839 research outputs found

    Influence of Mobile Application Based Brain Training Program on Cognitive Function and Quality of Life in Patients Post Stroke

    Get PDF
    Background: Stroke often leads to cognitive impairment, which can significantly reduce one's independence as well as quality of life. Cognitive rehabilitation is a treatment strategy for restoring cognitive abilities following brain injuries. Cognitive functioning can be improved through the use of multimedia as well as informatics in computerized cognitive rehabilitation (CCR). Purpose: to investigate the influence of a mobile application-based brain training program on cognitive functions as well as quality of life in post stroke patients. Methodology: forty referred medically and radiologically diagnosed stroke patients from both genders experienced post stroke cognitive impairment (PSCI), aged from 45 to 60 years old, were randomized into two groups of the same number: a study group and a control group. The Study group received mobile application-based brain training program (Lumosity training application) as well as aerobic training on a bicycle ergometer, and the control group received only the aerobic training on a bicycle ergometer for 18 sessions every other day for 6 weeks, 3 sessions/week, each session for 60 minutes. All patients were evaluated with Computer-based cognitive device RehaCom, Addenbrooke’s Cognitive Examination Revised (ACE-R) test, Montreal Cognitive Assessment (MoCA) in addition to Stroke specific quality of life scale (SS-QoL) pre and post treatment. Results: a significant difference has been detected among the two groups as the (p-value = 0.001) indicating that the study group reported enhancement in the cognitive functions as well as the quality of life more than the control group and there was a correlation between RehaCom, MoCA, ACE-R and SS-QoL. Conclusion: This study showed that six weeks of mobile application-based brain training program (Lumosity training application) as well as aerobic training on a bicycle ergometer was a beneficial approach and is a successful treatment for patients suffering from (PSCI)

    Telerehabilitation in speech-language therapy as exemplified by aphasic patients. A research review

    Get PDF
    The present paper discusses application of telerehabilitation services in speech therapy management in aphasic adults. The author presents theoretical issues related to the specifics of therapeutic effects of at a distance approach and indicates its recipients, focusing on neurological patients with language difficulties. Further on, the author reviews the selected studies on telerehabilitation used in diagnoses and therapies of aphasic speech disorders.The present paper discusses application of telerehabilitation services in speech therapy management in aphasic adults. The author presents theoretical issues related to the specifics of therapeutic effects of at a distance approach and indicates its recipients, focusing on neurological patients with language difficulties. Further on, the author reviews the selected studies on telerehabilitation used in diagnoses and therapies of aphasic speech disorders

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Hand grip support for rehabilitation and assistance: from patent to TRL5

    Get PDF
    In the last decades, the continuous increase in the number of the vast cohort of chronic patients that constantly need medical assistance and supervision, and the widespread lack of therapist has brought to an increased interest in the role of medical technologies in rehabilitative programs and assistive scenarios. Current clinical evidence in rehabilitation demonstrates that there is an important and increasing demand for innovative therapeutic solutions to recover the hand functions to prevent patients to need assistance in performing daily life activities. This works describes the pathway from patent to TRLS of a device to support hand grip actions and interaction with daily life objects. E-KIRO is based on the use of electromagnets, which are able to attach/detach interactive objects equipped with a ferromagnetic plate. Five end-users used the device and scored it with excellent usability based on the System Usability Scale

    Hybrid Position and Orientation Tracking for a Passive Rehabilitation Table-Top Robot

    Get PDF
    This paper presents a real time hybrid 2D position and orientation tracking system developed for an upper limb rehabilitation robot. Designed to work on a table-top, the robot is to enable home-based upper-limb rehabilitative exercise for stroke patients. Estimates of the robot's position are computed by fusing data from two tracking systems, each utilizing a different sensor type: laser optical sensors and a webcam. Two laser optical sensors are mounted on the underside of the robot and track the relative motion of the robot with respect to the surface on which it is placed. The webcam is positioned directly above the workspace, mounted on a fixed stand, and tracks the robot's position with respect to a fixed coordinate system. The optical sensors sample the position data at a higher frequency than the webcam, and a position and orientation fusion scheme is proposed to fuse the data from the two tracking systems. The proposed fusion scheme is validated through an experimental set-up whereby the rehabilitation robot is moved by a humanoid robotic arm replicating previously recorded movements of a stroke patient. The results prove that the presented hybrid position tracking system can track the position and orientation with greater accuracy than the webcam or optical sensors alone. The results also confirm that the developed system is capable of tracking recovery trends during rehabilitation therapy

    Robotic Rehabilitation Devices of Human Extremities: Design Concepts and Functional Particularities

    Get PDF
    International audienceAll over the world, several dozen million people suffer from the effects of post-polio, multiple sclerosis, spinal cord injury, cerebral palsy, etc. and could benefit from the advances in robotic devices for rehabilitation. Thus, for modern society, an important and vital problem of designing systems for rehabilitation of human physical working ability appears. The temporary or permanent loss of human motor functions can be compensated by means of various rehabilitation devices. They can be simple mechanical systems for orthoses, which duplicate the functions of human extremities supplying with rigidity and bearing capacity or more complex mechatronic rehabilitation devices with higher level of control. We attempt to cover all of the major developments in these areas, focusing particularly on the development of the different concepts and their functional characteristics. The robotic devices with several structures are classified, taking into account the actuation systems, the neuromuscular stimulations, and the structural schemes. It is showed that the problems concerning the design of rehabilitation devices are complex and involve many questions in the sphere of biomedicine, mechanics, robot technology, electromechanics and optimal control. This paper provides a design overview of hardware, actuation, sensory, and control systems for most of the devices that have been described in the literature, and it ends with a discussion of the major advances that have been made and should be yet overcome

    Visualization and Interaction Technologies in Serious and Exergames for Cognitive Assessment and Training: A Survey on Available Solutions and Their Validation

    Get PDF
    Exergames and serious games, based on standard personal computers, mobile devices and gaming consoles or on novel immersive Virtual and Augmented Reality techniques, have become popular in the last few years and are now applied in various research fields, among which cognitive assessment and training of heterogeneous target populations. Moreover, the adoption of Web based solutions together with the integration of Artificial Intelligence and Machine Learning algorithms could bring countless advantages, both for the patients and the clinical personnel, as allowing the early detection of some pathological conditions, improving the efficacy and adherence to rehabilitation processes, through the personalisation of training sessions, and optimizing the allocation of resources by the healthcare system. The current work proposes a systematic survey of existing solutions in the field of cognitive assessment and training. We evaluate the visualization and interaction technologies commonly adopted and the measures taken to fulfil the need of the pathological target populations. Moreover, we analyze how implemented solutions are validated, i.e. The chosen experimental designs, data collection and analysis. Finally, we consider the availability of the applications and raw data to the large community of researchers and medical professionals and the actual application of proposed solutions in the standard clinical practice. Despite the potential of these technologies, research is still at an early stage. Although the recent release of accessible immersive virtual reality headsets and the increasing interest on vision-based techniques for tracking body and hands movements, many studies still rely on non-immersive virtual reality (67.2%), mainly mobile and personal computers, and standard gaming tools for interactions (41.5%). Finally, we highlight that although the interest of research community in this field is increasingly higher, the sharing of dataset (10.6%) and implemented applications (3.8%) should be promoted and the number of healthcare structures which have successfully introduced the new technological approaches in the treatment of their host patients is limited (10.2%)

    Memory rehabilitation: restorative, specific knowledge acquisition, compensatory, and holistic approaches

    Get PDF
    Memory impairment following an acquired brain injury can negatively impact daily living and quality of life—but can be reduced by memory rehabilitation. Here, we review the literature on four approaches for memory rehabilitation and their associated strategies: (1) the restorative approach, aimed at a return to pre-morbid functioning, (2) the knowledge acquisition approach, involving training on specific information relevant to daily life, (3) the compensatory approach, targeted at improving daily functioning, and (4) the holistic approach, in which social, emotional, and behavioral deficits are addressed alongside cognitive consequences of acquired brain injury. Each memory rehabilitation approach includes specific strategies such as drill and practice (restorative), spaced retrieval (knowledge acquisition), memory aids (compensatory), or a combination of psychotherapy and cognitive strategies (holistic). Past research has demonstrated mixed support for the use of restorative strategies to improve memory function, whereas knowledge acquisition strategies show promising results on trained tasks but little generalization to untrained tasks and activities of daily living. Compensatory strategies remain widely used but require intensive training to be effectively employed. Finally, the holistic approach is becoming more widespread due to improvements in psychosocial wellbeing, yet there are considerable resource and cost requirements. Several factors can influence rehabilitation outcomes including metacognition and emotional disturbances. Considerations for future research to improve the applicability of strategies for memory rehabilitation include assessing memory impairment severity, examining memory needs in daily life, and exploring the long-term effects of memory rehabilitation
    corecore