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1. Introduction  

Games provide an ideal environment in which to study computational intelligence, offering 
a range of challenging and engaging problems. Game theory (Tijs, 2003) captures the 
behavior in which a player’s success in selecting strategies depends on the choices of other 
players. One goal of game theory techniques is to find (saddle point) equilibria, in which 
each player has an outcome that cannot be improved by unilaterally changing his strategy 
(e.g. Nash equilibrium). The H∞ control problem is a minimax optimization problem, and 
hence a zero-sum game where the controller is a minimizing player and the disturbance a 
maximizing one. Since the work of George Zames in the early 1980s, H∞ techniques have 
been used in control systems, for sensitivity reduction and disturbance rejection. This 
chapter is concerned with 2-player zero-sum games that are related to the H∞ control 
problem, as formulated by (Basar & Olsder, 1999; Basar & Bernard, 1995; Van Der Shaft, 
1992).   
Game theory and H-infinity solutions rely on solving the Hamilton-Jacobi-Isaacs (HJI) 

equations, which in the zero-sum linear quadratic case reduce to the generalized game 

algebraic Riccati equation (GARE).  In the nonlinear case the HJI equations are difficult or 

impossible to solve, and may not have global analytic solutions even in simple cases (e.g. 

scalar system, bilinear in input and state). Solution methods are generally offline and 

generate fixed control policies that are then implemented in online controllers in real time.   

In this chapter we provide methods for online gaming, that is for solution of 2-player zero-
sum infinite horizon games online, through learning the saddle point strategies in real-time.  
The dynamics may be nonlinear in continuous-time and are assumed known. A novel 
neural network adaptive control technique is given that is based on reinforcement learning 
techniques, whereby the control and disturbance policies are tuned online using data 
generated in real time along the system trajectories.  Also tuned is a ‘critic’ approximator 
structure whose function is to identify the value or outcome of the current control and 
disturbance policies.  Based on this value estimate, the policies are continuously updated.  
This is a sort of indirect adaptive control algorithm, yet, due to the direct form dependence 
of the policies on the learned value, it is affected online as direct (‘optimal’) adaptive control. 
Reinforcement learning (RL) is a class of methods used in machine learning to methodically 
modify the actions of an agent based on observed responses from its environment (Doya, 
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2001; Doya et al 2001; Howard, 1960; Barto et al 2004; Sutton & Barto, 1998). The RL methods 
have been developed starting from learning mechanisms observed in mammals. Every 
decision-making organism interacts with its environment and uses those interactions to 
improve its own actions in order to maximize the positive effect of its limited available 
resources; this in turn leads to better survival chances. RL is a means of learning optimal 
behaviors by observing the response from the environment to non-optimal control policies. In 
engineering terms, RL refers to the learning approach of an actor or agent which modifies its 
actions, or control policies, based on stimuli received in response to its interaction with its 
environment. This learning can be extended along two dimensions: i) nature of interaction 
(competitive or collaborative) and ii) the number of decision makers (single or multi agent). 
In view of the advantages offered by the RL methods, a recent objective of control systems 
researchers is to introduce and develop RL techniques which result in optimal feedback 
controllers for dynamical systems that can be described in terms of ordinary differential or 
difference equations. These involve a computational intelligence technique known as Policy 
Iteration (PI) (Howard, 1960; Sutton & Barto, 1998; D. Vrabie et al, 2009), which refers to a 
class of algorithms built as a two-step iteration: policy evaluation and policy improvement. PI 
provides effective means of learning solutions to HJ equations online. In control theoretic 
terms, the PI algorithm amounts to learning the solution to a nonlinear Lyapunov equation, 
and then updating the policy through minimizing a Hamiltonian function. PI has primarily 
been developed for discrete-time systems, and online implementation for control systems 
has been developed through approximation of the value function based on work by 
(Bertsekas & Tsitsiklis, 1996) and (Werbos, 1974; Werbos 1992). Recently, online policy 
iteration methods for continuous-time systems have been developed by (D. Vrabie et al, 
2009). 
In recent work (Vamvoudakis & Lewis, 2010), we developed an online approximate solution 
method based on PI for the (1-player) infinite horizon optimal control problem for 
continuous-time nonlinear systems with known dynamics. This is an optimal adaptive 
controller that uses two adaptive structures, one for the value (cost) function and one for the 
control policy.  The two structures are tuned simultaneously online to learn the solution of 
the HJ equation and the optimal policy.   
This chapter presents an optimal adaptive control method that converges online to the 
solution to the 2-player differential game (and hence the solution of the bounded L2 gain 
problem). Three approximator structures are used. Parameter update laws are given to tune 
critic, actor, and disturbance neural networks simultaneously online to converge to the 
solution to the HJ equation and the saddle point policies, while also guaranteeing closed-
loop stability.  Rigorous proofs of performance and convergence are given. 
The chapter is organized as follows. Section 2 reviews the formulation of the two-player 
zero-sum differential game. A policy iteration algorithm is given to solve the HJI equation 
by successive solutions on nonlinear Lyapunov-like equations. This essentially extends 
Kleinman’s algorithm to nonlinear zero-sum differential games. Section 3 develops the 
synchronous zero-sum game PI algorithm.  Care is needed to develop suitable approximator 
structures for online solution of zero-sum games. First a suitable ‘critic’ approximator 
structure is developed for the value function and its tuning method is pinned down. A 
persistence of excitation is needed to guarantee proper convergence. Next, suitable ‘actor’ 
approximator structures are developed for the control and disturbance policies.  Finally in 
section 4, the main result is presented in Theorem 2, which shows how to tune all three 
approximators simultaneously by using measurements along the system trajectories in real 
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time and Theorem 3, which proves exponential convergence to the critic neural network and 
convergence to the approximate Nash solution. Proofs using Lyapunov techniques 
guarantee convergence and closed-loop stability. Section 5 presents simulation examples 
that show the effectiveness of the online synchronous zero-sum game CT PI algorithm in 
learning the optimal value, control and disturbance for both linear and nonlinear systems.  
Interestingly, a simulation example shows that the two-player online game converges faster 
than an equivalent online 1-player (optimal control) problem when all the neural networks 
are tuned simultaneously in real time.  Therefore, it is indicated that one learns faster if one 
has an opponent and uses synchronous policy iteration techniques. 

2. Background: Two player differential game, and policy iteration 

In this section is presented a background review of 2-player zero-sum differential games.  
The objective is to lay a foundation for the structure needed in subsequent sections for 
online solution of these problems in real-time.  In this regard, the Policy Iteration Algorithm 
for 2-player games presented at the end of this section is key. 
Consider the nonlinear time-invariant affine in the input dynamical system given by 

 ( ) ( ) ( ) ( ) ( )x f x g x u x k x d x= + +$   (1) 

where state ( ) nx t ∈{ , control ( ) mu x ∈{ , and disturbance ( ) qd x ∈{ ,  Assume that ( )f x  is 

locally Lipschitz, ( ) ff x b x< , and (0) 0f =  so that 0x =  is an equilibrium point of the 

system. Furthermore take ( ), ( )g x k x as continuous. 
Define the performance index (Lewis & Syrmos, 1995) 

 ( )22

0 0

( (0), , ) ( ) ( , , )TJ x u d Q x u Ru d dt r x u d dtγ
∞ ∞

= + − ≡∫ ∫  (2) 

for ( ) 0Q x ≥ , 0TR R= > , 
22( , , ) ( ) Tr x u d Q x u Ru dγ= + − and * 0γ γ≥ ≥ , where *γ is the 

smallest γ for which the system is stabilized (Van  Der Shaft, 1992).  For feedback policies 

( )u x  and disturbance policies ( )d x , define the value or cost of the policies as  

 ( )22( ( ), , ) ( ) T

t

V x t u d Q x u Ru d dtγ
∞

= + −∫  (3) 

When the value is finite, a differential equivalent to this is the nonlinear Lyapunov-like 
equation 

 ( )0 ( , , ) ( ( ) ( ) ( ) ( ) ( )), (0) 0
T

r x u d V f x g x u x k x d x V= + ∇ + + =  (4)  

where nV V x R∇ = ∂ ∂ ∈  is the (transposed) gradient and the Hamiltonian is 

 ( )( , , , ) ( , , ) ( ( ) ( ) ( ) ( ) )
T

H x V u d r x u d V f x g x u x k x d∇ = + ∇ + +  (5) 

For feedback policies (Basar & Bernard, 1995), a solution ( ) 0V x ≥  to (4) is the value (5) for 
given feedback policy ( )u x and disturbance policy ( )d x . 
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2.1 Two player zero-sum differential games and Nash equilibrium 
Define the 2-player zero-sum differential game (Basar & Bernard, 1995; Basar & Olsder, 
1999) 

 ( )2* 2

0

( (0)) min max ( (0), , ) minmax ( ) T

u ud d
V x J x u d Q x u Ru d dtγ

∞
= = + −∫  (6) 

subject to the dynamical constraints (1). Thus, u is the minimizing player and d is the 
maximizing one. This 2-player optimal control problem has a unique solution if a game 
theoretic saddle point exists, i.e., if the Nash condition holds 

 min max ( (0), , ) maxmin ( (0), , )
u ud d

J x u d J x u d=  (7) 

To this game is associated the Hamilton-Jacobi-Isaacs (HJI) equation 

1
2

1 1
0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (0) 0

4 4

T T T T TQ x V x f x V x g x R g x V x V x kk V x V
γ

−= +∇ − ∇ ∇ + ∇ ∇ =  (8) 

Given a solution *( ) 0 : nV x ≥ →{ {  to the HJI (8), denote the associated control and 
disturbance as  

 * 1 *1
2

( )Tu R g x V−= − ∇  (9) 

 * *
2

1
( )

2

Td k x V
γ

= ∇  (10) 

and write 

* * 1
2

1 1
0 ( , , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4 4

T T T T TH x V u d Q x V x f x V x g x R g x V x V x kk V x
γ

−= ∇ = +∇ − ∇ ∇ + ∇ ∇  (11)  

Note that global solutions to the HJI (11) may not exist.  Moreover, if they do, they may not 
be smooth.  For a discussion on viscosity solutions to the HJI, see (Ball & Helton, 1996; Bardi 
& Capuzzo-Dolcetta, 1997; Basar & Bernard, 1995). The HJI equation (11) may have more 
than one nonnegative local smooth solution ( ) 0V x ≥ . A minimal nonnegative solution 

( ) 0aV x ≥  is one such that there exists no other nonnegative solution ( ) 0V x ≥  such that 
( ) ( ) 0aV x V x≥ ≥ . Linearize the system (1) about the origin to obtain the Generalized ARE 

(See Section IV.A).  Of the nonnegative solutions to the GARE, select the one corresponding 
to the stable invariant manifold of the Hamiltonian matrix. Then, the minimum nonnegative 
solution of the HJI is the one having this stabilizing GARE solution as its Hessian matrix 
evaluated at the origin (Van Der Shaft, 1992).  
It is shown in (Basar & Bernard, 1995) that if *( )V x is the minimum non-negative solution to 
the HJI (11) and (1) is locally detectable, then (9), (10) given in terms of *( )V x are in Nash 
equilibrium solution to the zero-sum game and *( )V x is its value. 

2.2 Policy iteration solution of the HJI equation 

The HJI equation (11) is usually intractable to solve directly.  One can solve the HJI iteratively 

using one of several algorithms that are built on iterative solutions of the Lyapunov equation 
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(4). Included are (Feng et al. 2009) which uses an inner loop with iterations on the control, and 

(Abu-Khalaf, Lewis, 2008; Abu-Khalaf et al. , 2006; Van Der Shaft, 1992) which uses an inner 

loop with iterations on the disturbance. These are in effect extensions of Kleinman’s algorithm 

(Kleinman, 1968) to nonlinear 2-player games. The complementarity of these algorithms is 

shown in (Vrabie, 2009).  Here, we shall use the latter algorithm (e.g. (Abu-Khalaf, Lewis, 2008; 

Abu-Khalaf et al., 2006; Van Der Shaft, 1992)). 

Policy Iteration (PI) Algorithm for 2-Player Zero-Sum Differential Games (Van Der Shaft, 
1992) 

Initialization: Start with a stabilizing feedback control policy 0u  
1. For 0,1,...j =  given ju  

2. For 0,1,...i =  set 0 0d = , solve for ( ( ))i
jV x t , 1id +  using 

 
2

20 ( ) ( )( )iT i T i
j j j jQ x V x f gu kd u Ru dγ= + ∇ + + + −  (12) 

 1
2

1
arg max[ ( , , , )] ( )

2

i i T i
j j j

d

d H x V u d k x V
γ

+ = ∇ = ∇  (13) 

On convergence, set 1( ) ( )i
j jV x V x+ =  

3. Update the control policy using  

 11
1 1 12

arg min[ ( , ), , ] ( )T
j j j

u

u H x V u d R g x V−
+ + += ∇ = − ∇  (14)  

Go to 1. 
 ■ 

Nota Bene:  In practice, the iterations in i and j are continued until some convergence 

criterion is met, e.g. 1i i
j jV V+ −  or, respectively 1j jV V+ −  is small enough in some suitable 

norm. 

Given a feedback policy ( )u x , write the Hamilton-Jacobi (HJ) equation  

 ( ) 2

1
0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (0) 0

4

T T T TQ x V x f x g x u x u x Ru x V x kk V x V
γ

= +∇ + + + ∇ ∇ =  (15) 

for fixed ( )u x . The minimal non negative solution ( )V x to this equation is the so-called 
available storage for the given ( )u x  (Van Der Shaft, 1992). Note that the inner loop of this 
algorithm finds the available storage for ju , where it exists. 
Assuming that the available storage at each index j is smooth on a  local domain of validity, 
the convergence of this algorithm to the minimal nonnegative solution to the HJI equation is 
shown in (Abu-Khalaf & Lewis, 2008; Van Der Shaft, 1992). Under these assumptions, the 
existence of smooth solutions at each step to the Lyapunov-like equation (12) was further 
shown in (Abu-Khalaf et al., 2006). Also shown was the asymptotic stability of 

( )i
jf gu kd+ +  at each step.  In fact, the inner loop yields 1( ) ( ),i i

j jV x V x x+ ≥ ∀  while the outer 

loop yields 1( ) ( ),j jV x V x x+ ≤ ∀  until convergence to *V . 
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Note that this algorithm relies on successive solutions of nonlinear Lyapunov-like equations 
(12). As such, the discussion surrounding (4) shows that the algorithm finds the value 

( ( ))i
jV x t  of successive control policy/disturbance policy pairs. 

3. Approximator structure and solution of the Lyapunov equation 

The PI Algorithm is a sequential algorithm that solves the HJI equation (11) and finds the 
Nash solution * *( , )u d based on sequential solutions of the nonlinear Lyapunov equation 
(12). That is, while the disturbance policy is being updated, the feedback policy is held 
constant.  In this section, we use PI to lay a rigorous foundation for the NN approximator 
structure required on-line solution of the 2-player zero-sum differential game in real time.  In the 
next section, this structure will be used to develop an adaptive control algorithm of novel 
form that converges to the ZS game solution.  It is important to define the neural network 
structures and the NN estimation errors properly or such an adaptive algorithm cannot be 
developed.   
The PI algorithm itself is not implemented in this chapter.  Instead, here one implements 
both loops, the outer feedback control update loop and the inner disturbance update loop, 
simultaneously using neural network learning implemented as differential equations for 
tuning the weights, while simultaneously keeping track of and learning the value 

( ( ), , )V x t u d  (3) of the current control and disturbance by solution of the Lyapunov equation 
(4)/(12). We call this synchronous PI for zero-sum games. 

3.1 Value function approximation: Critic Neural Network Structure 

This chapter uses nonlinear approximator structures (e.g. neural networks) for Value 
Function Approximation (VFA) (Bertsekas & Tsitsiklis, 1996; Werbos, 1974; Werbos, 1992), 
therefore sacrificing some representational accuracy in order to make the representation 
manageable in practice. Sacrificing accuracy in the representation of the value function is 
not so critical, since the ultimate goal is to find a good policy and not necessarily an accurate 
value function.  Based on the structure of the PI algorithm in Section IIB, VFA for online 2-
player games requires three approximators, which are taken as neural networks (NN), one 
for the value function, one for the feedback control policy, and one for the disturbance 
policy. These are motivated respectively by the need to solve equations (12), (14), and (13). 

To solve equation (12), we use VFA, which here requires approximation in Sobolev norm 
(Adams & Fournier, 2003), that is, approximation of the value ( )V x  as well as its gradient 

( )V x∇ .  The following definition describes uniform convergence that is needed later. 
Definition 2. (uniform convergence).  A sequence of functions { }np  converges uniformly to 

p if 0, ( ) : sup ( ) ( ) , ( )nN p x p x n Nε ε ε ε∀ > ∃ − < > . 

Assumption 1. For each feedback control and disturbance policy the nonlinear Lyapunov 
equation (12) has a smooth local solution ( ) 0V x ≥ .   
According to the Weierstrass higher-order approximation Theorem (Abu-Khalaf & Lewis, 
2005; Finlayson, 1990; Hornik et al., 1990), there exists a complete independent basis set 
{ ( )}i xϕ  such that the solution ( )V x  to (4) and its gradient are uniformly approximated, that 
is, there exist coefficients ci such that 

1 1 1

( ) ( ) ( ) ( )
N

i i i i i i
i i i N

V x c x c x c xϕ ϕ ϕ
∞ ∞

= = = +
= = +∑ ∑ ∑  
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 1 1
1

( ) ( ) ( )T
i i

i N

V x C x c xφ ϕ
∞

= +
≡ + ∑  (16) 

 
1 1 1

( ) ( ) ( )( ) N
i i i

i i i
i i i N

x x xV x
c c c

x x x x

ϕ ϕ ϕ∞ ∞

= = = +

∂ ∂ ∂∂
= = +

∂ ∂ ∂ ∂∑ ∑ ∑  (17) 

where 1 1 2( ) [ ( ) ( ) ( )] :T n N
Nx x x xφ ϕ ϕ ϕ= →A { { , and the second terms in these equations 

converge uniformly to zero as N →∞ . Specifically, the linear subspace generated by the 

basis set is dense in the Sobolev norm 1,W ∞  (Adams, Fournier, 2003).   

Therefore, assume there exist NN weights 1W  such that the value function ( )V x  is 
approximated as  

 1 1( ) ( ) ( )TV x W x xφ ε= +  (18) 

with 1( ) : n Nxφ →{ {  the NN activation function vector, N the number of neurons in the 

hidden layer, and ( )xε  the NN approximation error. For approximation in Sobolev space, 

the NN activation functions { ( ) : 1, }i x i Nϕ =  should be selected so that { ( ) : 1, }i x iϕ = ∞  

provides a complete independent basis set such that ( )V x  and its derivative are uniformly 

approximated, e.g., additionally 

 1
1 1 1

( )
T

TV x
W W

x x x

φ ε φ ε∂ ∂ ∂⎛ ⎞= + = ∇ +∇⎜ ⎟∂ ∂ ∂⎝ ⎠
 (19) 

Then, as the number of hidden-layer neurons N →∞ , the approximation errors 

0, 0ε ε→ ∇ →  uniformly (Abu-Khalaf & Lewis, 2005; Finlayson, 1990). In addition, for 

fixed N, the NN approximation errors ( ),xε and ε∇  are bounded by constants locally 

(Hornik et al., 1990).  

We refer to the NN with weights 1W  that performs VFA as the critic NN. 
Standard usage of the Weierstrass high-order approximation Theorem uses polynomial 
approximation. However, non-polynomial basis sets have been considered in the literature 
(e.g. (Hornik et al., 1990; Sandberg, 1997)).  The NN approximation literature has considered 
a variety of activation functions including sigmoids, tanh, radial basis functions, etc.   

Using the NN VFA, considering fixed feedback and disturbance policies ( ( )), ( ( ))u x t d x t , 

equation (4) becomes 

 
22

1 1 1( , , , ) ( ) ( ( ) ( ) ( ) ( ) ( ))T T
HH x W u d Q x u Ru d W f x g x u x k x d xγ φ ε= + − + ∇ + + =   (20)  

where the residual error is 

( ) ( )
T

H f gu kdε ε= − ∇ + +
 

 1 1 1
1

( ) ( ) ( )( )T
i i

i N

C W f gu kd c x f gu kdφ ϕ
∞

= +
= − − ∇ + + − ∇ + +∑  (21) 

Under the Lipschitz assumption on the dynamics, this residual error is bounded locally. 
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The following Proposition has been shown in (Abu-Khalaf & Lewis, 2005; Abu-Khalaf & 
Lewis, 2008).   

Define v  as the magnitude of a scalar v, x  as the vector norm of a vector x, and 
2

as the 

induced matrix 2-norm. 

Proposition 1. For any policies ( ( )), ( ( ))u x t d x t  the least-squares solution to (20) exists and is 

unique for each N. Denote this solution as 1W  and define 

 1 1 1( ) ( )TV x W xφ=  (22) 

Then, as N →∞ : 

a. sup 0Hε →  

b. 1 1 2
sup 0W C− →  

c. 1sup 0V V− →  

d. 1sup 0V V∇ −∇ →  

  ■ 

This result shows that 1( )V x converges uniformly in Sobolev norm 1,W ∞  (Adams & 

Fournier, 2003) to the exact solution ( )V x to (4) as N →∞ , and the weights 1W converge to 

the first N of the weights, 1C , which exactly solve (4).  
The effect of the approximation error on the HJI equation (8) is 

1
1 1 1 1 1 1 1 1 1 12

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

4 4

T T T T T T T
HJIQ x W x f x W x g x R g x W W x kk Wϕ ϕ ϕ ϕ ϕ ε

γ
−+ ∇ − ∇ ∇ + ∇ ∇ = (23) 

where the residual error due to the function approximation error is 

2 2

1 11 1 1 1
1 1 1 12 4 2 4

T T T T T T T T T
HJI f W gR g gR g W kk kk

γ γ
ε ε ϕ ε ε ε ϕ ε ε ε− −≡ −∇ + ∇ ∇ + ∇ ∇ − ∇ ∇ − ∇ ∇  (24) 

It was also shown in (Abu-Khalaf & Lewis, 2005; Abu-Khalaf & Lewis, 2008) that this error 
converges uniformly to zero as the number of hidden layer units N increases. That is, 

0, ( ) : sup , ( )HJIN N Nε ε ε ε ε∀ > ∃ < > . 

3.2 Tuning and convergence of the critic neural network 

In this section are addressed the tuning and convergence of the critic NN weights when 

fixed feedback control and disturbance policies are prescribed. Therefore, the focus is on 

solving the nonlinear Lyapunov-like equation (4) (e.g. (12)) for a fixed feedback policy u and 

fixed disturbance policy d.  

In fact, this amounts to the design of an observer for the value function. Therefore, this algorithm 

is consistent with adaptive control approaches which first design an observer for the system 

state and unknown dynamics, and then use this observer in the design of a feedback control. 

The ideal weights of the critic NN, 1W  which provide the best approximate solution for (20) 
are unknown. Therefore, the output of the critic neural network is  

 1 1
ˆˆ ( ) ( )TV x W xφ=  (25) 
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where 1Ŵ  are the current estimated values of 1W . The approximate nonlinear Lyapunov-
like equation is then 

 
22

1 1 1 1
ˆ ˆ( , , , ) ( ) ( )T TH x W u d W f gu kd Q x u Ru d eφ γ= ∇ + + + + − =  (26) 

with 1e  a residual equation error.  In view of Proposition 1, define the critic weight 
estimation error  

1 1 1
ˆW W W= −# .   

Then,  

1 1 1( ) .T
He W f guφ ε= − ∇ + +#  

Given any feedback control policy u, it is desired to select 1Ŵ  to minimize the squared 

residual error 

1
1 1 12

.TE e e=  

Then 1 1
ˆ ( )W t W→  and 1 He ε→ . Select the tuning law for the critic weights as the 

normalized gradient descent algorithm  

 
221 1

1 1 1 1 12
1 11

ˆ ˆ[ ]
ˆ (1 )

T TE
W a a W h h u Ru d

W

σ σ γ
σ σ

Τ
Τ

∂
= − = − + + −

+∂

$
 (27) 

where 1 1( )f gu kdσ φ= ∇ + + . This is a nonstandard modified Levenberg-Marquardt 

algorithm where 2
1 1( 1)Tσ σ +  is used for normalization instead of 1 1( 1)Tσ σ + . This is 

required in the theorem proofs, where one needs both appearances of 1 1 1/(1 )Tσ σ σ+  in (27) 

to be bounded (Ioannou & Fidan, 2006; Tao, 2003). 
Note that, from (20), 

 
22

1 1( ) ( ) .T T
HQ x u Ru d W f gu kdγ ϕ ε+ − = − ∇ + + +  (28) 

Substituting (28) in (27) and, with the notation 

 1 1 1 1/( 1)Tσ σ σ σ= + , 1 11 T
sm σ σ= +  (29) 

we obtain the dynamics of the critic weight estimation error as 

 1 1 1 1 1 1 1 .H

s

W a W a
m

εσ σ σΤ= − +$# #  (30) 

To guarantee convergence of 1Ŵ  to 1W , the next Persistence of Excitation (PE) assumption 

and associated technical lemmas are required. 
Persistence of Excitation (PE) Assumption. Let the signal 1σ  be persistently exciting over 

the interval [ , ]t t T+ , i.e. there exist constants 1 0β > , 2 0β > , 0Τ >  such that, for all t, 
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 1 0 1 1 2( ) ( ) .
t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫  (31) 

with Ι  the identity matrix of appropriate dimensions. 

The PE assumption is needed in adaptive control if one desires to perform system 
identification using e.g. RLS (Ioannou & Fidan, 2006; Tao, 2003). It is needed here because 
one effectively desires to identify the critic parameters to approximate ( )V x . 
The properties of tuning algorithm (27) are given in the subsequent results.  They are proven 
in (Vamvoudakis & Lewis, 2010). 
Technical Lemma 1. Consider the error dynamics system with output defined as 

1 1 1 1 1 1 1
H

s

W a W a
m

εσ σ σΤ= − +$# #   

 1 1
Ty Wσ= # .  (32) 

The PE condition (31) is equivalent to the uniform complete observability (UCO) (Lewis, 

Jagannathan, Yesildirek, 1999) of this system, that is there exist constants 3 0β > , 4 0β > , 

0Τ >  such that, for all t, 

  3 1 1 1 4( , ) ( ) ( ) ( , ) .
t T

T

t

S t t dβ τ σ τ σ τ τ τ β
+

ΤΙ ≤ ≡ Φ Φ ≤ Ι∫  (33) 

with 1 0 0 1( , ),t t t tΦ ≤  the state transition matrix of (32) and Ι  the identity matrix of 

appropriate dimensions. 
■ 

Technical Lemma 2. Consider the error dynamics system (32). Let the signal 1σ  be 

persistently exciting.  Then: 

a. The system (32) is exponentially stable. In fact if 0Hε =  then ( ) (0)kTW k e Wα−Τ ≤# #  

with  

 1 3
1

ln( 1 2 )aα β= − −
Τ

.  (34) 

b. Let maxHε ε≤ and maxy y≤ .  Then 1W# converges exponentially to the residual set 

 ( ){ }2
1 max 2 1 max max

1

( )W t y a y
β

δβ ε
β
Τ

⎡ ⎤≤ + +⎣ ⎦
# .  (35) 

where δ is a positive constant of the order of 1. 
■ 

The next result shows that the tuning algorithm (27) is effective under the PE condition, in 

that the weights 1Ŵ  converge to the actual unknown weights 1W  which solve the 

nonlinear Lyapunov-like equation (20) in a least-squares sense for the given feedback and 

disturbance policies ( ( )), ( ( ))u x t d x t . That is, (25) converges close to the actual value function 

of the current policies.  The proof is in (Vamvoudakis & Lewis, 2010). 
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Theorem 1. Let ( ( )), ( ( ))u x t d x t  be any bounded policies. Let tuning for the critic NN be 

provided by (27) and assume that 1σ  is persistently exciting. Let the residual error in (20) be 

bounded maxHε ε< . Then the critic parameter error converges exponentially with decay 

factor given by (34) to the residual set  

  { }2
1 2 1 max

1

( ) 1 2 .W t a
β

δβ ε
β
Τ

≤ +⎡ ⎤⎣ ⎦
#  (36) 

   ■ 

Remark 1. Note that, as N →∞ , 0Hε →  uniformly (Abu-Khalaf & Lewis, 2005; Abu-Khalaf 

& Lewis, 2008). This means that maxε  decreases as the number of hidden layer neurons in 

(25) increases. 

Remark 2. This theorem requires the assumption that the feedback policy ( ( ))u x t  and the 

disturbance policy ( ( ))d x t are bounded, since the policies appear in (21). In the upcoming 

Theorems 2 and 3 this restriction is removed. 

3.3 Action and disturbance neural network 

It is important to define the neural network structure and the NN estimation errors properly 
for the control and disturbance or an adaptive algorithm cannot be developed. To determine 
a rigorously justified form for the actor and the disturbance NN, consider one step of the 
Policy Iteration algorithm (12)-(14). Suppose that the solution V(x) to the nonlinear 
Lyapunov equation (12) for given control and disturbance policies is smooth and given by 
(16). Then, according to (17) and (13), (14) one has for the policy and the disturbance 
updates: 

 1

1

1
( ) ( )

2
T

i i
i

u R g x c xϕ
∞

−

=
= − ∇∑  (37) 

 
2

1

1
( ) ( )

2

T
i i

i

d k x c xϕ
γ

∞

=
= ∇∑   (38) 

for some unknown coefficients ci. Then one has the following result. 
The following proposition is proved in (Abu-Khalaf & Lewis, 2008) for constrained inputs. 
Non-constrained inputs are easier to prove. 
Proposition 2. Let the least-squares solution to (20) be W1 and define 

 1 1
1 1 1 1

1 1
( ) ( ) ( ) ( )

2 2
T T Tu R g x V x R g x x Wφ− −= − ∇ = − ∇   (39) 

 1 1 1 12 2

1 1
( ) ( ) ( ) ( )

2 2

T T Td k x V x k x x Wφ
γ γ

= ∇ = ∇  (40) 

with V1 defined in (22). Then, as N →∞ : 

a. 1sup 0u u− →  

b. 1sup 0d d− →  
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c. There exists a number of NN hidden layer neurons N0 such that 1u  and 1d stabilize the 

system (1) for N>N0. 
 ■ 

In light of this result, the ideal feedback and disturbance policy updates are taken as (39), 
(40) with 1W  unknown. Therefore, define the feedback policy in the form of an action 
neural network which computes the control input in the structured form  

 11
1 22

ˆˆ( ) ( ) ,T Tu x R g x Wφ−= − ∇  (41) 

where 2Ŵ  denotes the current estimated values of the ideal NN weights 1W . Define the 
actor NN estimation error as 

 2 1 2
ˆW W W= −#  (42)  

Likewise, define the disturbance in the form of a disturbance neural network which 
computes the disturbance input in the structured form  

 
2

1
1 32

ˆ ˆ( ) ( ) ,T Td x k x W
γ

φ= ∇   (43) 

where 3Ŵ  denotes the current estimated values of the ideal NN weights 1W .  Define the 
disturbance NN estimation error as 

 
3 1 3

ˆW W W= −#  (44) 

4. Online solution of 2-player zero-sum games using neural networks  

This section presents our main results. An online adaptive PI algorithm is given for online 
solution of the zero-sum game problem which involves simultaneous, or synchronous, 
tuning of critic, actor, and disturbance neural networks. That is, the weights of all three 
neural networks are tuned at the same time. This approach is a version of Generalized 
Policy Iteration (GPI), as introduced in (Sutton & Barto, 1998). In the standard Policy 
Iteration algorithm (12)-(14), the critic and actor NNs are tuned sequentially, e.g. one at a 
time, with the weights of the other NNs being held constant. By contrast, we tune all NN 
simultaneously in real-time. 
The next definition and facts complete the machinery required for the main results. 

Definition 3. (Lewis, Jagannathan, Yesildirek, 1999)  (UUB) A time signal ( )tζ is said to be 

uniformly ultimately bounded (UUB) if there exists a compact set nS ⊂ { so that for all 

(0) Sζ ∈  there exists a bound B and a time ( , (0))T B ζ  such that ( )t Bζ ≤  for all 0 .t t T≥ +  

Facts 1.  

a. (.), (.)g k are bounded by constants: 

( ) , ( )g kg x b k x b< <  

b. The NN approximation error and its gradient are bounded locally so that 

bεε < , 
x

bεε∇ <  
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c. The NN activation functions and their gradients are bounded locally  so that 

φφ <1( )x b , φφ∇ <1( )
x

x b  

 ■ 
The main Theorems are now given, which provide the tuning laws for the actor, critic and 
disturbance neural networks that guarantee convergence of the synchronous online zero-
sum game PI algorithm in real-time to the game saddle point solution, while guaranteeing 
closed-loop stability. 
Theorem 2. System stability and convergence of NN weights. Let the dynamics be given 
by (1), the critic NN be given by (25), the control input be given by actor NN (41) and the 
disturbance input be given by disturbance NN (43). Let tuning for the critic NN be provided 
by 

 
2

22
1 1 2 12

2 2

ˆˆ ˆ ˆ ˆ[ ( ) ]
( 1)

T T
T

W a W Q x d u Ru
σ σ γ

σ σ
= − + − +

+

$
 (45) 

where 2 1
ˆˆ( )f gu kdσ φ= ∇ + + . Let the actor NN be tuned as 

 12 2 2 2 1 2 1 2 1
1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
4

T TW F W F W D x W m x Wα σ⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

$
 (46) 

and the disturbance NN be tuned as 

 ( )3 3 4 3 3 2 1 1 3 12

1ˆ ˆ ˆ ˆ ˆ( )
4

T TW F W F W x W m Wα σ
γ

⎧ ⎫⎪ ⎪= − − + Ε⎨ ⎬
⎪ ⎪⎩ ⎭

$
  (47) 

where 1
1 1 1 1 1 1( ) ( ) ( ) ( ) ( ), ( ) ( ) ( )T T T TD x x g x R g x x E x x kk xφ φ φ φ−≡ ∇ ∇ ≡ ∇ ∇ , 2

2
2 2( 1)T

m
σ

σ σ
≡

+
,  

and 1 2 3 40, 0, 0, 0F F F F> > > >  are tuning parameters. Let Facts 1 hold and let ( ) 0Q x > .  

Suppose that 2 2 2 2/( 1)Tσ σ σ σ= +  is persistently exciting. Let the tuning parameters be 

selected as detailed in the proof. Then there exists an N0 such that, for the number of hidden 

layer units 0N N>  the closed-loop system state, the critic NN error 1W# , the actor NN error 

2W# and the disturbance NN error 3W#  are UUB.   

Proof:  See appendix. 
■ 

Remark 3.  See the comments following equation (24). Let 0ε >  and let N0 be the number of 

hidden layer units above which sup HJIε ε< . In the proof it is seen that the theorem holds 

for 0N N> .   
Remark 4. The theorem shows that PE is needed for proper identification of the value 
function by the critic NN, and that nonstandard tuning algorithms are required for the actor 
and the disturbance NN to guarantee stability.   

Remark 5. The assumption ( ) 0Q x >  is sufficient but not necessary for this result. If this 
condition is replaced by zero state observability, the proof still goes through, however it is 
tedious and does not add insight. The method used would be the technique used in the 
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proof of technical Lemma 2 Part a in (Vamvoudakis & Lewis), or the standard methods of 
(Ioannou & Fidan, 2006; Tao, 2003). 
Remark 6. The tuning parameters 1 2 3 4, , ,F F F F  in (46), and (47) must be selected to make the 

matrix M in (A.10) positive definite.  
Theorem 3. Exponential Convergence and Nash equilibrium. Suppose the hypotheses of 
Theorem 1 and Theorem 2,. Then Theorem 1 holds with  

2 2 11
max 2 32

1 1 1

4 4s s s

D
W W

m m m
ε ε

γ
Ε

> − +# #   

where 2 2 1T
sm σ σ= + , so that exponential convergence of 1Ŵ  to the approximate optimal 

critic value 1W  is obtained. Then:  

a. 1 1 1
ˆˆ ˆ( , , , )H x W u d  is UUB. That is, 1Ŵ  converges to the approximate HJI solution, the 

value of the ZS game. Where  

 1
1 1 1

1 ˆˆ ( ) ( )
2

T Tu R g x x Wφ−= − ∇  (48) 

 1 1 12

1ˆ ˆ( ) ( )
2

T Td k x x Wφ
γ

= ∇   (49)  

b. ˆˆ( ), ( )u x d x  (see (41) and (43)) converges to the approximate Nash equilibrium solution of 

the ZS game. 

Proof. Consider the UUB weights 1W# , 2W#  and 3W# as proved in Theorem 2.  

a. The approximate HJI equation is 

 1 1 1 1 1 1 1 1 12

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )
4 4

T T T
HJIH x W Q x W x f x W D W W E Wϕ ε

γ
= + ∇ − + −  (50) 

After adding zero we have 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2

1 1 1 1ˆ ˆ ˆ( , ) ( ) ( )
4 2 4 2

T T T T T
HJIH x W W x f x W D W W D W W E W W E Wϕ ε

γ γ
= ∇ − − + + −# # # # # # #  (51) 

But 

 1 1 1Ŵ W W= − +#  (52) 

After taking norms in (52) and letting 1 1maxW W< one has  

 1 1 1 1 1 1 maxŴ W W W W W W= − + ≤ + ≤ +# # #  (53) 

Now (51) becomes by taking into account (53), 

( )2

1 1 1 1 1 1 1 1 max
1 1ˆ( , ) ( ) ( )
4 2

H x W W x f x W D W D W Wϕ≤ ∇ − − +# # # #  
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                                                 ( )2

1 1 1 1 1 max2 2

1 1

4 2
HJIW E W E W W ε

γ γ
+ + + +# # #  (54) 

Let Facts 1 hold and also sup HJIε ε<  then (54) becomes 

 
( )
( )

φ

ε
γ γ

≤ + + +

+ + + +

# # # #

# # #

2

1 1 1 1 1 1 1 max

2

1 1 1 1 1 max2 2

1 1ˆ( , )
4 2

1 1

4 2

x fH x W b b W x W D W D W W

W E W E W W
 (55) 

All the signals on the right hand side of (55) are UUB. So 1
ˆ( , )H x W  is UUB and 

convergence to the approximate HJI solution is obtained. 

b. According to Theorem 1 and equations (39), (40) and (41), (43), 1û u−  and 1d̂ d−  are 

UUB because 2 1Ŵ W− and 3 1Ŵ W− are UUB 

So the pair ˆˆ( ), ( )u x d x  gives the Nash equilibrium solution of the zero-sum game. 
This completes the proof. 

  ■ 

Remark 7.  The theorems make no mention of finding the minimum nonnegative solution to 

the HJI. However they do guarantee convergence to a solution ( ( ), ( ))u x d x such that 

( ( ) ( ) ( ) ( ) ( ))f x g x u x k x d x+ +  is stable. This is only accomplished by the minimal nonnegative 

HJI solution. Practical implementation, in view of the Policy Iteration Algorithm, would 

start with initial weights of zero in the disturbance NN (43).  NN usage suggests starting 

with the initial control NN weights in (41) randomly selected and nonzero. 

Note that the dynamics is required to be known to implement this algorithm in that 

2 1
ˆˆ( )f gu kdσ φ= ∇ + + , 1( )D x , 1( )E x  and (41), (43) depend on f(x), g(x), k(x). 

5. Simulations 

Here we present simulations of a linear and a nonlinear system to show that the game can 

be solved ONLINE by learning in real time, using the method of this chapter. We also 

present Simulation B to show that that one learns FASTER if one has an opponent. That is, 

the two-player online game converges faster than an equivalent online 1-player (optimal control) 

problem when all the NNs are tuned online in real time. 

5.1 Linear system 

Consider the continuous-time F16 aircraft plant with quadratic cost function used in 

(Stevens & Lewis, 2003). The system state vector is [ ]ex qα δ= , where α  denotes the 

angle of attack, q  is the pitch rate and eδ  is the elevator deflection angle. The control input 

is the elevator actuator voltage and the disturbance is wind gusts on angle of attack. One has 

the dynamics x Ax Bu Kd= + +$ , 

 

1.01887 0.90506 0.00215 0 1

0.82225 1.07741 0.17555 0 0

0 0 1 1 0

x x u d

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$   
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where Q  and R  in the cost function are identity matrices of appropriate dimensions and 

5γ = . In this linear case the solution of the HJI equation is given by the solution of the game 

algebraic Riccati equation (GARE) 

1
2

1
0T T TA P PA Q PBR B P PKK P

γ
−+ + − + =  

Since the value is quadratic in the LQR case, the critic NN basis set 1( )xφ  was selected as the 

quadratic vector in the state components x x⊗  with ⊗  the Kronecker product.  Redundant 

terms were removed to leave ( 1) / 2 6n n + =  components. Solving the GARE gives the 

parameters of the optimal critic as  *
1 [1.6573    1.3954   -0.1661 1.6573   -0.1804 0.4371]TW =  

which are the components of the Riccati solution matrix P. 

The synchronous zero-sum game PI algorithm is implemented as in Theorem 2. PE was 

ensured by adding a small probing noise to the control and the disturbance input. Figure 1 

shows the critic parameters, denoted by 1 1 2 3 4 5 6
ˆ [ ]Tc c c c c cW W W W W W W=  

converging to the optimal values. In fact after 600s the critic parameters converged to 

1
ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .T

fW t =  The actor parameters after 600s 

converge to the values of 2
ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .T

fW t =  The 

disturbance parameters after 600s converge to the values of 

3
ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .T

fW t =  

Then, the actor NN is given as 
 

1

2 1

3 111
2 2

2

3 2

3

2 0 0 1.7090

0 1.3303
0

0 -0.1629
ˆ ( ) 0

1.73540 2 0
1

-0.17300

0.44680 0 2

T

T

x

x x

x x
u x R

x

x x

x

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥= − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

 

Then, the disturbance NN is given as 
 

2

1

2 1

3 11

2
2

3 2

3

2 0 0 1.7090

0 1.3303
0

0 -0.1629ˆ( ) 0
1.73540 2 0

1
-0.17300

0.44680 0 2

T

T

x

x x

x x
d x

x

x x

x

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

 

The evolution of the system states is presented in Figure 2. One can see that after 300s 
convergence of the NN weights in critic, actor and disturbance has occurred. 
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Fig. 1. Convergence of the critic parameters to the parameters of the optimal critic. 
 

 

Fig. 2. Evolution of the system states for the duration of the experinment. 

5.2 Single player linear system 

The purpose of this example is to show that one learns FASTER if one has an opponent.  
That is, the online two-player game converges faster than an equivalent online 1-player 
(optimal control) problem. In this example, we use the method for online solution of the 
optimal control problem presented in (Vamvoudakis & Lewis, 2010). That is, Theorem 2 
without the disturbance NN (47). 
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Consider the continuous-time F16 aircraft plant described before but with 0.d =  Solving the 
ARE with Q  and R   identity matrices of appropriate dimensions, gives the parameters of 
the optimal critic as 

*
1 [1.4245    1.1682   -0.1352  1.4361   -0.1516  0.4329]TW = . 

Figure 3 shows the critic parameters, denoted by 1 1 2 3 4 5 6
ˆ [ ]Tc c c c c cW W W W W W W=  

converging to the optimal values. In fact after 800s the critic parameters converged to 

1
ˆ ( ) [1.4270    1.1654   -0.1367  1.4387   -0.1496 0.4323] .T

fW t =  The actor parameters after 800s 

converge to the values of 2
ˆ ( ) [1.4270    1.1654   -0.1367  1.4387   -0.1496 0.4323] .T

fW t =  
In comparison with part A, it is very clear that the two-player zero-sum game algorithm has 
faster convergence skills than the single-player game (e.g. optimal control problem) by a 
factor of two. As a conclusion the critic NN learns faster when there is an oponent for the 
control input, namely a disturbance.  

 
Fig. 3. Convergence of the critic parameters to the parameters of the optimal critic. 

5.3 Nonlinear system 
Consider the following affine in control input nonlinear system, with a quadratic cost 
constructed as in (Nevistic & Primbs, 1996; D. Vrabie, Vamvoudakis & Lewis, 2009)  

2( ) ( ) ( ) ,x f x g x u k x d x= + + ∈$ {  

where 

3 3 2 2
1 2 2 2

1 2

1 1

1

2

1

1
0.25 ( ) 0.25 (sin )

( )
cos(2 ) 2 (4 ) 2

0 0
 ( ) , ( ) .

cos(2 ) 2 (4 ) 2(sin )

x x

f x
x x

g x k x

x x

x

x x

x

γ

− +⎡ ⎤
⎢ ⎥= ⎢ ⎥+ − +
⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+ +

−

⎣ ⎦ ⎣ ⎦

− +
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One selects 
1 0

, 1, 8.
0 1

Q R γ
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 

The optimal value function is * 4 2
1 2

1 1
( )

4 2
V x x x= +  the optimal control signal is 

*
1 2( ) (cos(2 ) 2)u x x x= − +  and *

1 22

1
( ) (sin(4 ) 2)d x x x

γ
= + . 

One selects the critic NN vector activation function as  

2 2 4 4
1 1 2 1 2( ) [          ]x x x x xϕ =  

Figure 4 shows the critic parameters, denoted by  

1 1 2 3 4
ˆ [ ]Tc c c cW W W W W=  

by using the synchronous zero-sum game algorithm. After convergence at about 80s have 

 1
ˆ ( ) [0.0008    0.4999    0.2429    0.0032]TfW t =  

The actor parameters after 80s converge to the values of  

2
ˆ ( ) [0.0008    0.4999    0.2429    0.0032] ,T

fW t =  

and the disturbance parameters after 300s converge to the values of  

3
ˆ ( ) [0.0008    0.4999    0.2429    0.0032] .T

fW t =  

So that the actor NN  

1

211
2 32

1 1

3
2

2 0 0.0008
0 20 0.4999

ˆ ( ) 0cos(2 ) 2 4 0.2429

0.00320 4

T

T

x

x
u x R

x x

x

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

also converged to the optimal control, and the disturbance NN  

2

1

21
32

1 1

3
2

2 0 0.0008
0 20 0.4999ˆ( ) 0sin(4 ) 2 4 0.2429

0.00320 4

T

T

x

x
d x

x x

x

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

also converged to the optimal disturbance. 

The evolution of the system states is presented in Figure 5. Figure 6 shows the optimal value 
function. The identified value function given by 1 1 1

ˆˆ ( ) ( )TV x W xφ=  is virtually 
indistinguishable from the exact solution and so is not plotted.  In fact, Figure 7 shows the 3-
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D plot of the difference between the approximated value function and the optimal one. This 
error is close to zero. Good approximation of the actual value function is being evolved. 
Figure 8 shows the 3-D plot of the difference between the approximated control, by using 
the online algorithm, and the optimal one. This error is close to zero.  
Finally Figure 9 shows the 3-D plot of the difference between the approximated disturbance, 
by using the online algorithm, and the optimal one. This error is close to zero.  
 

 

Fig. 4. Convergence of the critic parameters. 

 

 

Fig. 5. Evolution of the system states. 
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Fig. 6. Optimal Value function. 

 
 

 
 
 

Fig. 7. 3D plot of the approximation error for the value function. 
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Fig. 8. 3D plot of the approximation error for the control. 

 
 

 
 

 

Fig. 9. 3D plot of the approximation error for the disturbance. 
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6. Appendix 

Proof for Theorem 2: The convergence proof is based on Lyapunov analysis. 
We consider the Lyapunov function 

 1 1 1
1 1 1 2 2 2 3 3 3

1 1 1
( ) ( ) ( ) ( ) ( ).

2 2 2
T T TL t V x tr W a W tr W a W tr W a W− − −= + + +# # # # # #  (A.1) 

The derivative of the Lyapunov function is given by 

 1 1 1
1 1 1 2 2 2 3 3 3( ) ( ) T T TL x V x W W W W W Wα α α− − −= + + +

$ $ $# # # # # #$ $  (A.2) 

First term is, 

  

φ
γ

ε φ φ
γ

−

⎛ ⎞
= ∇ − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

+ ∇ − ∇ + ∇⎜ ⎟⎜ ⎟
⎝ ⎠

$
1 1 1 2 1 32

1
1 2 1 32

1 1ˆ ˆ( ) ( ) ( ) ( )
2 2

1 1ˆ ˆ( ) ( ) ( ) ( )
2 2

T

T T T T T

V x W f x D x W E x W

x f x g x R g x W kk W

. 

Then 

 ( )
( )

φ ε
γ

φ

ε
γ γ

⎛ ⎞
= ∇ − + +⎜ ⎟⎜ ⎟

⎝ ⎠

= ∇ + − −

− − + Ε +

$
1 1 1 2 1 3 12

1 11 1 1 1 2 1 1

1 11 1 3 1 1 12 2

1 1ˆ ˆ( ) ( ) ( ) ( ) ( )
2 2

1 1ˆ( ) ( ) ( )
2 2

1 1ˆ( ) ( ) ( )
2 2

T

T T T

T T

V x W f x D x W E x W x

W f x W D x W W W D x W

W E x W W W x W x

 

1 1 1 11 1 1 2 1 1 1 3 1 1 12 2

1 11 1 1 2 1 3 12

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

1 1
( ) ( ) ( )

2 2

T T T T T

T T T

W f x W D x W W D x W W E x W W x W x

W W D x W W E x W x

φ ε
γ γ

σ ε
γ

= ∇ + − − + Ε +

= + − +

# #

# #
 

 

where 1
1 1 2 1 32

1 1ˆ ˆ( ) ( ) ( )( ( ) ( ) ( ) ).
2 2

T T T T Tx x x f x g x R g x W kk Wε ε ε φ φ
γ

−≡ = ∇ − ∇ + ∇$   

From the HJI equation 1 11 1 1 1 1 12

1 1
( ) ( ) ( ) .

4 4

T T T T
HJIW h h W D x W W E x W xσ ε

γ
= − − + +  

Then 

1 1 1 1 1 1 1 1 2 1 1 3 12 2

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

4 24 2

T T T T T
V HJIL x h h W D x W W D x W W E x W W E x W x xε ε

γ γ
= − − + + − + +# #$  

 1 1 2 1 1 3 12

1 1
( ) ( ) ( ) ( ).

2 2

T T
VL x W D x W W E x W xε

γ
≡ + − +$ # #   (A.3)   
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where 1 1 1 1 1 1 12

1 1
( ) ( ) ( ) ( ) ( )

4 4

T T T
V HJIL x h h W D x W W D x W x xε ε

γ
= − − + + +$

  

Second term is, 

( )
1 1 2

1 11 1 1 1 1 1 1 2 1 2 2 3 32 2

2 2

1 1ˆ ˆ ˆ ˆ ˆ( ( ) )
4 41
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σα α α σ
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By adding the terms of (A.3) and (A.4) we have 
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 (A.5) 

where 2
2

2 2 1T

σσ
σ σ

=
+

and 2 2 1T
sm σ σ= + . 

 

In order to select the update law for the action neural networks, write (A.5) as 

2

1 12 21 1
11 1 2 2 2 2 1 3 3 3 1 3 14 4
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2 2 2
2 1 1 2 1 1 1 2 1 1 1 2 1 1 2

1 1 1 1
( ) ( ) ( ) ( )

2 4 4 4

T T
T T T T

s s s
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1 1 1 1
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2 4 4 4
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s s s
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Now define the actor tuning law as 

 ( )2 2 2 2 1 2 1 1 2 1
1ˆ ˆ ˆ ˆ ˆ( )
4

T TW F W F W D x W m Wα σ⎧ ⎫= − − −⎨ ⎬
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and the disturbance tuning law as 

 ( )3 3 4 3 3 2 1 1 3 12
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T TW F W F W x W m Wα σ
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This adds to L$  the terms 
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 3 4 1 3 4 3 3 3 2 1 3 3 2 1
T T T T T TW F W W F W W F W W F Wσ σ+ − − +# # # # # #  (A.8) 

Now it is desired to introduce norm bounds.  It is easy to show that under the Facts 1 

 ( ) ( )2

2 21 1
1 min 1 2 1 32 2
( ) ( )

x x x x xf g kx b b x b b b R W W b b b W Wε ε φ ε φγ
ε σ< + + + +# #  

Also since ( ) 0Q x > there exists q such that ( )Tx qx Q x< locally. It is shown in (Abu-Khalaf & 

Lewis, 2008; Abu-Khalaf et al. 2006) that HJIε  converges to zero uniformly as N increases.  

www.intechopen.com



 Advances in Reinforcement Learning 

 

356 

Select 0ε >  and 0( )N ε  such that sup HJIε ε<  (see comments after (24)). Then assuming 

0N N> and writing in terms of  
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, (A.8) becomes 

2

2 2 2 21 1
1 1 1 1 1 min 12 2 2

1 1
( ) ( ) || || ( ) || ||

4 4 x x x xg kL W D x W E x W b b b R W b b bε ϕ ε φγ
ε σ

γ
< + + + +$  

( )

( )2

1 1
1 1 1 3 1 12 2 2

1 1
1 1 1 2 1 1 1 12 8

1 1
3 1 1 4 1 1 1 12 2 8

0 0 0

1 1
0

8 8

1
0 0

8

1
0 0

8

T

s s

T

T

s

T

s

qI

I F D W F W
m m

Z Z
F D W F D W m mW D

m

F W F W m mW
m γ

γ

γ

Τ

Τ

− + Ε

−
− − +

+ Ε + Ε + Ε

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

# #  

 

2 2 2

21 1 1
1 2 1 2 1 1 1 min2 4 2

21 1 1
1 4 3 2 1 1 12 4 2

( ) ( )

( )

x

x x

x x

f

T s

T T
g

T T
k

b b

m
Z

D F F D W m W b b b R

F F W m W b b b

ε

ε φ

ε φγ γ γ

ε

σ σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ ⎢ ⎥
⎢ ⎥+ − − +
⎢ ⎥
⎢ ⎥− Ε + − + Ε +
⎢ ⎥⎣ ⎦

#  (A.9) 

Define 

( )

( )2

1 1
1 1 1 3 1 12 2 2

1 1
1 1 1 2 1 1 1 12 8

1 1
3 1 1 4 1 1 1 12 2 8

0 0 0

1 1
0

8 8

1
0 0

8

1
0 0

8

T

s s

T

s

T

s

qI

I F D W F W
m m

F D W F D W m mW D
m

F W F W m mW
m

M

γ

γ

γ

Τ

Τ

− + Ε

− − +

+ Ε + Ε + Ε

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥= ⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

     (A.10) 

2 2 2

21 1 1
1 2 1 2 1 1 1 min2 4 2

21 1 1
1 4 3 2 1 1 12 4 2

( ) ( )

( )

x

x x

x x

f

s

T T
g

T T
k

b b

m
d

D F F D W m W b b b R

F F W m W b b b

ε

ε φ

ε φγ γ γ

ε

σ σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+ − − +
⎢ ⎥
⎢ ⎥− Ε + − + Ε +
⎢ ⎥⎣ ⎦

 

www.intechopen.com



Online Gaming: Real Time Solution of Nonlinear Two-Player  
Zero-Sum Games Using Synchronous Policy Iteration   

 

357 

2

2 2 2 21 1
1 1 1 1 1 min 12 2 2
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σ
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Let the parameters be chosen such that 0M > . Now (A.9) becomes 

2

min( )L Z M d Z cσ ε< − + + +$ # #  

Completing the squares, the Lyapunov derivative is negative if  

 
2
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min minmin

.
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d d c
Z B

M MM

ε
σ σσ

+
> + + ≡#  (A.11) 

It is now straightforward to demonstrate that if L exceeds a certain bound, then, L$  is 
negative. Therefore, according to the standard Lyapunov extension theorem (Lewis, 
Jagannathan, Yesildirek, 1999) the analysis above demonstrates that the state and the 
weights are UUB. 
To show this from (A.1), one has,   

2 2 22
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Equation (A.13) is equivalent to 

min 1 max 2( ) ( )T T
Z S Z L Z S Zσ σ≤ ≤# # # #  

Then  

2 2
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Therefore, 
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implies (A.11). 
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Note that condition (A.11) holds if the norm of any component of Z# exceeds the bound, i.e. 

specifically Zx B> or 2 1 ZW Bσ Τ ># or 2 ZW B>#  or 3 ZW B># (Khalil, 1996). 
Now consider the error dynamics and the output as in Technical Lemmas 1, 2 and assume 

2σ is persistently exciting  

1 1
11 1 2 2 1 1 2 2 1 2 3 32 2 2

( )
4 4

HJI T T

s s s

a a
W a W a W D x W W W

m m m

ε
σ σ σ

γ
Τ= − + + − Ε$# # # # # #   

 2 1
Ty Wσ= # .  (A.15) 

Then Theorem 1 is true with  

 
2 2 12 1

1 max 2 32

1 1 1

4 4

T

s s s s

D
W W W

m m m m

σ ε ε
γ

Ε
> > − +# # #  

This provides an effective practical bound for 2 1
TWσ # .  

This completes the proof. 
■ 
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