3,678 research outputs found

    Reinforcement Learning with Non-Markovian Rewards

    Full text link
    The standard RL world model is that of a Markov Decision Process (MDP). A basic premise of MDPs is that the rewards depend on the last state and action only. Yet, many real-world rewards are non-Markovian. For example, a reward for bringing coffee only if requested earlier and not yet served, is non-Markovian if the state only records current requests and deliveries. Past work considered the problem of modeling and solving MDPs with non-Markovian rewards (NMR), but we know of no principled approaches for RL with NMR. Here, we address the problem of policy learning from experience with such rewards. We describe and evaluate empirically four combinations of the classical RL algorithm Q-learning and R-max with automata learning algorithms to obtain new RL algorithms for domains with NMR. We also prove that some of these variants converge to an optimal policy in the limit.Comment: To Appear in AAAI 202

    Temporal Logic Monitoring Rewards via Transducers

    Get PDF
    In Markov Decision Processes (MDPs), rewards are assigned according to a function of the last state and action. This is often limiting, when the considered domain is not naturally Markovian, but becomes so after careful engineering of extended state space. The extended states record information from the past that is sufficient to assign rewards by looking just at the last state and action. Non-Markovian Reward Decision Processes (NRMDPs) extend MDPs by allowing for non-Markovian rewards, which depend on the history of states and actions. Non-Markovian rewards can be specified in temporal logics on finite traces such as LTLf/LDLf, with the great advantage of a higher abstraction and succinctness; they can then be automatically compiled into an MDP with an extended state space. We contribute to the techniques to handle temporal rewards and to the solutions to engineer them. We first present an approach to compiling temporal rewards which merges the formula automata into a single transducer, sometimes saving up to an exponential number of states. We then define monitoring rewards, which add a further level of abstraction to temporal rewards by adopting the four-valued conditions of runtime monitoring; we argue that our compilation technique allows for an efficient handling of monitoring rewards. Finally, we discuss application to reinforcement learning

    Using Experience Classification for Training Non-Markovian Tasks

    Full text link
    Unlike the standard Reinforcement Learning (RL) model, many real-world tasks are non-Markovian, whose rewards are predicated on state history rather than solely on the current state. Solving a non-Markovian task, frequently applied in practical applications such as autonomous driving, financial trading, and medical diagnosis, can be quite challenging. We propose a novel RL approach to achieve non-Markovian rewards expressed in temporal logic LTLf_f (Linear Temporal Logic over Finite Traces). To this end, an encoding of linear complexity from LTLf_f into MDPs (Markov Decision Processes) is introduced to take advantage of advanced RL algorithms. Then, a prioritized experience replay technique based on the automata structure (semantics equivalent to LTLf_f specification) is utilized to improve the training process. We empirically evaluate several benchmark problems augmented with non-Markovian tasks to demonstrate the feasibility and effectiveness of our approach

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Optimal Regret Bounds for Selecting the State Representation in Reinforcement Learning

    Get PDF
    We consider an agent interacting with an environment in a single stream of actions, observations, and rewards, with no reset. This process is not assumed to be a Markov Decision Process (MDP). Rather, the agent has several representations (mapping histories of past interactions to a discrete state space) of the environment with unknown dynamics, only some of which result in an MDP. The goal is to minimize the average regret criterion against an agent who knows an MDP representation giving the highest optimal reward, and acts optimally in it. Recent regret bounds for this setting are of order O(T2/3)O(T^{2/3}) with an additive term constant yet exponential in some characteristics of the optimal MDP. We propose an algorithm whose regret after TT time steps is O(T)O(\sqrt{T}), with all constants reasonably small. This is optimal in TT since O(T)O(\sqrt{T}) is the optimal regret in the setting of learning in a (single discrete) MDP

    Omega-Regular Reward Machines

    Full text link
    Reinforcement learning (RL) is a powerful approach for training agents to perform tasks, but designing an appropriate reward mechanism is critical to its success. However, in many cases, the complexity of the learning objectives goes beyond the capabilities of the Markovian assumption, necessitating a more sophisticated reward mechanism. Reward machines and omega-regular languages are two formalisms used to express non-Markovian rewards for quantitative and qualitative objectives, respectively. This paper introduces omega-regular reward machines, which integrate reward machines with omega-regular languages to enable an expressive and effective reward mechanism for RL. We present a model-free RL algorithm to compute epsilon-optimal strategies against omega-egular reward machines and evaluate the effectiveness of the proposed algorithm through experiments.Comment: To appear in ECAI-202

    Omega-Regular Reward Machines

    Get PDF
    Reinforcement learning (RL) is a powerful approach for training agents to perform tasks, but designing an appropriate reward mechanism is critical to its success. However, in many cases, the complexity of the learning objectives goes beyond the capabilities of the Markovian assumption, necessitating a more sophisticated reward mechanism. Reward machines and ω-regular languages are two formalisms used to express non-Markovian rewards for quantitative and qualitative objectives, respectively. This paper introduces ω-regular reward machines, which integrate reward machines with ω-regular languages to enable an expressive and effective reward mechanism for RL. We present a model-free RL algorithm to compute ϵ-optimal strategies against ω-regular reward machines and evaluate the effectiveness of the proposed algorithm through experiments.</p
    • …
    corecore