536 research outputs found

    Event-triggered robust control for multi-player nonzero-sum games with input constraints and mismatched uncertainties

    Get PDF
    In this article, an event-triggered robust control (ETRC) method is investigated for multi-player nonzero-sum games of continuous-time input constrained nonlinear systems with mismatched uncertainties. By constructing an auxiliary system and designing an appropriate value function, the robust control problem of input constrained nonlinear systems is transformed into an optimal regulation problem. Then, a critic neural network (NN) is adopted to approximate the value function of each player for solving the event-triggered coupled Hamilton-Jacobi equation and obtaining control laws. Based on a designed event-triggering condition, control laws are updated when events occur only. Thus, both computational burden and communication bandwidth are reduced. We prove that the weight approximation errors of critic NNs and the closed-loop uncertain multi-player system states are all uniformly ultimately bounded thanks to the Lyapunov's direct method. Finally, two examples are provided to demonstrate the effectiveness of the developed ETRC method

    Output-feedback online optimal control for a class of nonlinear systems

    Full text link
    In this paper an output-feedback model-based reinforcement learning (MBRL) method for a class of second-order nonlinear systems is developed. The control technique uses exact model knowledge and integrates a dynamic state estimator within the model-based reinforcement learning framework to achieve output-feedback MBRL. Simulation results demonstrate the efficacy of the developed method

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Cooperative Strategies for Management of Power Quality Problems in Voltage-Source Converter-based Microgrids

    Get PDF
    The development of cooperative control strategies for microgrids has become an area of increasing research interest in recent years, often a result of advances in other areas of control theory such as multi-agent systems and enabled by emerging wireless communications technology, machine learning techniques, and power electronics. While some possible applications of the cooperative control theory to microgrids have been described in the research literature, a comprehensive survey of this approach with respect to its limitations and wide-ranging potential applications has not yet been provided. In this regard, an important area of research into microgrids is developing intelligent cooperative operating strategies within and between microgrids which implement and allocate tasks at the local level, and do not rely on centralized command and control structures. Multi-agent techniques are one focus of this research, but have not been applied to the full range of power quality problems in microgrids. The ability for microgrid control systems to manage harmonics, unbalance, flicker, and black start capability are some examples of applications yet to be fully exploited. During islanded operation, the normal buffer against disturbances and power imbalances provided by the main grid coupling is removed, this together with the reduced inertia of the microgrid (MG), makes power quality (PQ) management a critical control function. This research will investigate new cooperative control techniques for solving power quality problems in voltage source converter (VSC)-based AC microgrids. A set of specific power quality problems have been selected for the application focus, based on a survey of relevant published literature, international standards, and electricity utility regulations. The control problems which will be addressed are voltage regulation, unbalance load sharing, and flicker mitigation. The thesis introduces novel approaches based on multi-agent consensus problems and differential games. It was decided to exclude the management of harmonics, which is a more challenging issue, and is the focus of future research. Rather than using model-based engineering design for optimization of controller parameters, the thesis describes a novel technique for controller synthesis using off-policy reinforcement learning. The thesis also addresses the topic of communication and control system co-design. In this regard, stability of secondary voltage control considering communication time-delays will be addressed, while a performance-oriented approach to rate allocation using a novel solution method is described based on convex optimization

    Optimal and Robust Neural Network Controllers for Proximal Spacecraft Maneuvers

    Get PDF
    Recent successes in machine learning research, buoyed by advances in computational power, have revitalized interest in neural networks and demonstrated their potential in solving complex controls problems. In this research, the reinforcement learning framework is combined with traditional direct shooting methods to generate optimal proximal spacecraft maneuvers. Open-loop and closed-loop feedback controllers, parameterized by multi-layer feed-forward artificial neural networks, are developed with evolutionary and gradient-based optimization algorithms. Utilizing Clohessy- Wiltshire relative motion dynamics, terminally constrained fixed-time, fuel-optimal trajectories are solved for intercept, rendezvous, and natural motion circumnavigation transfer maneuvers using three different thrust models: impulsive, finite, and continuous. In addition to optimality, the neurocontroller performance robustness to parametric uncertainty and bounded initial conditions is assessed. By bridging the gap between existing optimal and nonlinear control techniques, this research demonstrates that neurocontrollers offer a flexible and robust alternative approach to the solution of complex controls problems in the space domain and present a promising path forward to more capable, autonomous spacecraft
    • …
    corecore