1,748 research outputs found

    Besov regularity of solutions to the p-Poisson equation

    Full text link
    In this paper, we study the regularity of solutions to the pp-Poisson equation for all 1<p<1<p<\infty. In particular, we are interested in smoothness estimates in the adaptivity scale Bτσ(Lτ(Ω)) B^\sigma_{\tau}(L_{\tau}(\Omega)), 1/τ=σ/d+1/p1/\tau = \sigma/d+1/p, of Besov spaces. The regularity in this scale determines the order of approximation that can be achieved by adaptive and other nonlinear approximation methods. It turns out that, especially for solutions to pp-Poisson equations with homogeneous Dirichlet boundary conditions on bounded polygonal domains, the Besov regularity is significantly higher than the Sobolev regularity which justifies the use of adaptive algorithms. This type of results is obtained by combining local H\"older with global Sobolev estimates. In particular, we prove that intersections of locally weighted H\"older spaces and Sobolev spaces can be continuously embedded into the specific scale of Besov spaces we are interested in. The proof of this embedding result is based on wavelet characterizations of Besov spaces.Comment: 45 pages, 2 figure

    Fractional-order operators: Boundary problems, heat equations

    Full text link
    The first half of this work gives a survey of the fractional Laplacian (and related operators), its restricted Dirichlet realization on a bounded domain, and its nonhomogeneous local boundary conditions, as treated by pseudodifferential methods. The second half takes up the associated heat equation with homogeneous Dirichlet condition. Here we recall recently shown sharp results on interior regularity and on LpL_p-estimates up to the boundary, as well as recent H\"older estimates. This is supplied with new higher regularity estimates in L2L_2-spaces using a technique of Lions and Magenes, and higher LpL_p-regularity estimates (with arbitrarily high H\"older estimates in the time-parameter) based on a general result of Amann. Moreover, it is shown that an improvement to spatial CC^\infty -regularity at the boundary is not in general possible.Comment: 29 pages, updated version, to appear in a Springer Proceedings in Mathematics and Statistics: "New Perspectives in Mathematical Analysis - Plenary Lectures, ISAAC 2017, Vaxjo Sweden

    Elliptic Boundary Value Problems with Fractional Regularity Data: The First Order Approach

    Full text link
    We study well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable, and with boundary data in fractional Besov-Hardy-Sobolev (BHS) spaces. Our approach uses minimal assumptions on the coefficients, and in particular does not require De Giorgi-Nash-Moser estimates. Our results are completely new for the Hardy-Sobolev case, and in the Besov case they extend results recently obtained by Barton and Mayboroda. First we develop a theory of BHS spaces adapted to operators which are bisectorial on L2L^2, with bounded HH^\infty functional calculus on their ranges, and which satisfy L2L^2 off-diagonal estimates. In particular, this theory applies to perturbed Dirac operators DBDB. We then prove that for a nontrivial range of exponents (the identification region) the BHS spaces adapted to DBDB are equal to those adapted to DD (which correspond to classical BHS spaces). Our main result is the classification of solutions of the elliptic system divAu=0\operatorname{div} A \nabla u = 0 within a certain region of exponents. More precisely, we show that if the conormal gradient of a solution belongs to a weighted tent space (or one of their real interpolants) with exponent in the classification region, and in addition vanishes at infinity in a certain sense, then it has a trace in a BHS space, and can be represented as a semigroup evolution of this trace in the transversal direction. As a corollary, any such solution can be represented in terms of an abstract layer potential operator. Within the classification region, we show that well-posedness is equivalent to a certain boundary projection being an isomorphism. We derive various consequences of this characterisation, which are illustrated in various situations, including in particular that of the Regularity problem for real equations.Comment: Changed title and fixed some minor typos. To appear in the CRM Monograph Serie

    Optimal Approximation of Elliptic Problems II: Wavelet Methods

    Get PDF
    This talk is concerned with optimal approximations of the solutions of elliptic boundary value problems. After briefly recalling the fundamental concepts of optimality, we shall especially discuss best n-term approximation schemes based on wavelets. We shall mainly be concerned with the Poisson equation in Lipschitz domains. It turns out that wavelet schemes are suboptimal in general, but nevertheless they are superior to the usual uniform approximation methods. Moreover, for specific domains, i.e., for polygonal domains, wavelet methods are in fact optimal. These results are based on regularity estimates of the exact solution in a specific scale of Besov spaces

    Besov regularity for operator equations on patchwise smooth manifolds

    Full text link
    We study regularity properties of solutions to operator equations on patchwise smooth manifolds Ω\partial\Omega such as, e.g., boundaries of polyhedral domains ΩR3\Omega \subset \mathbb{R}^3. Using suitable biorthogonal wavelet bases Ψ\Psi, we introduce a new class of Besov-type spaces BΨ,qα(Lp(Ω))B_{\Psi,q}^\alpha(L_p(\partial \Omega)) of functions u ⁣:ΩCu\colon\partial\Omega\rightarrow\mathbb{C}. Special attention is paid on the rate of convergence for best nn-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on Ω\partial\Omega into BΨ,τα(Lτ(Ω))B_{\Psi,\tau}^\alpha(L_\tau(\partial \Omega)), 1/τ=α/2+1/21/\tau=\alpha/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double layer ansatz for Dirichlet problems for Laplace's equation in Ω\Omega.Comment: 42 pages, 3 figures, updated after peer review. Preprint: Bericht Mathematik Nr. 2013-03 des Fachbereichs Mathematik und Informatik, Universit\"at Marburg. To appear in J. Found. Comput. Mat

    Recent progress in elliptic equations and systems of arbitrary order with rough coefficients in Lipschitz domains

    Get PDF
    This is a survey of results mostly relating elliptic equations and systems of arbitrary even order with rough coefficients in Lipschitz graph domains. Asymptotic properties of solutions at a point of a Lipschitz boundary are also discussed
    corecore