed behaviour;

and (3) steps to reproduce: Instructions that the developer can use to reproduce the bug.

However, the authors claim that these features are not su�cient enough for software

maintenance, otherwise there would be no need for automated bug localisation because a

developer would directly be able to utilise the information contained in the bug report. In my

research, I successfully leveraged the file names and the stack traces found in the bug reports

during automated bug localisation. A future research direction would be to also evaluate the

other types of information contained in the bug reports, for example, attachments in the form

of log files, screen shots or links to external websites containing code examples as identified

by Davies and Roper (2014).

6.3 A Final Rounding O↵

In my research, I focused on one single type of contextual information in the bug report: the

occurrence of file names. The assumption is that if a file is mentioned in the bug report, it

likely needs to be changed to fix the bug. Thus leveraging the file names in key positions and

stack trace based on the contextual heuristics are the main contributions of my research.

As software applications become integral part of our lives, technological advancements

demand existing applications to be maintained to meet with ongoing requirements. With

information available at our finger tips, companies are required to deliver solutions in a

timely manner so that they may remain competitive.

To reduce the time it takes to identify the location of a reported bug is a key challenge:

wouldn’t it be nice to to have a system where upon creating a bug description, the source code

files of the application is automatically searched and a list of candidate files are identified with

3
http://www.mozilla.org/firefox

4
http://apache.org

5
https://developers.facebook.com

150

a link to the bug report so that the developer may focus on implementing the solution instead

of trying to figure out where to implement it first? My research presented an important step

in this direction.

As the closing paragraph, thus the closing Chapter in my thesis, I advocate the importance

of easing the daily tasks of software developers by providing them with a ranked list of search

results where lexical similarity during search is complemented with probabilistic methods in

a tool integrated in modern IDEs as well as in modern project management life cycle tools.

151

152

Bibliography

S. L. Abebe; S. Haiduc; P. Tonella; and A. Marcus (2009) Lexicon bad smells in software. In

2009 16th Working Conference on Reverse Engineering, pp. 95–99.

S. L. Abebe; S. Haiduc; P. Tonella; and A. Marcus (2011) The e↵ect of lexicon bad smells

on concept location in source code. In Source Code Analysis and Manipulation (SCAM),

2011 11th IEEE International Working Conference on, pp. 125–134.

S. L. Abebe and P. Tonella (2010) Natural language parsing of program element names for

concept extraction. In Program Comprehension (ICPC), 2010 IEEE 18th International

Conference on, pp. 156–159.

N. Anquetil and T. Lethbridge (1998a) Assessing the relevance of identifier names in a legacy

software system. In Proceedings of the 1998 Conference of the Centre for Advanced Studies

on Collaborative Research, Toronto, Ontario, Canada, CASCON ’98, pp. 4–. IBM Press.

N. Anquetil and T. Lethbridge (1998b) Extracting concepts from file names; a new file clus-

tering criterion. In Software Engineering, 1998. Proceedings of the 1998 International

Conference on, pp. 84–93.

G. Antoniol; G. Canfora; G. Casazza; and A. D. Lucia (2000a) Information retrieval models

for recovering traceability links between code and documentation. In Software Maintenance,

2000. Proceedings. International Conference on, pp. 40–49.

G. Antoniol; G. Canfora; G. Casazza; A. D. Lucia; and E. Merlo (2000b) Tracing object-

oriented code into functional requirements. In Program Comprehension, 2000. Proceedings.

IWPC 2000. 8th International Workshop on, pp. 79–86.

G. Antoniol; G. Canfora; G. Casazza; A. D. Lucia; and E. Merlo (2002) Recovering traceab-

ility links between code and documentation. IEEE Transactions on Software Engineering,

pp. 970–983.

153

V. Arnaoudova; M. D. Penta; G. Antoniol; and Y. G. Guéhéneuc (2013) A new family of soft-

ware anti-patterns: Linguistic anti-patterns. In Software Maintenance and Reengineering

(CSMR), 2013 17th European Conference on, pp. 187–196.

F. Arvidsson and A. Flycht-Eriksson (2008) Ontologies i. http://www.ida.liu.se/janma/

SemWeb/Slides/ontologies1.pdf. Accessed: 2016-07.

F. Asadi; G. Antoniol; and Y. G. Guéhéneuc (2010) Concept location with genetic algorithms:

A comparison of four distributed architectures. In Search Based Software Engineering

(SSBSE), 2010 Second International Symposium on, pp. 153–162.

Basel-II (2006) International convergence of capital measurement and capital standards: A

revised framework - comprehensive version. http://www.bis.org/publ/bcbs128.htm. Ac-

cessed: 2016-08.

R. Bendaoud; A. M. Rouane Hacene; Y. Toussaint; B. Delecroix; and A. Napoli (2007) Text-

based ontology construction using relational concept analysis. In International Workshop

on Ontology Dynamics - IWOD 2007. Innsbruck, Austria.

K. H. Bennett and V. T. Rajlich (2000) Software maintenance and evolution: A roadmap. In

Proceedings of the Conference on The Future of Software Engineering, Limerick, Ireland,

ICSE ’00, pp. 73–87. ACM, New York, NY, USA.

N. Bettenburg; R. Premraj; T. Zimmermann; and S. Kim (2008) Extracting structural in-

formation from bug reports. In Proceedings of the 2008 International Working Conference

on Mining Software Repositories, Leipzig, Germany, MSR ’08, pp. 27–30. ACM, New York,

NY, USA.

T. J. Biggersta↵; B. G. Mitbander; and D. Webster (1993) The concept assignment problem

in program understanding. In Proceedings of the 15th International Conference on Software

Engineering, Baltimore, Maryland, USA, ICSE ’93, pp. 482–498. IEEE Computer Society

Press, Los Alamitos, CA, USA.

S. Boslaugh and P. Watters (2008) Statistics in a nutshell. O’Reilly Publishing, 1st edition.

S. Butler (2016) Analysing Java Identifier Names. Ph.D. thesis, The Open University.

S. Butler; M. Wermelinger; Y. Yu; and H. Sharp (2010) Exploring the influence of identifier

154

http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.ida.liu.se/janma/SemWeb/Slides/ontologies1.pdf
http://www.bis.org/publ/bcbs128.htm

names on code quality: An empirical study. In Software Maintenance and Reengineering

(CSMR), 2010 14th European Conference on, pp. 156–165.

S. Butler; M. Wermelinger; Y. Yu; and H. Sharp (2011) Improving the Tokenisation of Iden-

tifier Names, pp. 130–154. Springer Berlin Heidelberg, Berlin, Heidelberg.

G. Capobianco; A. D. Lucia; R. Oliveto; A. Panichella; and S. Panichella (2009) On the role

of the nouns in ir-based traceability recovery. In Program Comprehension, 2009. ICPC

’09. IEEE 17th International Conference on, pp. 148–157.

C. Caprile and P. Tonella (1999) Nomen est omen: analyzing the language of function identifi-

ers. In Reverse Engineering, 1999. Proceedings. Sixth Working Conference on, pp. 112–122.

J. Chang and D. M. Blei (2009) Relational topic models for document networks. https:

//www.cs.princeton.edu/~blei/papers/ChangBlei2009.pdf. Accessed: 2016-08.

T. A. Corbi (1989) Program understanding: Challenge for the 1990’s. IBM Syst. J., pp.

294–306.

S. Davies and M. Roper (2013) Bug localisation through diverse sources of information. In

Software Reliability Engineering Workshops (ISSREW), 2013 IEEE International Sym-

posium on, pp. 126–131.

S. Davies and M. Roper (2014) What’s in a bug report? In Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement, Torino,

Italy, ESEM ’14, pp. 26:1–26:10. ACM, New York, NY, USA.

J. W. Davison; D. M. Mancl; and W. F. Opdyke (2000) Understanding and addressing the

essential costs of evolving systems. Bell Labs Technical Journal, 5(2):44–54.

F. Deißenböck and M. Pizka (2006) Concise and consistent naming. Software Quality Journal,

pp. 261–282.

F. Deißenböck and D. Raţiu (2006) A unified meta-model for concept-based reverse engin-

eering. In In Proceedings of the 3rd International Workshop on Metamodels, Schemas,

Grammars and Ontologies.

E. W. Dijkstra (1959) A note on two problems in connexion with graphs. Numerische Math-

ematik, 1(1):269–271.

155

https://www.cs.princeton.edu/~blei/papers/ChangBlei2009.pdf
https://www.cs.princeton.edu/~blei/papers/ChangBlei2009.pdf

T. Dilshener (2012) Improving information retrieval-based concept location using contextual

relationships. In 2012 34th International Conference on Software Engineering (ICSE), pp.

1499–1502.

T. Dilshener and M. Wermelinger (2011) Relating developers’ concepts and artefact vocab-

ulary in a financial software module. In Software Maintenance (ICSM), 2011 27th IEEE

International Conference on, pp. 412–417.

T. Dilshener; M. Wermelinger; and Y. Yu (2016) Locating bugs without looking back. In

Proceedings of the 13th International Conference on Mining Software Repositories, Austin,

Texas, MSR ’16, pp. 286–290. ACM, New York, NY, USA.

M. Eaddy; A. V. Aho; G. Antoniol; and Y. G. Guéhéneuc (2008) Cerberus: Tracing require-

ments to source code using information retrieval, dynamic analysis, and program analysis.

In Program Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference

on, pp. 53–62.

T. Eisenbarth; R. Koschke; and D. Simon (2001) Aiding program comprehension by static and

dynamic feature analysis. In Software Maintenance, 2001. Proceedings. IEEE International

Conference on, pp. 602–611.

A. D. Eisenberg and K. D. Volder (2005) Dynamic feature traces: finding features in unfa-

miliar code. In 21st IEEE International Conference on Software Maintenance (ICSM’05),

pp. 337–346.

L. H. Etzkorn; C. G. Davis; and L. L. Bowen (2001) The language of comments in computer

software: A sublanguage of english. Journal of Pragmatics, pp. 1731 – 1756.

M. Feilkas; D. Raţiu; and E. Jurgens (2009) The loss of architectural knowledge during system

evolution: An industrial case study. In Program Comprehension, 2009. ICPC ’09. IEEE

17th International Conference on, pp. 188–197.

Z. P. Fry; D. Shepherd; E. Hill; L. Pollock; and K. Vijay-Shanker (2008) Analysing source

code: looking for useful verb-direct object pairs in all the right places. IET Software, pp.

27–36.

M. Gethers; R. Oliveto; D. Poshyvanyk; and A. D. Lucia (2011) On integrating orthogonal

156

information retrieval methods to improve traceability recovery. In Software Maintenance

(ICSM), 2011 27th IEEE International Conference on, pp. 133–142.

T. R. Gruber (1993) A translation approach to portable ontology specifications. Knowledge

Acquisition, pp. 199 – 220.

S. Haiduc and A. Marcus (2008) On the use of domain terms in source code. In Program

Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference on, pp. 113–

122.

D. L. Hall and J. Llinas (1997) An introduction to multisensor data fusion. Proceedings of

the IEEE, pp. 6–23.

Y. Hayase; Y. Kashima; Y. Manabe; and K. Inoue (2011) Building domain specific dictionaries

of verb-object relation from source code. In Software Maintenance and Reengineering

(CSMR), 2011 15th European Conference on, pp. 93–100.

S. Hayashi; T. Yoshikawa; and M. Saeki (2010) Sentence-to-code traceability recovery with

domain ontologies. In 2010 Asia Pacific Software Engineering Conference, pp. 385–394.

E. Hill (2010) Integrating Natural Language and Program Structure Information to Improve

Software Search and Exploration. Ph.D. thesis, Newark, DE, USA. AAI3423409.

E. Hill; D. Binkley; D. Lawrie; L. Pollock; and K. Vijay-Shanker (2013) An empirical study

of identifier splitting techniques. Empirical Software Engineering, 19(6):1754–1780.

E. Hill; Z. P. Fry; H. Boyd; G. Sridhara; Y. Novikova; L. Pollock; and K. Vijay-Shanker (2008)

Amap: Automatically mining abbreviation expansions in programs to enhance software

maintenance tools. In Proceedings of the 2008 International Working Conference on Mining

Software Repositories, Leipzig, Germany, MSR ’08, pp. 79–88. ACM, New York, NY, USA.

E. Hill; L. Pollock; and K. Vijay-Shanker (2007) Exploring the neighborhood with dora to

expedite software maintenance. In Proceedings of the Twenty-second IEEE/ACM Interna-

tional Conference on Automated Software Engineering, Atlanta, Georgia, USA, ASE ’07,

pp. 14–23. ACM, New York, NY, USA.

E. Hill; L. Pollock; and K. Vijay-Shanker (2009) Automatically capturing source code con-

text of nl-queries for software maintenance and reuse. In 2009 IEEE 31st International

Conference on Software Engineering, pp. 232–242.

157

E. W. Høst and B. M. Østvold (2007) The programmer’s lexicon, volume i: The verbs. In Sev-

enth IEEE International Working Conference on Source Code Analysis and Manipulation

(SCAM 2007), pp. 193–202.

I. Hsi; C. Potts; and M. Moore (2003) Ontological excavation: unearthing the core concepts

of the application. In Reverse Engineering, 2003. WCRE 2003. Proceedings. 10th Working

Conference on, pp. 345–353.

B. Hunt; B. Turner; and K. McRitchie (2008) Software maintenance implications on cost and

schedule. In Aerospace Conference, 2008 IEEE, pp. 1–6.

K. Kevic and T. Fritz (2014) Automatic search term identification for change tasks. In

Companion Proceedings of the 36th International Conference on Software Engineering,

Hyderabad, India, ICSE Companion 2014, pp. 468–471. ACM, New York, NY, USA.

G. Kiczales; E. Hilsdale; J. Hugunin; M. Kersten; J. Palm; and W. G. Griswold (2001) Getting

started with ASPECTJ. Commun. ACM, 44(10):59–65.

P. S. Kochhar; Y. Tian; and D. Lo (2014) Potential biases in bug localization: Do they

matter? In Proceedings of the 29th ACM/IEEE International Conference on Automated

Software Engineering, Vasteras, Sweden, ASE ’14, pp. 803–814. ACM, New York, NY,

USA. URL http://doi.acm.org/10.1145/2642937.2642997.

P. S. Kochhar; X. Xia; D. Lo; and S. Li (2016) Practitioners’ expectations on automated

fault localization. In Proceedings of the 25th International Symposium on Software Testing

and Analysis, Saarbrücken, Germany, ISSTA 2016, pp. 165–176. ACM, New York,

NY, USA. URL http://doi.acm.org/10.1145/2931037.2931051.

A. Kuhn; S. Ducasse; and T. Girba (2007) Semantic clustering: Identifying topics in source

code. Information and Software Technology, pp. 230 – 243. 12th Working Conference on

Reverse Engineering.

D. Lawrie (2012) Discussion of appropriate evaluation metrics, 1st workshop on text ana-

lysis in software maintenance. https://dibt.unimol.it/TAinSM2012/slides/dawn.pdf.

Accessed: 2016-04.

D. Lawrie; D. Binkley; and C. Morrell (2010) Normalizing source code vocabulary. In 2010

17th Working Conference on Reverse Engineering, pp. 3–12.

158

http://doi.acm.org/10.1145/2642937.2642997
http://doi.acm.org/10.1145/2931037.2931051
https://dibt.unimol.it/TAinSM2012/slides/dawn.pdf

D. Lawrie; C. Morrell; H. Feild; and D. Binkley (2006) What’s in a name? a study of

identifiers. In 14th IEEE International Conference on Program Comprehension (ICPC’06),

pp. 3–12.

M. M. Lehman (1980) Programs, life cycles, and laws of software evolution. Proceedings of

the IEEE, pp. 1060–1076.

Z. Li; L. Tan; X. Wang; S. Lu; Y. Zhou; and C. Zhai (2006) Have things changed now?: An

empirical study of bug characteristics in modern open source software. In Proceedings of the

1st Workshop on Architectural and System Support for Improving Software Dependability,

San Jose, California, ASID ’06, pp. 25–33. ACM, New York, NY, USA.

D. Liu; A. Marcus; D. Poshyvanyk; and V. Rajlich (2007) Feature location via information

retrieval based filtering of a single scenario execution trace. In Proceedings of the Twenty-

second IEEE/ACM International Conference on Automated Software Engineering, Atlanta,

Georgia, USA, ASE ’07, pp. 234–243. ACM, New York, NY, USA.

Lucia; F. Thung; D. Lo; and L. Jiang (2012) Are faults localizable? In Proceedings of the

9th IEEE Working Conference on Mining Software Repositories, Zurich, Switzerland, MSR

’12, pp. 74–77. IEEE Press, Piscataway, NJ, USA.

C. D. Manning; P. Raghavan; and H. Schütze (2008) Introduction to Information Retrieval.

Cambridge University Press, New York, NY, USA.

A. Marcus and S. Haiduc (2013) Text Retrieval Approaches for Concept Location in Source

Code, pp. 126–158. Springer Berlin Heidelberg, Berlin, Heidelberg.

A. Marcus and J. I. Maletic (2003) Recovering documentation-to-source-code traceability

links using latent semantic indexing. In Proceedings of the 25th International Conference on

Software Engineering, Portland, Oregon, ICSE ’03, pp. 125–135. IEEE Computer Society,

Washington, DC, USA.

A. Marcus; V. Rajlich; J. Buchta; M. Petrenko; and A. Sergeyev (2005) Static techniques

for concept location in object-oriented code. In 13th International Workshop on Program

Comprehension (IWPC’05), pp. 33–42.

A. Marcus; A. Sergeyev; V. Rajlich; and J. I. Maletic (2004) An information retrieval ap-

159

proach to concept location in source code. In Reverse Engineering, 2004. Proceedings. 11th

Working Conference on, pp. 214–223.

R. C. Martin (2008) Clean Code: A Handbook of Agile Software Craftsmanship. Prentice

Hall, 1st edition.

G. A. Miller (1995) Wordnet: A lexical database for english. Commun. ACM, pp. 39–41.

L. Moreno; W. Bandara; S. Haiduc; and A. Marcus (2013) On the relationship between the

vocabulary of bug reports and source code. In Software Maintenance (ICSM), 2013 29th

IEEE International Conference on, pp. 452–455.

L. Moreno; J. J. Treadway; A. Marcus; and W. Shen (2014) On the use of stack traces

to improve text retrieval-based bug localization. In Software Maintenance and Evolution

(ICSME), 2014 IEEE International Conference on, pp. 151–160.

B. D. Nichols (2010) Augmented bug localization using past bug information. In Proceedings

of the 48th Annual Southeast Regional Conference, Oxford, Mississippi, ACM SE ’10, pp.

61:1–61:6. ACM, New York, NY, USA.

C. Nunes; A. Garcia; E. Figueiredo; and C. Lucena (2011) Revealing mistakes in concern

mapping tasks: An experimental evaluation. In Software Maintenance and Reengineering

(CSMR), 2011 15th European Conference on, pp. 101–110.

Oracle (1999) Code conventions for the java programming language, section 5 com-

ments. http://www.oracle.com/technetwork/java/codeconventions-141999.html.

Accessed: 2016-07.

Y. Padioleau; L. Tan; and Y. Zhou (2009) Listening to programmers taxonomies and char-

acteristics of comments in operating system code. In Proceedings of the 31st International

Conference on Software Engineering, ICSE ’09, pp. 331–341. IEEE Computer Society,

Washington, DC, USA.

D. L. Parnas (1972) On the criteria to be used in decomposing systems into modules. Com-

mun. ACM, pp. 1053–1058.

C. Parnin and A. Orso (2011) Are automated debugging techniques actually helping pro-

grammers? In Proceedings of the 2011 International Symposium on Software Testing and

160

http://www.oracle.com/technetwork/java/codeconventions-141999.html

Analysis, Toronto, Ontario, Canada, ISSTA ’11, pp. 199–209. ACM, New York, NY, USA.

URL http://doi.acm.org/10.1145/2001420.2001445.

M. Petrenko and V. Rajlich (2013) Concept location using program dependencies and in-

formation retrieval (depir). Information and Software Technology, pp. 651 – 659.

M. Petrenko; V. Rajlich; and R. Vanciu (2008) Partial domain comprehension in software

evolution and maintenance. In Program Comprehension, 2008. ICPC 2008. The 16th IEEE

International Conference on, pp. 13–22.

T. M. Pigoski (1996) Practical Software Maintenance: Best Practices for Managing Your

Software Investment. Wiley Publishing, 1st edition.

M. F. Porter (1997) Readings in information retrieval. chapter An Algorithm for Su�x

Stripping, pp. 313–316. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

D. Poshyvanyk; Y. G. Guéhéneuc; A. Marcus; G. Antoniol; and V. Rajlich (2007) Feature loc-

ation using probabilistic ranking of methods based on execution scenarios and information

retrieval. IEEE Transactions on Software Engineering, pp. 420–432.

D. Poshyvanyk and A. Marcus (2007) Combining formal concept analysis with information

retrieval for concept location in source code. In 15th IEEE International Conference on

Program Comprehension (ICPC ’07), pp. 37–48.

D. Raţiu; M. Feilkas; and J. Jurjens (2008) Extracting domain ontologies from domain spe-

cific apis. In Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European

Conference on, pp. 203–212.

S. Rahman; K. K. Ganguly; and K. Sakib (2015) An improved bug localization using struc-

tured information retrieval and version history. In 2015 18th International Conference on

Computer and Information Technology (ICCIT), pp. 190–195.

V. Rajlich and N. Wilde (2002) The role of concepts in program comprehension. In Program

Comprehension, 2002. Proceedings. 10th International Workshop on, pp. 271–278.

S. Rao and A. Kak (2011) Retrieval from software libraries for bug localization: A comparative

study of generic and composite text models. In Proceedings of the 8th Working Conference

on Mining Software Repositories, Waikiki, Honolulu, HI, USA, MSR ’11, pp. 43–52. ACM,

New York, NY, USA.

161

http://doi.acm.org/10.1145/2001420.2001445

S. Ratanotayanon; H. J. Choi; and S. E. Sim (2010) My repository runneth over: An empirical

study on diversifying data sources to improve feature search. In Program Comprehension

(ICPC), 2010 IEEE 18th International Conference on, pp. 206–215.

M. Revelle (2009) Supporting feature-level software maintenance. In 2009 16th Working

Conference on Reverse Engineering, pp. 287–290.

M. Revelle; B. Dit; and D. Poshyvanyk (2010) Using data fusion and web mining to sup-

port feature location in software. In Program Comprehension (ICPC), 2010 IEEE 18th

International Conference on, pp. 14–23.

M. Revelle and D. Poshyvanyk (2009) An exploratory study on assessing feature location tech-

niques. In Program Comprehension, 2009. ICPC ’09. IEEE 17th International Conference

on, pp. 218–222.

M. P. Robillard (2005) Automatic generation of suggestions for program investigation. In

Proceedings of the 10th European Software Engineering Conference Held Jointly with 13th

ACM SIGSOFT International Symposium on Foundations of Software Engineering, Lisbon,

Portugal, ESEC/FSE-13, pp. 11–20. ACM, New York, NY, USA.

M. R. Robillard and G. C. Murphy (2002) Concern graphs: finding and describing concerns

using structural program dependencies. In Software Engineering, 2002. ICSE 2002. Pro-

ceedings of the 24rd International Conference on, pp. 406–416.

R. K. Saha; M. Lease; S. Khurshid; and D. E. Perry (2013) Improving bug localization

using structured information retrieval. In Automated Software Engineering (ASE), 2013

IEEE/ACM 28th International Conference on, pp. 345–355.

G. Salton and C. Buckley (1988) Term-weighting approaches in automatic text retrieval.

Information Processing and Management, pp. 513 – 523.

T. Savage; M. Revelle; and D. Poshyvanyk (2010) Flat3: Feature location and textual tracing

tool. In Proceedings of the 32Nd ACM/IEEE International Conference on Software En-

gineering - Volume 2, Cape Town, South Africa, ICSE ’10, pp. 255–258. ACM, New York,

NY, USA.

A. Schröter; N. Bettenburg; and R. Premraj (2010) Do stack traces help developers fix bugs?

162

In 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), pp.

118–121.

P. Shao and R. K. Smith (2009) Feature location by ir modules and call graph. In Proceedings

of the 47th Annual Southeast Regional Conference, Clemson, South Carolina, ACM-SE 47,

pp. 70:1–70:4. ACM, New York, NY, USA.

D. Shepherd; Z. P. Fry; E. Hill; L. Pollock; and K. Vijay-Shanker (2007) Using natural lan-

guage program analysis to locate and understand action-oriented concerns. In Proceedings

of the 6th International Conference on Aspect-oriented Software Development, Vancouver,

British Columbia, Canada, AOSD ’07, pp. 212–224. ACM, New York, NY, USA.

D. Shepherd; L. Pollock; and T. Tourwé (2005) Using language clues to discover crosscutting

concerns. In Proceedings of the 2005 Workshop on Modeling and Analysis of Concerns in

Software, St. Louis, Missouri, MACS ’05, pp. 1–6. ACM, New York, NY, USA.

D. Shepherd; L. Pollock; and K. Vijay-Shanker (2006) Towards supporting on-demand virtual

remodularization using program graphs. In Proceedings of the 5th International Conference

on Aspect-oriented Software Development, Bonn, Germany, AOSD ’06, pp. 3–14. ACM,

New York, NY, USA.

J. Sillito; G. C. Murphy; and K. D. Volder (2008) Asking and answering questions during a

programming change task. IEEE Transactions on Software Engineering, pp. 434–451.

B. Sisman and A. C. Kak (2012) Incorporating version histories in information retrieval

based bug localization. In Mining Software Repositories (MSR), 2012 9th IEEE Working

Conference on, pp. 50–59.

G. Sridhara; E. Hill; L. Pollock; and K. Vijay-Shanker (2008) Identifying word relations in

software: A comparative study of semantic similarity tools. In Program Comprehension,

2008. ICPC 2008. The 16th IEEE International Conference on, pp. 123–132.

J. Starke; C. Luce; and J. Sillito (2009) Searching and skimming: An exploratory study. In

Software Maintenance, 2009. ICSM 2009. IEEE International Conference on, pp. 157–166.

Y. Uneno; O. Mizuno; and E. H. Choi (2016) Using a distributed representation of words in

localizing relevant files for bug reports. In 2016 IEEE International Conference on Software

Quality, Reliability and Security (QRS), pp. 183–190.

163

E. M. Voorhees (2001) The trec question answering track. Nat. Lang. Eng., pp. 361–378.

Q. Wang; C. Parnin; and A. Orso (2015) Evaluating the usefulness of ir-based fault localiza-

tion techniques. In Proceedings of the 2015 International Symposium on Software Testing

and Analysis, Baltimore, MD, USA, ISSTA 2015, pp. 1–11. ACM, New York, NY, USA.

URL http://doi.acm.org/10.1145/2771783.2771797.

S. Wang and D. Lo (2014) Version history, similar report, and structure: Putting them

together for improved bug localization. In Proceedings of the 22Nd International Conference

on Program Comprehension, Hyderabad, India, ICPC 2014, pp. 53–63. ACM, New York,

NY, USA.

S. Wang; D. Lo; Z. Xing; and L. Jiang (2011) Concern localization using information re-

trieval: An empirical study on linux kernel. In 2011 18th Working Conference on Reverse

Engineering, pp. 92–96.

M. Wermelinger; Y. Yu; and A. Lozano (2008) Design principles in architectural evolution:

A case study. In Software Maintenance, 2008. ICSM 2008. IEEE International Conference

on, pp. 396–405.

Wessa (2016) Free statistics software, o�ce for research development and education, version

1.1.23-r7. http://www.wessa.net/. Accessed: 2016-03.

N. Wilde and M. C. Scully (1995) Software reconnaissance: Mapping program features to

code. Journal of Software Maintenance: Research and Practice, pp. 49–62.

C. P. Wong; Y. Xiong; H. Zhang; D. Hao; L. Zhang; and H. Mei (2014) Boosting bug-

report-oriented fault localization with segmentation and stack-trace analysis. In Software

Maintenance and Evolution (ICSME), 2014 IEEE International Conference on, pp. 181–

190.

X. Xia; L. Bao; D. Lo; and S. Li (2016) Automated debugging considered harmful - con-

sidered harmful: A user study revisiting the usefulness of spectra-based fault localization

techniques with professionals using real bugs from large systems. In 2016 IEEE Interna-

tional Conference on Software Maintenance and Evolution (ICSME), pp. 267–278.

X. Ye; R. Bunescu; and C. Liu (2014) Learning to rank relevant files for bug reports using

domain knowledge. In Proceedings of the 22Nd ACM SIGSOFT International Symposium

164

http://doi.acm.org/10.1145/2771783.2771797
http://www.wessa.net/

on Foundations of Software Engineering, Hong Kong, China, FSE 2014, pp. 689–699. ACM,

New York, NY, USA.

K. C. Youm; J. Ahn; J. Kim; and E. Lee (2015) Bug localization based on code change

histories and bug reports. In 2015 Asia-Pacific Software Engineering Conference (APSEC),

pp. 190–197.

J. Zhou; H. Zhang; and D. Lo (2012a) Where should the bugs be fixed? - more accurate

information retrieval-based bug localization based on bug reports. In Proceedings of the

34th International Conference on Software Engineering, Zurich, Switzerland, ICSE ’12, pp.

14–24. IEEE Press, Piscataway, NJ, USA.

K. Zhou; K. M. Varadarajan; M. Zillich; and M. Vincze (2012b) Robust multiple model

estimation with jensen-shannon divergence. In Pattern Recognition (ICPR), 2012 21st

International Conference on, pp. 2136–2139.

T. Zimmermann; R. Premraj; N. Bettenburg; S. Just; A. Schröter; and C. Weiss (2010) What

makes a good bug report? IEEE Transactions on Software Engineering, 36(5):618–643.

165

166

Appendix A

Glossary

This Appendix describes the terminology used throughout my thesis within the context of

my research.

Bug localisation is the process of identifying where to make changes in response to a

bug report (Moreno et al., 2014).

Bug report describes an unexpected and unintended erroneous behaviour, known as bugs

of a software system.

Concept is a phrase or a single word that describes the unit of human knowledge

(thought) existing within the domain of the software application (Rajlich and Wilde, 2002),

for example, in a financial domain dealing with risk the phrase standalone risk describes a

type of risk concept.

Concept location is the task of locating the program identifiers implementing the con-

cepts at hand prior to performing software maintenance.

Contextual model is the repository, i.e. database, containing the vocabulary (terms)

extracted from an application’s project artefacts, i.e. source code files, bug reports, concepts

and user guide. It also provides referential information within the context of each artefact

to determine the origin of the terms, for example, the source code file names from where the

vocabulary was extracted.

Formal Concept Analysis (FCA) is a two dimensional model for grouping concepts.

It consists of extension, covering the entire objects (i.e. program elements) belonging to a

concept, and intension, covering all the at- tributes that are shared by all the objects being

considered.

Free/Libre and open source software (FLOSS) refers to software developed through

167

public collaboration and whose source code is publicly available for use and distribution

without any charge.

Latent Semantic Indexing (LSI) is an information retrieval model. LSI organises

the occurrences of project artefact terms in its repository of term by document matrix and

applies the Single Value Decomposition (SVD) principle.

Lexical Chaining (LC) is technique to group semantically related terms in a document

by computing the semantic distance (i.e. strength of relationship) between two terms.

Mean Average Precision (MAP) provides a synthesised way to measure the quality

of retrieved files, when there are more than one related file retrieved for the bug report. The

average precision for a bug report is the mean of the precision values obtained for all a↵ected

files listed in the result set. It is calculated as the sum of the average precision value for each

bug report divided by the number of bug reports for a given project.

Mean Reciprocal Rank (MRR) measures the overall e↵ectiveness of retrieval for a

set of bug reports. The reciprocal rank for a query is the inverse rank of the first relevant

document found. The mean reciprocal rank is the average of the reciprocal ranks of results

of a set of queries.

Object Oriented Programming (OOP) is a paradigm for programming model.

Open Source Software(OSS) refers to software whose source code is publicly available

for use and distribution.

Program identifiers (aka. identifier names) are the named source code entities that

describe the classes, methods and fields of an OOP software application. In other words they

are the given names of the program elements.

Project artefact is a result of a software application development, for example, the

textual documentation of the application. In our research we use the project artefacts: (1)

the source code, (2) the user guide and (3) the bug report documents describing the im-

plementation of new or the modification of an existing business requirement in the software

application.

Program elements are the programming language specific source code entities, like class

files, methods and fields used in an OOP language like Java.

Relational Topic Modelling (RTM) is a model of documents with collection of words

and the relations between them

Revised Vector Space Model (rVSM) is an information retrieval model that scores

168

each source code file against the given bug report introduced by Zhou et al. (2012a). In

addition, each file gets a similarity score (SimiScore) based on whether the file was a↵ected

by one or more closed bug reports similar to the given bug report.

Scenario Based Probabilistic (SBP) ranking allows the tracing of execution scenarios

and lists of program elements (i.e. source code classes and methods) ranked according to their

similarity for a given concept when it is executed during a particular scenario.

Single Value Decomposition (SVD) is a technique used to reduce noise in a repository

of term by document matrix while keeping the relative distance between artefacts intact.

Structural relations are inheritance relationships (i.e. class hierarchies) or caller-callee

relations between the program elements. In the caller-callee relation, the caller is the method

calling the current method and the callee is the method being called from the current method.

Term frequency (tf) and inverse document frequency (idf) (TF.IDF) is used

to score the weighting of a term in a given collection of terms. The tf is the number of times

a term occurs in a document and the idf is the ratio between the total numbers of documents

over the number of documents containing the term. The idf is used to measure if a term

occurs more or less across a number of documents .

Vector Space Model (VSM) is an information retrieval model where vectors represent

queries (bug reports in the case of bug localisation) and documents source code files. Each

element of the vector corresponds to a word or term extracted from the query’s or document’s

vocabulary. The relevance of a document to a query can be directly evaluated by calculating

the similarity of their word vectors.

169

Appendix B

Top-5 Concepts

Tables B.1 and B.2 list the top-5 concepts occuring across all artefacts of the projects.

Table B.1: Top-5 concepts occuring across the project artefacts
Project Search type Bug reports (BR) User guide (UG) Source code (SRC)

AspectJ

normal

aspect aspect type
pointcut pointcut point
type point aspect
advice join source
object crosscutting target

stemmed

aspect (aspect) aspect (aspect) type (type)
pointcut (pointcut) point (point) aspect (aspect)
type (type) pointcut (pointcut) point (point)
weav (weaving) crosscut (crosscutting) sourc (source)
return (returning) join (join) target (target)

Eclipse

normal

debug file page
file cvs text
line workbench file
build editor source
ant ant label

stemmed

file (file) file (file) page (page)
view (views) view (views) file (file)
debug (debug, debugging) project (projects) text (text)
line (line) cv (cvs) line (line)
build (build) editor (editor,editors) label (label)

SWT

normal

display widget text
text display menu
widget help window
tree layout list
menu label file

stemmed

displai (display) widget (widget) text (text)
widget (widget) displai (display) menu (menu)
text (text) layout (layout) window (window)
window (window) window (window) list (list)
menu (menu) help (help) file (file)

170

Table B.2: Top-5 concepts occuring across the project artefacts - cont.
Project Search type Bug reports (BR) User guide (UG) Source code (SRC)

ZXing

normal

code scanner data
upc code size
ean source matrix
fixed core width
size reader start

stemmed

code (code) code (code) decod (decoder)
fix (fixed) scanner (scanner) data (data)
decod (decoder) sourc (source) size (size)
upc (upc) start (start) width (width)
ean (ean) reader (reader) matrix (matrix)

Tomcat

normal

http web context
request application value
servlet context request
session server session
jsp value servlet

stemmed

http (http, https) applic (application) valu (value)
request (request) web (web) context (context)
servlet (servlet) context (context) request (request)
session (session) server (server) session (session)
jsp (jsp) valu (value) listen (listener)

ArgoUML

normal

diagram diagram action
uml use state
source class uml
class case class
activity uml diagram

stemmed

diagram (diagram) diagram (diagram) action (action)
uml (uml) us (use) state (state)
class (class) class (class) uml (uml)
sourc (source) case (case) class (class)
us (use) associ (association) gener (generalization)

Pillar1

normal

time risk risk
current business base
capital value value
aggregated line time
risk group index

stemmed

time (time) risk (risk) risk (risk)
current (current) busi (business) base (base)
aggreg (aggregated) line (line) valu (value)
capit (capital) valu (value) time (time)
label (label) calcul (calculation) index (index)

Pillar2

normal

market market index
value calculation market
calculation scenario value
risk investment risk
asset index scenario

stemmed

valu (value) calcul (calculation) index (index)
market (market) market (market) valu (value)
calcul (calculation) valu (value) market (market)
risk (risk) scenario (scenario) risk (risk)
asset (asset) index (index) scenario (scenario)

171

Appendix C

Sample Bug Report Descriptions

Table C.1 shows sub-set of tersely described Pillar1 and Pillar2 bug reports. Note that

Pillar2 BR #2010 has incorrect spelling of the word greater as greather in the summary of

the original document.

Table C.1: Sub-set of bug report descriptions for Pillar1 and Pillar2
BR Description for Pillar1
1619 unrecoverable error for error parameter poisson.
1733 Wiring concept for two-phase components should be extended
2024 Handling IllegalAcceessException in Packets and Collectors.
2081 Check usage of enum classes
2093 Quota event limit not implemented.
2163 GIRAModel not compatible with current master branch
2200 NPE when changing result views
BR Description for Pillar2
2002 Roundup export data to an importable excel format.
2003 Pdlgd export data to an importable excel format.
2010 Allow volatility values greather than 1.
2063 New reallocation method ”Use Asset Diversified Risk”.
2068 Show in both sub systems Market and PD/LGD all calculation states
2074 Dialog to distribute lambda factors similar to other module.
2081 Show approx. group values and diversification e↵ects.

172

Appendix D

Search Pattern for Extracting Stack

Trace

The regular expression in Figure D.1 is used to search the application-only source files, i.e.

excluding third party and Java library files, in the stack trace.

at [ˆ java . | ˆsun .] ([packageName] ∗) . // exc lude java packages
([className] ∗) . ($ [innerClassName] ∗) ? . // cons ider any inner c l a s s
([methodName] ∗) (((([f i leName] ∗) . java) :
[lineNumber]) ∗ ? (Unknown Source)? (Native Method)?)

Figure D.1: Search pattern for stack trace

173

Appendix E

Domain Concepts

Tables E.1 through E.7 list, in two columns, all the domain concepts used.

Table E.1: Graphical User Interface (GUI) Domain Concepts
CONCEPTS - I CONCEPTS - II
Button Balloon help
Context menu Heads-up display in computing
Menu Heads-up display in video games
Pie menu Icon
Checkbox Infobar
Combo box Label
Cycle button Loading screen
Drop-down list Progress indicator
Grid view Progress bar
List box Splash screen
List builder Throbber
Radio button Sidebar
Scrollbar Status bar
Inspector window Palette window
Modal window Spinner
Layout manager Search box
Look and feel Text box
Mouseover Toast
Accordion Tooltip
Menu bar About box
Panel Alert dialog box
Ribbon Dialog box
Tab File dialog
Toolbar Widget toolkit
Window WIMP
Address bar Frame Fieldset
Breadcrumb Slider
Hyperlink Disclosure widget
Tree view —

174

Table E.2: Integrated Development Environment (IDE) Domain Concepts
CONCEPTS CONCEPTS
Workbench Java Views
Perspectives Java Editor
Editors Quick Fix and Assist
Views Templates
Toolbars Java Search
Markers Refactoring Support
Bookmarks Debugger
Label decorations Scrapbook
Ant & External tools Local Debugging
Team programming with CVS Remote Debugging
Accessibility features Breakpoints
Features String Externalization
Java Projects Extensions and Extension Points
Java Builder Feature
Java Perspectives Fragment
Application Frameworks Environment Configuration
Component Frameworks Peer Review Support
File Managers Collaboration Support
Text Editors Deployment Support
Execution Environments Role-Based Views
Design and Modeling Graphical User Interfaces
Documentation Generators Unit-Testing Frameworks
Test Management Static Code Analyzers
Plug-in JSP JSF Source Editing Tools
Product Web Page Editor
Update Site JSF Application Configuration
Rhino Debug JSF Tag Registry
JSDT Features JSF Component Tree
JSDT Known Limitations Java API for XML-Based Web Services
JSF Specification Command Line Interfaces
JSF Facets Application Programming Interfaces
JSF Libraries Compilation and Build
Component Templates Task Lists Application Templates

175

Table E.3: Bar Code (imaging/scanning) Domain Concepts
CONCEPTS CONCEPTS
Aspect Ratio Dot Size (Printer)
Background Dot Size (Scanner)
Bar Code Character EAN
Bar Code Density EAN International
Bearer Bars EAN Bar Code (European Article Number)
Bi-Directional Extended Code 39
Character Set Flat Bed Scanner
Check Character Guard Bars
Clear Area Light Pen
Code 39 Human Readable
Codabar Interleaved 2 of 5 code
Code 11 Inter-Character Space
Code 93 Keyboard Wedge Decoder
Color Scheme Ladder Code
Minimum Reflectivity Di↵erence Spectral Band
Mil Verifier
Stacked Codes Void
Start/Stop Characters Wand
TSR Wide to Narrow Ratio
Verification X Dimension
Slot Reader Print Contrast Signal (PCS)
Mis-Read Print Quality
Module Quiet Zone
Modulo Check Character(s) Resolution
Number System Character Self-Checking
OCR Serial Decoder
OCR-A Space
Opacity Zero Suppression
Picket Fence Code 2-Dimensional Symbology
Decoder Data Identifier
Demand Printer —

176

Table E.4: Servlet Container Domain Concepts
CONCEPTS CONCEPTS
Application event listener HTTP session
Bean HTTPS
Client J2EE
Cookie J2EE application
Context root J2EE web tier
Custom tag JAR
Deployment JavaBeans
Deployment descriptor JSF
Dispatcher JSTL
Document root JDBC
Filter JSP action
Front Controller JSP element
HTTP JSP expression
HTTP Monitor JSP page
HTTP response JSP scripting element
HTTP request JSP tag
Web module Web module group
Servlet mapping Value object
Session View Creation Helper
Tag View Mapper
Tag attribute WAR
TLD Web application
URI Web browser
JSP tag library scriptlet
JSP technology Server
listener Server plugin
model object Servlet
MIME Servlet container
Scope Servlet context
Scripting element Servlet event listener
Scripting variable Servlet filter
Web component Web server
Web context Web container
Web client XML

Table E.5: Aspect Oriented Programming (AOP) Domain Concepts
CONCEPTS CONCEPTS
Scattering join point
Tangling Advice
Crosscutting Pointcut
inter-type Introduction
Aspect Target object
Around Proxy
Weaving After
Before After-returning
After-throwing —

177

Table E.6: Basel-II Domain Concepts
CONCEPTS CONCEPTS
financial investment risk scenario volatility
investment market scenario scenario volatility rules
investment market risk scenario correlation
index volatility scenario correlation rules
index correlation value rules
correction asset stand alone (economic capital)
aggregated market value intra diversified (economic capital)
investment market asset inter diversified (economic capital)
investment market calculation legal entity
time attribute division
lambda factors sub group
base calculation business line
current calculation sender
volatility scenario receiver
portfolio granularity inter risk
business line scenario rule
business unit holding receiver
legal entity market value
legal entity receiver portfolio unit
economic capital scenario
financial investment pdlgd asset
financial investment roundup subgroup sender
public context label subgroup receiver
correlation scenario stand alone risk
value scenario intra diversified risk

Table E.7: Unified Modelling Language (UML) Domain Concepts
CONCEPTS CONCEPTS
Activity Diagram Hierarchical Statechart Diagram
Action Include Relationship
Actor Mealy Machine
Analysis Method (of a Class or Object)
Association Class Moore Machine
Association Object
Attribute (of a Class or Object) Pane
Responsibility Sequence Diagram
Scenario State
System Statechart Diagram Collaboration
Class Collaboration Diagram
Class Diagram Collaborator
System Sequence Diagram Vision Document
Transition Waterfall Design Process
UML Statechart Diagram
Use Case Stereotypes and Stereotyping
Use Case Diagram Critic
Use Case Specification Extend Relationship
Generalization Relationship —

178

	Contents
	List of Figures
	List of Tables
	Introduction
	Academic Motivation: Software Maintenance Challenges
	Industry Motivation: Industry Needs in Locating Bugs
	An Example of Information Retrieval Process
	Existing Work and The Limitations
	Research Questions
	Overview of the Chapters
	Summary

	Landscape of Code Retrieval
	Concept Assignment Problem
	Information Retrieval as Conceptual Framework
	Evaluation Metrics
	Vector Space Model and Latent Semantic Analysis
	Dynamic Analysis and Execution Scenarios
	Source Code Vocabulary
	Ontology Relations
	Call Relations

	Information Retrieval in Bug Localisation
	Evaluation Metrics
	Vocabulary of Bug Reports in Source Code Files
	Using Stack Trace and Structure
	Version History and Other Data Sources
	Combining Multiple Information Sources

	Current Tools
	User Studies
	Summary
	Conclusion

	Relating Domain Concepts and Artefact Vocabulary in Software
	Introduction
	Previous Approaches
	My Approach
	Data Processing
	Data Extraction Stage
	Persistence Stage
	Search Stage

	Ranking Files

	Evaluation of the results
	RQ1.1: How Does the Degree of Frequency Among the Common Concepts Correlate Across the Project Artefacts?
	Correlation of common concepts across artefacts

	RQ1.2: What is the Vocabulary Similarity Beyond the Domain Concepts, which may Contribute Towards Code Comprehension?
	RQ1.3: How can the Vocabulary be Leveraged When Searching for Concepts to Find the Relevant Files?
	Performance
	Contribution of VSM
	Searching for AspectJ and SWT in Eclipse

	Threats to validity
	Discussion
	Concluding Remarks

	Locating Bugs without Looking Back
	Introduction
	Existing Approaches
	Extended Approach
	Ranking Files Revisited
	Scoring with Key Positions (KP score)
	Scoring with Stack Traces (ST score)
	Rationale behind the scoring values

	Evaluation of the Results
	RQ2: Scoring with File Names in Bug Reports
	Scoring with Words In Key Positions (KP score)
	Scoring with Stack Trace Information (ST score)
	KP and ST Score improvement when Searching with Concepts Only vs all Bug Report Vocabulary
	Variations of Score Values
	Overall Results
	Performance

	RQ2.1: Scoring without Similar Bugs
	RQ2.2: VSM’s Contribution

	Discussion
	Threats to Validity

	Concluding Remarks

	User studies
	Background
	Study Design
	Results
	Pre-session Interview Findings
	Post-session Findings

	Evaluation of the Results
	Threats to Validity

	Concluding Remarks

	Conclusion and Future Directions
	How the Research Problem is Addressed
	Relating Domain Concepts and Vocabulary
	Locating Bugs Without Looking Back
	User Studies
	Validity of My Hypothesis

	Contributions
	Recommendations for Practitioners
	Suggestions for Future Research

	A Final Rounding Off

	Bibliography
	Glossary
	Top-5 Concepts
	Sample Bug Report Descriptions
	Search Pattern for Extracting Stack Trace
	Domain Concepts

