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1. Introduction. We study the optimal approximation of the solution of an operator
equation

(1) A(u) = f,

where A is a boundedly invertible linear operator

(2) A : H → G

from a Hilbert space H into another Hilbert space G. We have in mind the more specific
situation of an elliptic operator equation, i.e.,

(3) A : Hs
0(Ω) → H−s(Ω), s > 0,

where Ω ⊂ Rd is a bounded Lipschitz domain. A typical example we shall primary be
concerned with is the Poisson equation

−4u = f in Ω(4)

u = 0 on ∂Ω.

Our aim is to answer the following fundamental questions:

• In which sense can we say that an approximation scheme is optimal?

• What happens in the special case of elliptic partial differential equations?

• Do there exist optimal bases and methods, respectively?

2. Basic Concepts. We use linear and nonlinear mappings Sn for the approximation of
the solution u to (1). Let us consider the worst case error

e(Sn, F,H) = sup
‖f‖F ≤1

‖A−1(f) − Sn(f)‖H,

where F is a normed (or quasi-normed) space, F ⊂ G. For a given basis B of H we
consider the class Nn(B) of all (linear or nonlinear) mappings of the form

Sn(f) =
n∑

k=1

ck hik ,

where the ck and the ik depend in an arbitrary way on f . Then the nonlinear widths
enon
n,C(S, F,H) are given by

enon
n,C(S, F,H) = inf

B∈BC

inf
Sn∈Nn(B)

e(Sn, F,H).
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Here BC denotes a set of Riesz bases for H where C indicates the stability of the basis.
We compare nonlinear approximations with linear approximations. Here we consider the
class Ln of all continuous linear mappings Sn : F → H,

Sn(f) =
n∑

i=1

Li(f) · h̃i

with arbitrary h̃i ∈ H. The worst case error of optimal linear mappings is given by

elinn (S, F,H) = inf
Sn∈Ln

e(Sn, F,H).

The third class of approximation methods that we study is the class of continuous
mappings Cn, given by arbitrary continuous mappings Nn : F → Rn and φn : Rn → H.
Again we define the worst case error of optimal continuous mappings by

econt
n (S, F,H) = inf

Sn∈Cn

e(Sn, F,H),

where Sn = φn ◦Nn. These numbers, or slightly different numbers, were, e.g., studied by
[4, 5, 6]. The three different widths are related as follows:

Theorem 1. Assume that S : F → H with Hilbert spaces F and H. Then, under some

additional technical conditions

(5) elin
n (S, F,H) = econt

n (S, F,H) � enon
n,C(S, F,H).

Therefore we conclude that optimal linear mappings have the same order as the best
n–term approximation.
3. Elliptic Problems. The next step is to apply this general concept to the special
case of elliptic operator equations. It turns out that nonlinear approximation methods
do not yield a better rate of convergence compared with linear schemes. The order of
convergence only depends on the smoothness of the right–hand side.

Theorem 2. Assume that S : H−s(Ω) → Hs
0(Ω) is an isomorphism. Here Ω ⊂ Rd is a

bounded Lipschitz domain. Then for all C ≥ 1

(6) elin
n (S,H−s+t(Ω), Hs(Ω)) � enon

n,C(S,H−s+t(Ω), Hs(Ω)) � n−t/d.

However, there is an important difference between regular and nonregular elliptic
problems. In the regular case, a Galerkin scheme based on a sequence of uniformly refined
spaces is sufficient to obtain the optimal order of convergence, whereas for the nonregular
case the optimal linear method requires the precomputation of a suitable basis which is
usually a prohibitive task. This leads us to the following problem: Can we find a basis for
which best n–term approximation produces the optimal order of convergence, without any
precomputation? We especially focus on a wavelet basis Ψ = {ψλ, λ ∈ J }. The indices
λ ∈ J typically encode several types of information, namely the scale often denoted |λ|,
the spatial location and also the type of the wavelet. Ψ is assumed to fulfill the following
requirements:
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• the wavelets are local in the sense that

diam(suppψλ) � 2−|λ|, λ ∈ J ;

• the wavelets satisfy the cancellation property

|〈v, ψλ〉| <∼ 2−|λ|em‖v‖H em(suppψλ),

where m̃ denotes some suitable parameter;

• the wavelet basis induces characterizations of Besov spaces of the form

‖f‖Bs
q(Lp(Ω)) �




∞∑

|λ|=j0

2j(s+d(
1
2
− 1

p
))q




∑

λ∈J ,|λ|=j

|〈f, ψ̃λ〉|
p




q/p




1/q

, s > d

(
1

p
− 1

)

+

where Ψ̃ = {ψ̃λ : λ ∈ J } denotes the dual basis, 〈ψλ, ψ̃ν〉 = δλ,ν , λ, ν ∈ J .

It turns out that for the special case of the Poisson equation (4) best n–term wavelet
approximation is still suboptimal, but nevetheless superior when compared with uniform
schemes. Moreover, for more specific domains, i.e., for polygon domains, wavelet methods
are indeed optimal.

Theorem 3. For the problem (4), best n-term wavelet approximation produces the worst

case error estimate:

(7) e(Sn, H
t−1(Ω), H1(Ω)) ≤ C n−( (t+1)

3
−%)/d for all % > 0,

provided that 1
2
< t ≤ 3d

2(d−1)
− 1.

Theorem 4. For problem (4) in a polygonal domain in R2, best n-term wavelet approxi-

mation is almost optimal in the sense that

(8) e(Sn, H
t−1(Ω), H1(Ω)) ≤ Cn−(t−%)/2, for all % > 0.

The proofs of these results are based on regularity estimates of the exact solution of
(4) in specific scales of Besov spaces as developed in [1, 2].

Details of the analysis outlined above can be found in [3].
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