9 research outputs found

    A Semi-Supervised Self-Organizing Map with Adaptive Local Thresholds

    Full text link
    In the recent years, there is a growing interest in semi-supervised learning, since, in many learning tasks, there is a plentiful supply of unlabeled data, but insufficient labeled ones. Hence, Semi-Supervised learning models can benefit from both types of data to improve the obtained performance. Also, it is important to develop methods that are easy to parameterize in a way that is robust to the different characteristics of the data at hand. This article presents a new method based on Self-Organizing Map (SOM) for clustering and classification, called Adaptive Local Thresholds Semi-Supervised Self-Organizing Map (ALTSS-SOM). It can dynamically switch between two forms of learning at training time, according to the availability of labels, as in previous models, and can automatically adjust itself to the local variance observed in each data cluster. The results show that the ALTSS-SOM surpass the performance of other semi-supervised methods in terms of classification, and other pure clustering methods when there are no labels available, being also less sensitive than previous methods to the parameters values

    Rejection and online learning with prototype-based classifiers in adaptive metrical spaces

    Get PDF
    Fischer L. Rejection and online learning with prototype-based classifiers in adaptive metrical spaces. Bielefeld: Universität Bielefeld; 2016.The rising amount of digital data, which is available in almost every domain, causes the need for intelligent, automated data processing. Classification models constitute particularly popular techniques from the machine learning domain with applications ranging from fraud detection up to advanced image classification tasks. Within this thesis, we will focus on so-called prototype-based classifiers as one prominent family of classifiers, since they offer a simple classification scheme, interpretability of the model in terms of prototypes, and good generalisation performance. We will face a few crucial questions which arise whenever such classifiers are used in real-life scenarios which require robustness and reliability of classification and the ability to deal with complex and possibly streaming data sets. Particularly, we will address the following problems: - Deterministic prototype-based classifiers deliver a class label, but no confidence of the classification. The latter is particularly relevant whenever the costs of an error are higher than the costs to reject an example, e.g. in a safety critical system. We investigate ways to enhance prototype-based classifiers by a certainty measure which can efficiently be computed based on the given classifier only and which can be used to reject an unclear classification. - For an efficient rejection, the choice of a suitable threshold is crucial. We investigate in which situations the performance of local rejection can surpass the choice of only a global one, and we propose efficient schemes how to optimally compute local thresholds on a given training set. - For complex data and lifelong learning, the required classifier complexity can be unknown a priori. We propose an efficient, incremental scheme which adjusts the model complexity of a prototype-based classifier based on the certainty of the classification. Thereby, we put particular emphasis on the question how to adjust prototype locations and metric parameters, and how to insert and/or delete prototypes in an efficient way. - As an alternative to the previous solution, we investigate a hybrid architecture which combines an offline classifier with an online classifier based on their certainty values, thus directly addressing the stability/plasticity dilemma. While this is straightforward for classical prototype-based schemes, it poses some challenges as soon as metric learning is integrated into the scheme due to the different inherent data representations. - Finally, we investigate the performance of the proposed hybrid prototype-based classifier within a realistic visual road-terrain-detection scenario

    Forschungsbericht / Hochschule Mittweida

    Get PDF

    Über lernende optische Inspektion am Beispiel der Schüttgutsortierung

    Get PDF
    Die automatische optische Inspektion spielt als zerstörungsfreie Analysemethode in modernen industriellen Fertigungsprozessen eine wichtige Rolle. Typische, kommerziell eingesetzte automatische Inspektionssysteme sind dabei speziell an die jeweilige Aufgabenstellung angepasst und sind sehr aufwendig in der Entwicklung und Inbetriebnahme. Außerdem kann mangelndes Systemwissen der Anwender die Inspektionsleistung im industriellen Einsatz verschlechtern. Maschinelle Lernverfahren bieten eine Alternative: Die Anwender stellen lediglich eine Stichprobe bereit und das System konfiguriert sich von selbst. Ebenso können diese Verfahren versteckte Zusammenhänge in den Daten aufdecken und so den Entwurf von Inspektionssystemen unterstützen. Diese Arbeit beschäftigt sich mit geeigneten lernenden Verfahren für die optische Inspektion. Die als Beispiel dienende Schüttgutsortierung setzt dabei die Rahmenbedingungen: Die Aufnahmebedingungen sind kontrolliert und die Objekterscheinung einfach. Gleichzeitig zeigen die Objekte mitunter nur wenige diskriminative Merkmale. Die Lernstichproben sind klein, unbalanciert und oft unvollständig in Bezug auf die möglichen Defektklassen. Zusätzlich ist die verfügbare Rechenzeit stark begrenzt. Unter Berücksichtigung dieser Besonderheiten werden in der vorliegenden Arbeit lernende Methoden für die Mustererkennungs-Schritte Bilderfassung, Merkmalsextraktion und Klassifikation entwickelt. Die Auslegung der Bilderfassung wird durch die automatische Selektion optischer Filter zur Hervorhebung diskriminativer Merkmale unterstützt. Anders als vergleichbare Methoden erlaubt die hier beschriebenen Methode die Selektion optische Filter mit beliebig komplizierten Transmissionskurven. Da relevante Merkmale die Grundvoraussetzung für eine erfolgreiche Klassifikation sind, nimmt die Merkmalsextraktion einen großen Teil der Arbeit ein. Solche Merkmale können beispielsweise aus einer Menge an Standardmerkmalen identifiziert werden. In der Schüttgutsortierung ist dabei neben der Relevanz aber auch der Rechenaufwand der Merkmalsextraktion von Bedeutung. In dieser Arbeit wird daher ein Merkmalsselektionsverfahren beschrieben, welches diesen Aufwand mit einbezieht. Daneben werden auch Verfahren untersucht, mit denen sich Merkmale mit Hilfe einer Lernstichprobe an ein gegebenes Sortierproblem anpassen lassen. Im Rahmen dieser Arbeit werden dazu zwei Methoden zum Lernen von Formmerkmalen bzw. von Farb- und Texturmerkmalen beschrieben. Mit beiden Verfahren werden einfache, schnell berechenbare, aber wenig diskriminative Merkmale zu hochdiskriminativen Deskriptoren kombiniert. Das Verfahren zum Lernen der Farb- und Texturdeskriptoren erlaubt außerdem die Detektion und Rückweisung unbekannter Objekte. Diese Rückweisungsoption wird im Sinne statistischer Tests für Anwender leicht verständlich parametriert. Die Detektion unbekannter Objekte ist auch das Ziel der Einklassenklassifikation. Hierfür wird in dieser Arbeit ein Verfahren beschrieben, das den Klassifikator anhand einer Lernstichprobe mit lediglich Beispielen der Positivklasse festlegt. Die Struktur dieses Klassifikators wird außerdem ausgenutzt, um sicher unbekannte Objekte um Größenordnungen schneller zurückzuweisen als dies mit alternativen Verfahren möglich ist. Alle vorgestellten Verfahren werden anhand von synthetischen Datensätzen und Datensätzen aus der Lebensmittelinspektion, Mineralsortierung und Inspektion technischer Gegenstände quantitativ evaluiert. In einer Gegenüberstellung mit vergleichbaren Methoden aus der Literatur werden die Stärken und Einschränkungen der Methoden herausgestellt. Hierbei zeigten sich alle vorgestellten Verfahren gut für die Schüttgutsortierung geeignet. Die vorgestellten Verfahren ergänzen sich außerdem gegenseitig. Sie können genutzt werden, um ein komplettes Sortiersystem auszulegen oder um einzeln als Komponenten in einem bestehenden System eingesetzt zu werden. Die Methoden sind dabei nicht auf einen bestimmten Anwendungsfall zugeschnitten, sondern für eine großen Palette an Produkten einsetzbar. Somit liefert diese Arbeit einen Beitrag zur Anwendung maschineller Lernverfahren in optischen Inspektionssystemen

    Rejection strategies for learning vector quantization

    No full text
    Fischer L, Hammer B, Wersing H. Rejection strategies for learning vector quantization. In: Verleysen M, ed. ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com; 2014: 41-46

    Local Rejection Strategies for Learning Vector Quantization

    No full text
    Fischer L, Hammer B, Wersing H. Local Rejection Strategies for Learning Vector Quantization. In: Wermter S, Weber C, Duch W, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2014. Lecture Notes in Computer Science. Vol 8681. Cham: Springer International Publishing; 2014: 563-570

    Local Rejection Strategies for Learning Vector Quantization

    No full text

    Rejection Strategies for Learning Vector Quantization – A Comparison of Probabilistic and Deterministic Approaches

    No full text
    Fischer L, Nebel D, Villmann T, Hammer B, Wersing H. Rejection Strategies for Learning Vector Quantization – A Comparison of Probabilistic and Deterministic Approaches. In: Villmann T, Schleif F-M, Kaden M, Lange M, eds. Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing. Vol 295. Cham: Springer International Publishing; 2014: 109-118
    corecore