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Abstract This is a survey of results mostly relating elliptic equations and systems of
arbitrary even order with rough coefficients in Lipschitz graph domains. Asymptotic
properties of solutions at a point of a Lipschitz boundary are also discussed.
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0 Introduction

Results on the regularity of solutions up to the boundary of a domain play a very
important role in the theory of linear elliptic equations and systems. The following
classical example serves as an illustration.
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34 V. Maz’ya, T. Shaposhnikova

Consider the Dirichlet problem

{
�u = 0 in �,

Tr u = f on ∂�,

where � is a bounded domain with smooth boundary in R
n and Tr u stands for the

boundary value (trace) of u. Let u ∈ W 1
p(�), 1 < p < ∞, that is

‖u‖W 1
p(�) :=

⎛
⎝∫

�

(|∇u|p + |u|p) dx

⎞
⎠

1/p

< ∞,

and let f belong to the Besov space B1−1/p
p (∂�) with the norm

⎛
⎝ ∫

∂�

∫
∂�

| f (x) − f (y)|p

|x − y|n+p−2 dσx dσy +
∫
∂�

| f (x)|pdσx

⎞
⎠

1/p

.

It is well-known that

Tr W 1
p(�) = B1−1/p

p (∂�).

Moreover, the harmonic extension u of f ∈ B1−1/p
p (∂�) belongs to W 1

p(�) and the

norm of u in W 1
p(�) is equivalent to the above norm in B1−1/p

p (∂�).
This fact might be the starting point for the following topics of interest:

• Consider the Dirichlet problem for a general elliptic operator with variable coef-
ficients and study the impact of low regularity assumptions for the coefficients on
solvability in Sobolev spaces.

• Instead of the domain with smooth boundary consider a domain in a more gen-
eral class and study the effect of irregularities of ∂� on solvability properties of
boundary value problems.

• Understand the relation between the smoothness of boundary data and the smooth-
ness of solutions.

Another important theme, somehow related to these, is:

• Describe the local behaviour of solutions near a boundary point or interior point
of the domain � under weak assumptions on the coefficients and the geometry of
the domain.

In what follows we survey results in the directions just listed which concern elliptic
equations and systems of arbitrary even order with rough coefficients in Lipschitz
graph domains. Most of these results were obtained by ourselves and our collabora-
tors during the last decade. The papers specific for differential operators of the second
order are usually only mentioned.
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Recent progress in elliptic equations 35

Here is the plan of the article. Section 1 is dedicated to weak solutions of the
Dirichlet problem with Besov boundary data, with the coefficients of the differen-
tial operators and the unit normal to the boundary with small local mean oscillation.
Results of a similar nature for the Stokes system are discussed in Sect. 2. In Sect. 3,
strong solutions in Sobolev spaces are considered. Here sharp additional conditions on
the Lipschitz boundary are reviewed. In particular, in Sect. 3.2 we speak about strong
solvability of the Stokes system. Section 4 concerns asymptotic formulas for solutions
near an isolated point of the Lipschitz boundary and at a point in the domain.

1 Weak solvability of the Dirichlet problem for higher order elliptic systems
in Lipschitz domains with boundary data in Besov classes

1.1 Background

The present section is mostly based on results of the paper by Maz’ya et al. [51,52].
We start by mentioning earlier works.

The basic case of the Laplacian in arbitrary Lipschitz graph domains in R
n , is

treated in the work of Dahlberg and Kenig [18], in the case of L p-data, and Jerison
and Kenig [36], in the case of data in the Besov space Bs

p with 0 < s < 1. The
local regularity in the Sobolev class W 2

p of solutions to second order equations with
coefficients in VMO ∩ L∞ was established by Chiarenza et al. [15].

In spite of substantial progress in recent years, there remain many basic open ques-
tions for higher order equations, even in the case of constant coefficient operators in
Lipschitz domains. Recall that a domain � is called Lipschitz graph if its boundary can
be locally described by means of (appropriately rotated and translated) graphs of real-
valued Lipschitz functions. One significant problem is to determine the sharp range
of p’s for which the Dirichlet problem for strongly elliptic systems with L p-boundary
data is well-posed. Pipher and Verchota [63] have developed a L p-theory for real,
constant coefficient, higher order systems

L =
∑

|α|=2m

Aα Dα,

when p is near 2, i.e., 2 − ε < p < 2 + ε with ε > 0 depending on the Lipschitz
character of �. On p. 2 of [63] the authors ask whether the L p-Dirichlet problem for
these operators is solvable in a given Lipschitz domain for p ∈ (2 − ε,

2(n−1)
n−3 + ε),

and a positive answer has been given by Shen [66]. Let us also mention the work [2] of
Adolfsson and Pipher on the Dirichlet problem for the biharmonic operator in arbitrary
Lipschitz domains and with data in Besov spaces, as well as [71] where Verchota for-
mulates and solves a Neumann-type problem for the bi-Laplacian in Lipschitz domains
and with boundary data in L2. Mitrea et al. [59] treat the Dirichlet problem for strongly
elliptic systems of second order in an arbitrary Lipschitz subdomain � of a (smooth)
Riemannian manifold and with boundary data in Bs

p(∂�), when 2 − ε < p < 2 + ε

and 0 < s < 1.
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36 V. Maz’ya, T. Shaposhnikova

We mention some recent results on the second order elliptic equations and systems
with coefficients in VMO due to Di Fazio [23], Caffarelli and Peral [12], Stroffolini
[68], Guidetti [32], Auscher and Qafsaouti [9], for higher order equations see also
Palagachev and Softova [62]. Recently Dindoš et al. obtained interesting facts con-
cerning the solvability of the Dirichlet problem with BMO boundary data for second
order scalar uniformly elliptic equations with real coefficients on a very general class
of domains, including Lipschitz and polyhedral domains [24]. Deep results in the
L2-theory of the Dirichlet problem for second order uniformly elliptic equations were
achieved by Aucher, Axelsson, Hofman, Lacey, McIntosh, Tchamitchian et al., which
are connected, in particular, with Kato’s square root problem, see [6–8] and references
there.

1.2 Domains and function spaces

Let us turn to the article [51]. We make no notational distinction between spaces of
scalar-valued functions and their natural counterparts for vector-valued functions.

It has been shown by Hofmann et al. [34] that � is a Lipschitz graph domain if and
only if it has finite perimeter in the sense of De Giorgi (see [11,21,28]) and (i) there are
continuous (or, equivalently, smooth) vector fields that are transversal to the boundary
and (ii) the necessary condition ∂� = ∂� is fulfilled. An equivalent characterization
obtained in [34] is as follows. A bounded nonempty domain of finite perimeter for
which ∂� = ∂� is a Lipschitz graph domain if and only if

inf
{‖ν − ω‖L∞(∂�) : ω = (ω1, . . . , ωn) ∈ C(∂�), |ω| = 1 on ∂�

}
<

√
2

with ν being the outward normal to ∂�.
Everywhere in this section we assume that � is a Lipschitz graph domain in R

n ,
with compact closure � and with the outward unit normal ν = (ν1, . . . , νn). Let m be
an integer. Consider the operator

L(X, DX )U :=
∑

|α|=|β|=m

Dα(Aαβ(X)DβU), X ∈ �, (1.1)

with the data

∂kU
∂νk

= gk on ∂�, 0 ≤ k ≤ m − 1. (1.2)

The coefficients Aαβ are square matrices with measurable, complex-valued entries,
for which there exists κ > 0 such that

∑
|α|=|β|=m

‖Aαβ‖L∞(�) ≤ κ−1 (1.3)
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Recent progress in elliptic equations 37

and the coercivity condition

Re
∫
�

∑
|α|=|β|=m

〈Aαβ(X)Dβ V (X), Dα V (X)〉 d X ≥ κ
∑

|α|=m

‖Dα V ‖2
L2(�)

holds for all complex vector-valued functions V ∈ C∞
0 (�). By the Lax-Milgram

lemma, this condition guarantees the unique solvability in the variational sense of the
Dirichlet problem for the operator L with zero boundary conditions.

Let U belong to the usual Sobolev space W m
p (�). It is natural to take

∂kU
∂νk

:=
∑
|α|=k

k!
α! να Tr [DαU], 0 ≤ k ≤ m − 1,

where να := ν
α1
1 , . . . , ν

αn
n if α = (α1, . . . , αn). Now, let p ∈ (1,∞), a ∈ (−1/p, 1−

1/p) be fixed and let

ρ(X) := dist (X, ∂�).

The space W m,a
p (�) is defined as the space of vector-valued functions for which

∑
|α|≤m

∫
�

|DαU(X)|pρ(X)pa d X < ∞. (1.4)

Needless to say, W m,a
p (�) is the Sobolev space W m

p (�) when a = 0. Further we let

W̊ m,a
p (�) be the closure of C∞

0 (�) in W m,a
p (�). The dual space is given by

W −m,−a
p′ (�) :=

(
W̊ m,a

p (�)
)∗

.

(In the case a = 0 one uses the alternative notations W̊ m
p (�) and W −m

p′ (�).)

For anyU ∈ W m,a
p (�) the traces of DαU , 0 ≤ |α| ≤ m −1, exist in Bs

p(∂�), where
s := 1 − a − 1/p, 0 < s < 1 (see [29] for a = 0 and [70]). Recall that f ∈ L p(∂�)

belongs to Bs
p(∂�) if and only if

∫
∂�

∫
∂�

| f (X) − f (Y )|p

|X − Y |n−1+sp
dσX dσY < ∞. (1.5)

The above definition takes advantage of the Lipschitz manifold structure of ∂� which
allows one to define smoothness spaces of index less than 1. This approach is no longer
effective when the order of smoothness exceeds 1.

Let us illustrate the necessity of working with boundary data different from those
in spaces of traces of usual Sobolev spaces by considering the Dirichlet problem for
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38 V. Maz’ya, T. Shaposhnikova

the biharmonic operator

U ∈ W 2
2 (�), �2 U = 0 in �, (1.6)

Tr U = g0 on ∂�, 〈ν, Tr [∇U]〉 = g1 on ∂�. (1.7)

One might be tempted to believe that a natural class of boundary data is B3/2
2 (∂�) ×

B1/2
2 (∂�), where by definition B3/2

2 (∂�) and B1/2
2 (∂�) are the spaces of traces of

functions in W 2
2 (�) and W 1

2 (�), respectively.
However, this formulation has serious drawbacks. The first one is that the mapping

W 2
2 (�) � U �→ 〈ν, Tr [∇U]〉 ∈ B1/2

2 (∂�)

is generally unbounded. Setting U = xi , we see that the continuity of this mapping
would imply ν ∈ B1/2

2 (∂�). This fails even for the square S = [0, 1]2.
Secondly, the problem (1.6), (1.7) is not always solvable when (g0, g1) is an arbi-

trary pair in B3/2
2 (∂�) × B1/2

2 (∂�). Indeed, consider the case � = S and g0 = 0,
g1 = 1. It is known and follows from Kondratiev’s theory [40] that the main term of the
asymptotics near the origin of any solution U in W 2

2 (S) is given in polar coordinates
(r, θ) by

2r

π + 2

((
θ − π

2

)
sin θ − θ cos θ

)
.

Since this function does not belong to W 2
2 (S), there is no solution in this space.

A new point of view has been introduced by Whitney [72] who considered higher
order Lipschitz spaces on arbitrary closed sets. An extension of this circle of ideas
pertaining to the full scale of Besov and Sobolev spaces on irregular subsets of R

n can
be found in the book by Jonsson and Wallin [38]. The authors of [51] further refined
this theory in the context of Lipschitz domains. The description of higher order Besov
spaces on the boundary of a Lipschitz domain � ⊂ R

n in [51] runs as follows.
For m ∈ N, p ∈ (1,∞), s ∈ (0, 1), the space Ḃm−1+s

p (∂�) is introduced as the
closure of

{
(Dα V|∂�)|α|≤m−1 : V ∈ C∞

0 (Rn)
}

in Bs
p(∂�). An equivalent characterization of Ḃm−1+s

p (∂�) which involves higher
order Taylor remainder in place of f (X) − f (Y ) in (1.5) runs as follows (see Sect.
7.1 of [51]).

123



Recent progress in elliptic equations 39

For a collection of families ḟ = { fα}|α|≤m−1 of measurable functions defined on
∂�, there is the equivalence of norms

‖ ḟ ‖Ḃm−1+s
p (∂�)

∼
∑

|α|≤m−1

‖ fα‖L p(∂�) (1.8)

+
∑

|α|≤m−1

⎛
⎝ ∫

∂�

∫
∂�

|Rα(X, Y )|p

|X − Y |p(m−1+s−|α|)+n−1
dσX dσY

⎞
⎠

1/p

,

where

Rα(X, Y ) := fα(X) −
∑

|β|≤m−1−|α|

1

β! fα+β(Y ) (X − Y )β, X, Y ∈ ∂�. (1.9)

Here and elsewhere by the equivalence a ∼ b we mean that c1a ≤ b ≤ c2a with
positive constants c1, c2 depending on n, m, p, s and similar parameters.

It is easy to prove that Ḃm−1+s
p (∂�) is a Banach space. Also, trivially, for any

constant κ > 0,

∑
|α|≤m−1

‖ fα‖L p(∂�) +
∑

|α|≤m−1

⎛
⎜⎜⎝

∫∫
X, Y ∈ ∂�
|X − Y | < κ

|Rα(X, Y )|p

|X − Y |p(m−1+s−|α|)+n−1
dσX dσY

⎞
⎟⎟⎠

1/p

is an equivalent norm on Ḃm−1+s
p (∂�).

In order to formulate the trace and extension theorem for the spaces Ḃm−1+s
p (∂�),

we first give its analogue for lower smoothness spaces which is essentially due to [70].

Lemma 1 For each 1 < p < ∞, −1/p < a < 1 − 1/p and s := 1 − a − 1/p, the
trace operator

Tr : W 1,a
p (�) −→ Bs

p(∂�) (1.10)

is well-defined, linear, bounded, onto and has W̊ 1,a
p (�) as its null-space. Furthermore,

there exists a linear, continuous mapping

E : Bs
p(∂�) −→ W 1,a

p (�), (1.11)

called extension operator, such that Tr ◦ E = I (i.e., a bounded, linear right-inverse
of trace).

For higher smoothness see the following assertion which is Proposition 7.3 in [51].
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40 V. Maz’ya, T. Shaposhnikova

Proposition 1 For 1 < p < ∞, −1/p < a < 1 − 1/p, s := 1 − a − 1/p ∈ (0, 1)

and m ∈ N, define the higher order trace operator

trm−1 : W m,a
p (�) −→ Ḃm−1+s

p (∂�) (1.12)

by setting

trm−1U :=
{

i |α| Tr [Dα U]
}

|α|≤m−1
, (1.13)

where the traces in the right-hand side are taken in the sense of Lemma 1. Then (1.12)
is a well-defined, linear, bounded operator, which is onto and has W̊ m,a

p (�) as its
null-space. Moreover, it has a bounded, linear right-inverse, i.e., there exists a linear,
continuous operator

E : Ḃm−1+s
p (∂�) −→ W m,a

p (�), (1.14)

such that

ḟ = { fα}|α|≤m−1 ∈ Ḃm−1+s
p (∂�) implies trm−1(E ḟ ) = fα, (1.15)

i.e. trm−1 ◦ E = I .

Now, the boundary data {gk}0≤k≤m−1 in the Dirichlet problem (1.2) are understood
in the following sense:

there exists an array ḟ = { fα}|α|≤m−1 ∈ Ḃm−1+s
p (∂�) such that

gk =
∑
|α|=k

k!
α! να fα for each 0 ≤ k ≤ m − 1.

(1.16)

The set of all families of {gk} is a Banach space denoted by Ẇ m−1+s
p (∂�).

The space takes a particularly simple form when m = 2. To describe it, we need
the notation for the tangential derivative ∂/∂τ jk given by

∂

∂τ jk
:= ν j

∂

∂xk
− νk

∂

∂x j
, 1 ≤ j, k ≤ n, (1.17)

and the tangential gradient on the surface ∂�

∇tan :=
⎛
⎝∑

j

ν j∂/∂τ jk

⎞
⎠

1≤k≤n

.

Then, for each Lipschitz graph domain � ⊂ R
n and each 1 < p < ∞, s ∈ (0, 1),

Ẇ 1+s
p (∂�)={(g0, g1) ∈ L1

p(∂�) ⊕ L p(∂�) : νg1+∇tan g0 ∈ Bs
p(∂�)}. (1.18)
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Recent progress in elliptic equations 41

This has been conjectured to hold (when s = 1 − 1/p) by Buffa and Geymonat on
p. 703 of [10] and proved in [51], Corollary 7.11.

1.3 Solvability of the Dirichlet problem in W m,a
p (�)

Consider the Dirichlet problem for the operator (1.1)

⎧⎨
⎩
L(X, DX )U = F in �,

∂kU
∂νk

= gk on ∂�, 0 ≤ k ≤ m − 1.

The following assertion is proved in [51].

Proposition 2 If U ∈ W m,a
p (�) then, necessarily,

F ∈ W −m,a
p (�), g := {gk}0≤k≤m−1 ∈ Ẇ m−1+s

p (∂�)

and, moreover,

‖g‖Ẇ m−1+s
p (∂�)

+ ‖F‖W−m,a
p (�)

≤ C‖U‖W m,a
p (�).

Results in the converse direction were also established in [51]. The main hypothesis
in [51] requires that, at small scales, the so called local mean oscillations of the unit
normal to ∂� and of the coefficients of the differential operator L(X, DX ) are not
too large, relative to the Lipschitz constant of the domain �, the ellipticity constant of
L(X, DX ), and the indices of the corresponding Besov space.

We use the following notation for the mean value of a function g on a measurable
set E :

∫
−
E

g(x)dx = 1

|E |
∫
E

g(x)dx

with |E | standing for the Lebesgue measure of the set E .
By the local mean oscillation of F ∈ L1(�) we understand

{F}Osc(�) := lim
ε→0

⎛
⎜⎝ sup

{Bε}�

∫
−

Bε∩�

∫
−

Bε∩�

| F(x) − F(y) | dxdy

⎞
⎟⎠,

where {Bε}� stands for the family of balls of radius ε centered at points of �. Similarly,
the local mean oscillation of f ∈ L1(∂�) is

{ f }Osc(∂�) := lim
ε→0

⎛
⎜⎝ sup

{Bε}∂�

∫
−

Bε∩∂�

∫
−

Bε∩∂�

| f (x) − f (y) | dsx dsy

⎞
⎟⎠,
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42 V. Maz’ya, T. Shaposhnikova

where {Bε}∂� is the collection of n-dimensional balls of radius ε with centers on ∂�.
We recall that a locally integrable function g in R

n belongs to the space BMO(Rn)

if

‖g‖BMO(Rn) := supB

∫
−
B

|g(x) −
∫
−
B

g(y)dy| dx

is finite, where the supremum is taken over all balls B in R
n . The above supremum

defines a seminorm in BMO(Rn).
Note that smallness of the local mean oscillation of the normal does not imply

smallness of the Lipschitz constant of ∂�. Indeed, let

� = {(x, y) ∈ R
2, y > ϕε(x)},

where

ϕε(x) = x sin
(
ε log |x |−1

)
.

Then ‖ϕ′
ε‖L∞(R) ∼ 1, while ‖ϕ′

ε‖BMO(R) ≤ C ε.
Let � ⊂ R

n be a bounded Lipschitz domain whose Lipschitz constant does not
exceed M , and assume that the operator L(X, DX ) of order 2m is strongly elliptic and
has bounded, measurable complex coefficients. Consider the Dirichlet problem

⎧⎪⎪⎨
⎪⎪⎩

∑
|α|=|β|=m

Dα(Aαβ(X) Dβ U) = F for X ∈ �,

∂kU
∂νk

= gk on ∂�, 0 ≤ k ≤ m − 1,

(1.19)

with F ∈ W −m,a
p (�) and g := {gk}0≤k≤m−1 in Ẇ m−1+s

p (∂�).
The main result in [51] runs as follows.

Theorem 1 There exists a positive constant C, depending only on M and the elliptic-
ity constant of L, such that: For each p ∈ (1,∞), s ∈ (0, 1) and a := 1 − s − 1/p,
the problem (1.19) has a unique solution U ∈ W m,a

p (�) if the coefficient matrices Aαβ

and the exterior normal vector ν to ∂� satisfy

{ν}Osc(∂�) +
∑

|α|=|β|=m

{Aαβ}Osc(�)

≤ C s(1 − s)
(

pp′ + s−1(1 − s)−1
)−1

. (1.20)

For second order operators the factor s(1 − s) in the last inequality can be removed.
Furthermore, there exists C = C(∂�, Aαβ, p, s) > 0 such that

‖U‖W m,a
p (�) ≤ C

(
‖g‖Ẇ m−1+s

p (∂�)
+ ‖F‖W−m,a

p (�)

)
. (1.21)
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Recent progress in elliptic equations 43

Let BMO and VMO stand, respectively, for the space of functions of bounded
mean oscillations and the space of functions of vanishing mean oscillations (consid-
ered either on �, or on ∂�). We recall that the space VMO is defined as the closure
in BMO of the space of uniformly continuous functions. It can be proved that

{F}Osc ∼ dist(F, VMO),

where the distance is taken in BMO . Thus the small oscillation condition introduced
in Theorem 1 holds if

dist (ν, VMO) +
∑

|α|=|β|=m

dist (Aαβ, VMO)

≤ C s(1 − s)
(

pp′ + s−1(1 − s)−1
)−1

.

This is the case if, e.g., ‖ν‖BMO +∑ ‖Aαβ‖BMO is sufficiently small hence, trivially,
if ν ∈ VMO(∂�) and Aαβ belong to VMO(�), irrespective of p, s, L and �.

Other examples of domains satisfying the hypotheses of Theorem 1 are: Lipschitz
graph domains with a sufficiently small Lipschitz constant, relatively to the expo-
nents p and s. In particular, Lipschitz graph polyhedral domains with dihedral angles
sufficiently close to π , depending on p and s.

As a further comment to Theorem 1, we note that the innovation in [52] that allows to
consider boundary data in higher-order Besov spaces, is the systematic use of weighted
Sobolev spaces. In relation to the standard Besov scale, we would like to point out that

W m,a
p (�) ↪→ Bm−1+s+1/p

p (�) for a = 1 − s − 1

p
∈ (0, 1 − 1/p)

and

Bm−1+s+1/p
p (�) ↪→ W m,a

p (�) for a = 1 − s − 1

p
∈ (−1/p, 0).

According to Theorem 1, for a Lipschitz ∂�, we have

∑
|α|≤m−1

‖Tr [Dα U]‖Bs
p(∂�) ∼

⎛
⎝∑

|α|≤m

∫
�

ρ(X)p(1−s)−1 |DαU(X)|p d X

⎞
⎠

1/p

uniformly in U satisfying L(X, DX )U = 0 in �.
This generalizes the trace and extension result by Uspenskiı̆ [70] according to which

‖Tr u‖Bs
p(Rn−1) ∼

⎛
⎜⎝
∫
R

n+

x p(1−s)−1
n |∇u(x ′, xn)|pdx

⎞
⎟⎠

1/p
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44 V. Maz’ya, T. Shaposhnikova

if 1 < p < ∞ and 0 < s < 1, for u harmonic in the upper-half space.
Of course, condition (1.3) ensures that the left-hand side of (1.20) is always finite,

but it is its actual size which determines whether for a given pair of indices s, p, the
problem (1.2), (1.4), (1.16) is well-posed. Note that the maximum value that the right-
hand side of (1.20) takes for 0 < s < 1 and 1 < p < ∞ occurs precisely when p = 2
and a := 1 − s − 1/p = 0. As (1.20) shows, the set of pairs (s, 1/p) ∈ (0, 1)× (0, 1)

for which (1.2) is well-posed in the context of Theorem 1 exhausts the entire square
(0, 1) × (0, 1) as the distance from ν and the Aαβ ’s to VMO tends to zero (while the
Lipschitz constant of � and the ellipticity constant of L stay bounded).

The next assertion, obtained in [51], ensures the unique solvability of the problem
(1.19) under very general assumptions on ∂� and the coefficients provided that p is
close to 2 and a is small.

Theorem 2 Let � ⊂ R
n be a bounded Lipschitz domain whose Lipschitz constant

does not exceed M, and assume that the operator L(X, DX ) of order 2m is strongly
elliptic, and has bounded, measurable (complex) coefficients. Then there exists a pos-
itive ε, depending only on M and the ellipticity constant of L, such that:

For each p ∈ (1,∞), s ∈ (0, 1) and a := 1 − s − 1/p, the Dirichlet problem for L
with F ∈ W −m,a

p (�) and g := {gk}0≤k≤m−1 in Ẇ m−1+s
p (∂�) has a unique solution

U ∈ W m,a
p (�) if

|2−1 − p−1| < ε and |a| < ε,

Recently Agranovich [3] obtained this type of results (|p − 2| is small and 0 <

s < 1) for both Dirichlet and Neumann problems for a subclass of strongly elliptic
systems with Douglis–Nirenberg structure in bounded Lipschitz domains. Unlike The-
orem 2 on regularity in the weighted Sobolev space W m,a

p (�), the regularity results
in [3] concern solutions in spaces of Bessel potentials Hσ

p and Besov spaces Bσ
p with

uniformly Lipschitz coefficients. His approach is based on regularity methods due to
Savaré as well as on author’s developement of interpolation theory of spaces Hσ

p and
Bσ

p with σ of arbitrary sign (see [4] for more details), where the essential role is played
by an extension operator from � to R

n introduced by Rychkov [65]. To be specific,
Agranovich considered a Douglis–Nirenberg system with the principal part L0 whose
entries are given by

L j,k(x, D) =
∑

|α| = m j ,|β| = mk

Dα
(

a j,k
α,β(x) Dβ

)
.

The coefficients a j,k
α,β(x) are complex-valued and no formal self-adjointness of the

operatot L j,k is assumed. The principal symbol of the system, i.e. the matrix L0(x, ξ)

with entries L j,k(x, ξ), is strongly elliptic:

Re L0(x, ξ) ≥ C �(ξ),
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where �(ξ) is the diagonal matrix with entries |ξ |2m j on the main diagonal, j =
1, . . . , l, and C is a positive constant. The Savaré method requires the additional
condition

Re
∑
j,k

∑
|α| = m j ,|β| = mk

a j,k
α,β(x)ζ k

β ζ
j

α ≥ 0

for any numbers ζ k
α at all points x ∈ �.

Theorem 2 can be viewed as a far reaching extension of a well-known theorem of
Meyers, who treated the scalar case m = 1 in [58]. The example given in Sect. 5 of
[58] shows that if the coefficients Aαβ are merely bounded, then p has to be close to
2, even when ∂� is smooth. For higher order operators we make use of an example
due to [46] (cf. also the contemporary article by De Giorgi [22]). Specifically, when
m ∈ N is even, consider the divergence-form equation

�
1
2 m−1L4 �

1
2 m−1U = 0 in � := {X ∈ R

n : |X | < 1}, (1.22)

where L4 is the fourth order operator

L4(X, DX )U := a �2U + b
n∑

i, j=1

�

(
Xi X j

|X |2 ∂i∂ j U
)

+ b
n∑

i, j=1

∂i∂ j

(
Xi X j

|X |2 �U
)

+c
n∑

i, j,k,l=1

∂k∂l

(
Xi X j Xk Xl

|X |4 ∂i∂ j U
)

. (1.23)

Obviously, the coefficients of L4(X, DX ) are bounded, and if the parameters a, b, c ∈
R, a > 0, are chosen such that b2 < ac then L along with �

1
2 m−1L4 �

1
2 m−1 are

strongly elliptic. It has been observed in [46] that the function U(X) := |X |θ+m−2 ∈
W m

2 (�) has TrU ∈ C∞(∂�) and is a weak solution of (1.22) for the choice

θ := 2 − n

2
+
√

n2

4
− (n − 1)(bn + c)

a + 2b + c
. (1.24)

Thus, if

a := (n − 2)2 + ε, b := n(n − 2), c := n2, ε > 0,

the strong ellipticity condition is satisfied and θ = θ(ε) becomes

2 − n/2 + n ε1/2/2
(

4(n − 1)2 + ε
)1/2

.

However, U ∈ W m
p (�) if and only if p < n/(2 − θ(ε)), and the bound n/(2 − θ(ε))

approaches 2 when ε → 0. An analogous example can be produced when m > 1 is
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odd, starting with a sixth order operator L6(X, DX ) from [46]. In the above context,
given that W 1

n (�) ↪→ VMO(�), it is significant to point out that both for the example
in [58], when n = 2, and for (1.22) when n ≥ 3, the coefficients have their gradients
in weak-Ln , yet they fail to belong to W 1

n (�).
We conclude this subsection with a remark pertaining to the presence of lower order

terms. More specifically, in view of Theorem 1, a standard perturbation argument (cf.,
e.g., [35]) proves the following. Assume that

A(X, DX )U :=
∑

0≤|α|,|β|≤m

Dα(Aαβ(X) DβU), X ∈ �, (1.25)

where the principal part of A(X, DX ) satisfies the hypotheses made in Theorem 1
and the coefficients of the lower order terms are bounded. Then, assuming that (1.20)
holds, the Dirichlet problem (1.19) is Fredholm with index zero in the sense that the
operator

W m,a
p (�) � U �→

(
A(X, DX )U , {∂kU/∂νk}0≤k≤m−1

)
∈W −m,a

p (�)⊕Ẇ m−1+s
p (∂�)

is Fredholm. Furthermore, the estimate

‖U‖W m,a
p (�) ≤ C

(
‖F‖W−m,a

p (�)
+ ‖g‖Ẇ m−1+s

p (∂�)
+ ‖U‖L p(�)

)
(1.26)

holds for any solution U ∈ W m,a
p (�) of (1.19).

1.4 Comments on tools used in the proof of Theorem 1

One difficulty linked with the case m > 1 arises from the way the norm

⎛
⎝∑

|α|≤m

∫
�

|DαU(X)|pρ(X)pa d X

⎞
⎠

1/p

(1.27)

behaves under a change of variables

� : � = {(X ′, Xn) : Xn > ϕ(X ′)} → R
n+

used to flatten the Lipschitz surface ∂�. When m = 1, a simple bi-Lipschitz change
of variables such as � � (X ′, Xn) �→ (X ′, Xn − ϕ(X ′)) ∈ R

n+ will do, but matters
are considerably more subtle in the case m > 1. The extension operator used in [51]
was introduced by Nečas (in a different context; cf. p. 188 in [61]) and rediscovered
by Maz’ya and Shaposhnikova [56] (see also [57], and later by Dahlberg et al. (cf.
[16] and the discussion in [19]), and Hofmann and Lewis [33].

The extension operator in question is defined in the following way. Fix a smooth,
radial, decreasing, even, non-negative function ζ in R

n−1 such that ζ(t) = 0 for |t | ≥ 1
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and
∫

Rn−1

ζ(t) dt = 1. (1.28)

(For example, ζ(t) := c exp (−1/(1 − |t |2)+) for a suitable c.) Define the extension
operator T by

(T ϕ)(x ′, xn) :=
∫

Rn−1

ζ(t)ϕ(x ′ + xnt) dt, (x ′, xn) ∈ R
n+, (1.29)

acting on functions ϕ from L1,loc(R
n−1).

The following two estimates provide useful properties of the operator T .

(i) For each multi-indices α with |α| > 1 there exists c > 0 such that

∣∣Dα
x (T ϕ)(x)

∣∣ ≤ c x1−|α|
n ‖∇ϕ‖BMO(Rn−1), ∀ x = (x ′, xn) ∈ R

n+.

(ii) If ∇x ′ϕ ∈ BMO(Rn−1) then ∇(T ϕ) ∈ BMO(Rn+) and

‖∇(T ϕ)‖BMO(Rn+) ≤ c ‖∇x ′ϕ||BMO(Rn−1).

Another ingredient in the proof of Theorem 1 is the derivation of estimates for
Dα

x Dβ
y G(x, y) where G is the Green matrix of the operator

L(Dx ) =
∑

|α|=2m

Aα Dα
x ,

i.e. the unique solution of the boundary-value problem

⎧⎪⎨
⎪⎩

L(Dx )G(x, y) = δ(x − y)Il for x ∈ R
n+,(

∂ j

∂x j
n

G

)
((x ′, 0), y) = 0 Il for x ′ ∈ R

n−1, 0 ≤ j ≤ m − 1,

where y ∈ R
n+ is regarded as a parameter. The methods employed in earlier works are

based on explicit representation formulas for G(x, y) and cannot be adapted to the
case of non-symmetric, complex coefficient, higher order systems. The approach in
[51] consists of proving that the residual part R(x, y) := G(x, y) − �(x − y), where
� is a fundamental matrix for L(Dx ), has the property

‖Dα
x Dβ

y R(x, y)‖ ≤ C |x − ȳ|−n

for |α| = |β| = m, x, y ∈ R
n+, where ȳ := (y′,−yn) is the reflection of the point

y ∈ R
n+ with respect to ∂R

n+.
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2 The Stokes system

By Bs
p,q(Rn) we denote the space of functions in R

n having the finite norm

‖u‖Bs
p,q (Rn) =

⎛
⎝ ∫

Rn

‖�h∇[s]u‖q
L p(Rn)

|h|−n−q{s} dh

⎞
⎠

1/q

+ ‖u‖W [s]
p (Rn)

, (2.1)

where {s} > 0, p, q ≥ 1, �hv = v(·+h)−v(·), and ∇[s] is the vector of all derivatives
of order [s]. For p = q we use the notation Bs

p(R
n).

The Besov scale Bs
p,q(�) is defined by restricting the (tempered) distributions from

the corresponding spaces in R
n to the open set �. Also, Bs

p,q(∂�) stands for the Besov
class on the Lipschitz manifold ∂�, obtained by transporting (via a partition of unity
and pull-back) the standard scale Bs

p,q(Rn−1).

2.1 Weak solvability in Besov and Triebel-Lizorkin spaces

Here we discuss an extension of the material described in Sect. 1 to the Dirichlet
problem for the Stokes system, following the article [52]. This problem is considered
in more general function scales than in Sect. 1.

Consider the Stokes system in an arbitrary bounded Lipschitz domain � ⊂ R
n ,

n ≥ 2,

�u − ∇π = f ∈ B
s+ 1

p −2
p,q (�), div u = g ∈ B

s+ 1
p −1

p,q (�),

u ∈ B
s+ 1

p
p,q (�), π ∈ B

s+ 1
p −1

p,q (�), Tr u = h ∈ Bs
p,q(∂�),

(2.2)

subject to the (necessary) compatibility condition

∫
∂O

〈ν, h〉 dσ =
∫
O

g(X) d X, for every component O of �. (2.3)

When ∂� is sufficiently smooth (at least of the class C2), the problem (2.2) was
studied in many papers, first in Sobolev spaces with an integer amount of smoothness
by Solonnikov [67], Cattabriga [13], Temam [69], Giga [31], Dautray and Lions [20],
among others. This has been subsequently extended by Amrouche and Girault [5] to
the case when ∂� ∈ C1,1 and, further, by Galdi et al. [30] when ∂� is Lipschitz,
with a small Lipschitz constant. The case when � is a polygonal domain in R

2, or
a polyhedral domain in R

3 also has a rich history. An extended account of this field
of research can be found in the monograph by Kozlov et al. [45] which also con-
tains references to earlier work. Among recent publications we mention the paper by
Maz’ya and Rossmann [53] as well as their book [54]. Lipschitz and C1 subdomains
of Riemannian manifolds were treated in the paper by Dindoš and Mitrea [26], and
the paper by Mitrea and Taylor [60].

123



Recent progress in elliptic equations 49

The principal result in [52] on solutions of the problem (2.2) holds under mild
conditions on the normal ν to the boundary of the Lipschitz graph domain, similar to
those in Theorem 1 in Sect. 1.3. It runs as follows.

Theorem 3 Assume that

n − 1

n
< p ≤ ∞, 0 < q ≤ ∞, (n − 1)

(
1
p − 1

)
+ < s < 1. (2.4)

If there exists δ > 0 which depends only on the Lipschitz constant of � and the expo-
nent p, with the property that if {ν}Osc(∂�) < δ, then the problem (2.2) is well-posed
(with uniqueness modulo locally constant functions in � for the pressure). There exists
a finite, positive constant C = C(�, p, q, s, n) such that

‖u‖
B

s+ 1
p

p,q (�)

+ inf
c

‖π − c‖
B

s+ 1
p −1

p,q (�)

≤ C

(
‖ f ‖

B
s+ 1

p −2
p,q (�)

+ ‖g‖
B

s+ 1
p −1

p,q (�)

+ ‖h‖Bs
p,q (∂�)

)
,

where the infimum is taken over all locally constant functions c in �.

Moreover, an analogous well-posedness result holds for the Triebel-Lizorkin scale
(for its definition see, for example, the book by Runst and Sickel [64]), i.e. for the
problem

�u − ∇π = f ∈ F
s+ 1

p −2
p,q (�), div u = g ∈ F

s+ 1
p −1

p,q (�),

u ∈ F
s+ 1

p
p,q (�), π ∈ F

s+ 1
p −1

p,q (�), Tr u = h ∈ Bs
p,q(∂�).

(2.5)

This time, in addition to the previous conditions imposed on the indices p, q, it is also
assumed that p, q < ∞.

It should be noted that conditions (2.4) describe the largest range of indices p, q, s
for which the Besov spaces Bs

p,q(∂�) can be meaningfully defined on the Lipschitz
manifold ∂�.

2.2 Dirichlet data in L p(�)

We say a few words about the Dirichlet problem for the multi-dimensional Stokes
system with L p boundary data which is not touched upon in [52]. Following the paper
by Dindoš and Maz’ya [25], we shall speak about both the Lamé system (with the
Poisson ratio α < 1/2) and the Stokes system (with α = 1/2).

Let us consider a bounded domain � in R
n , n ≥ 3, and the system

�u − ∇π = 0, div u + (1 − 2α)π = 0 in �, (2.6)
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complemented by the condition

Tr u = h. (2.7)

The boundary values Tr u are understood in nontangential sense, that is in the sense
of the limit

Tr u(x) = lim
y→x,y∈�(x)

u(y)

over a collection of interior nontangential cones �(x) with vertices at x ∈ ∂�. Let u∗
be the classical nontangential maximal function defined as

u∗(x) = sup
y∈�(x)

|u(y)| for all x ∈ ∂�.

The class of solutions to (2.6), (2.7) is described by the inclusion

u∗ ∈ L p(∂�). (2.8)

One says that problem (2.6), (2.7) is L p solvable if for all vector fields h ∈ L p(∂�)

there is a pair (u, π) satisfying (2.6)–(2.8) and moreover, for some C > 0 independent
of h, the estimate

‖u∗‖L p(∂�) ≤ C ‖h‖L p(∂�)

holds. Furthermore, the problem (2.6), (2.7) is said to be solvable for continuous data
if, for all h ∈ C(∂�) the vector field u belongs to C(�) and the estimate

‖u‖C(�) ≤ C ‖h‖C(∂�)

holds.
The L p solvability of the Dirichlet problem for the Stokes system is established by

Shen [66] for all p ∈ (2−ε(�),∞] provided � is a three-dimensional Lipschitz graph
domain. In [25], the problem (2.6), (2.7) is considered on domains in R

n , n ≥ 3, with
isolated conical singularity (not necessary a Lipschitz graph) and the authors prove its
solvability for all p ∈ (2 − ε(�),∞] as well as its solvability in C(�) for the data in
C(∂�). This seems to be a strong indication that the range p ∈ (2 − ε(�),∞] should
hold also for Lipschitz graph domains. However, there is no such result for n > 3.

2.3 Lipschitz continuous solutions

We cite a regularity result for solutions of the Dirichlet problem for the Stokes system
in a plane convex domain obtained by Kozlov and Maz’ya [44]:

− �u + ∇π = f, div u = 0 in �,

Tr u = 0 on ∂�,
(2.9)

where f ∈ W −1
2 (�) and (u, π) ∈ W̊ 1

2 (�) × L2(�).
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Theorem 4 Let � be a bounded convex two-dimensional domain and let f ∈ Lq(�)

for some q > 2. Then the velocity vector u ∈ W̊ 1
2 (�) admits the estimate

‖∇u‖L∞(�) ≤ C ‖ f ‖Lq (�),

where C depends only on �.

A direct consequence of this result for the nonlinear Navier–Stokes system is as
follows.

Corollary 1 Let (u, π) ∈ W̊ 1
2 (�) × L2(�) solve the Dirichlet problem

−�u + ∇π +
2∑

k=1

uk∂ku = f, div u = 0 in �,

u = 0 on ∂�,

(2.10)

where f ∈ W −1
2 (�). Let � be a bounded convex two-dimensional domain and let

f ∈ Lq(�) for some q > 2. Then the velocity vector u ∈ W̊ 1
2 (�) belongs to the class

C0,1(�) of functions uniformly satisfying the Lipschitz condition on �.

A result of the same nature was obtained by Maz’ya [48] for solutions of
the Neumann problem for the Poisson equation in arbitrary convex n-dimensional
domains. Let � be a bounded convex domain in R

n and let W l
p(�) stand for the Sobo-

lev space of functions in L p(�) with distributional derivatives of order l in W l
p(�).

By L p,⊥(�) and W l
p,⊥(�) we denote the subspaces of functions in L p(�) and W l

p(�)

subject to

∫
�

v dx = 0.

Theorem 5 Let f ∈ Lq,⊥(�) with a certain q > n and let u be the unique weak
solution in W 1

2,⊥(�) of the Neumann problem

−�u = f in �,

∂u

∂ν
= 0 on ∂�,

(2.11)

where ν is the unit outward normal to ∂�. Then the estimate

‖∇u‖L∞(�) ≤ C ‖ f ‖Lq (�) (2.12)

holds with C independent of f .
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As a particular case of a result obtained by Cianchi and Maz’ya [14] for a class
of nonlinear equations, one can replace the Lq -norm on the right-hand side by the
Lorentz norm ‖ f ‖Ln,1(�) which is the best possible majorant among those formulated
in terms of Lorentz spaces. Similar facts for Lamé and Stokes systems with boundary
conditions different from those of Dirichlet are unknown.

3 Higher regularity of solutions

3.1 Preliminaries

In this section we survey some applications of Sobolev multipliers to the question of
higher regularity in fractional Sobolev spaces of solutions to boundary value problems
for higher order elliptic equations in a Lipschitz domain. Since there is no higher reg-
ularity of solutions for general Lipschitz graph domains, one is forced to find a proper
subclass of Lipschitz domains for which the regularity holds.For domains of this sub-
class we developed a solvability and regularity theory analogous to the classical one
for smooth domains. We also showed that the chosen subclass of Lipschitz domains
is best possible in a certain sense. This was done in [55] (see also Chap. 14 in [57]).
We give a short description of that theory.

Let � be a domain in R
n with compact closure. Throughout this section we assume

that for any point of the boundary ∂� there exists a Cartesian coordinate system (x, y),
x ∈ R

n−1, y ∈ R
1, a neighbourhood U and a Lipschitz function ϕ such that

U ∩ � = U ∩ {z = (x, y) : x ∈ R
n−1, y > ϕ(x)}. (3.1)

Let Bl−1/p
p (Rn−1), l = 1, 2, . . . , denote the completion of the space C∞

0 (Rn−1) in
the norm

⎛
⎜⎝

∫

Rn−1

∫

Rn−1

|∇l−1u(t) − ∇l−1u(x)|p|x − t |2−n−pdxdt

⎞
⎟⎠

1/p

+ ‖u‖L p(Rn−1).

Replacing R
n−1 by ∂� one arrives at the definition of the space Bl−1/p

p (∂�).
We need the space of Sobolev multipliers M(W h

p (�) → W l
p(�)), that is the class

of functions γ such that γ u ∈ W l
p(�) for all u ∈ W h

p (�). The space M(W h
p (�) →

W l
p(�)) is endowed with the norm

‖γ ‖M(W h
p (�)→Wl

p(�)) = sup{‖γ u‖Wl
p(�) : ‖u‖W h

p (�) ≤ 1}. (3.2)

The notation M S is used instead of M(S → S), where S is a Banach function space.
Properties and applications of Sobolev multipliers are studied in detail in [57].

We introduce the essential norm of a function γ ∈ M(W h
p (�) → W l

p(�)):

ess‖γ ‖
M
(

W h
p (�)→Wl

p(�)
) = inf{T } ‖γ − T ‖W h

p (�)→Wl
p(�), (3.3)
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where {T } is the set of all compact operators: W h
p (�) → W l

p(�).
Analytic two-sided and one-sided estimates for the norm (3.2) and the essential

norm (3.3) can be found in [57].

3.2 Subclasses of Lipschitz graph domains

Let � be a bounded Lipschitz graph domain. We introduce the class Ml−1/p
p (l =

2, 3, . . .) of boundaries ∂�, satisfying the following condition. For every point of ∂�

there exists an n-dimensional neighborhood in which ∂� is specified (in a certain
Cartesian coordinate system) by a function ϕ such that

∇ϕ ∈ M Bl−1−1/p
p (Rn−1).

Furthermore, by definition, M1−1/p
p is the class of bounded Lipschitz graph domains.

We say that ∂� belongs to the class Bl−1/p
p if ∂� can be locally specified by a

function ϕ ∈ Bl−1/p
p (Rn−1). Since

M Bl−1−1/p
p (Rn−1) ⊂ Bl−1−1/p

p,loc (Rn−1), l ≥ 2,

it follows that any bounded domain � with ∂� ∈ Ml−1/p
p satisfies ∂� ∈ Bl−1/p

p . (We
say that u ∈ Bs

p,loc(R
n−1) if uη ∈ Bs

p(R
n−1) for any η ∈ C∞

0 (Rn−1).)
According to Corollary 4.3.8 in [57], for p(l − 1) > n we have

‖∇ϕ‖
M Bl−1−1/p

p (Rn−1)
∼ sup

x∈Rn−1
‖∇ϕ‖

Bl−1−1/p
p (B1(x))

,

whereBr (x) is a ball in R
n−1 with radius r and center x . Therefore, the classes Ml−1/p

p

and Bl−1/p
p coincide for p(l − 1) > n.

In our subsequent exposition the following additional condition on � plays an
important role.

Let δ > 0. We say that ∂� belongs to the class Ml−1/p
p (δ) if for every point O ∈ ∂�

there exists a Cartesian coordinate system (x, y), x ∈ R
n−1, y ∈ R

1, a neighborhood
U and a special Lipschitz domain G = {z = (x, y) : x ∈ R

n−1, y > ϕ(x)} such that
U ∩ � = U ∩ G and

‖∇ϕ‖
M Bl−1−1/p

p (Rn−1)
≤ δ . (3.4)

Obviously, the boundaries in Ml−1/p
p (δ) belong to the class Ml−1/p

p and, therefore,

to the class Bl−1/p
p .

The following assertion gives a local characterization of the class Ml−1/p
p (δ) (see

Sect. 14.7 in [57]). In its statement we use the notion of the (p, j)-capacity of a
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compact set e in R
n−1:

C p, j (e) = inf

{
‖u‖p

W j
p (Rn−1)

: u ∈ C∞
0 (Rn−1), u ≥ 1 on e

}
. (3.5)

For various properties of this capacity see the books by Maz’ya [47] and Adams and
Hedberg [1].

Proposition 3 Let p(l − 1) ≤ n. The class Ml−1/p
p (δ) admits the following equiv-

alent description. For any point O ∈ ∂� there exists a Cartesian coordinate sys-
tem (x, y), x ∈ R

n−1, y ∈ R
1, a neighborhood U and a special Lipschitz domain

G = {z = (x, y) : x ∈ R
n−1, y > ϕ(x)} such that U ∩ � = U ∩ G and

lim
ε→0

(
sup

e⊂Bε

‖Dl−1/p(ϕ;Bε)‖L p(e)(
C p,l−1−1/p(e)

)1/p + ‖∇ϕ‖L∞(Bε)

)
≤ c δ . (3.6)

Here Bε is the ball with centre at O and radius ε, c is a constant which depends only
on l, p, n, and

Dl−1/p(ϕ;Bε)(x) =
⎛
⎜⎝
∫
Bε

|∇l−1ϕ(x) − ∇l−1ϕ(y)|p dy

|x − y|n−2+p

⎞
⎟⎠

1/p

.

Proposition 3 and properties of the capacity lead to the following sufficient condi-
tion formulated in terms of the (n − 1)-dimensional Lebesgue measure mn−1.

Corollary 2 (i) If n > p(l − 1) and

lim
ε→0

(
sup

e⊂Bε

‖Dl−1/p(ϕ;Bε)‖L p(e)

(mn−1e)[n−p(l−1)]/(n−1)p
+ ‖∇ϕ‖L∞(Bε)

)
< c δ,

then ∂� ∈ Ml−1/p
p (δ).

(ii) If n = p(l − 1) and

lim
ε→0

(
sup

e⊂Bε

‖Dl−1/p(ϕ;Bε)‖L p(e)| log(mn−1e)|(p−1)/p+‖∇ϕ‖L∞(Bε)

)
<c δ,

then ∂� ∈ Ml−1/p
p (δ).

Now we present another test for the inclusion of a function into Ml−1/p
p (δ) involving

the Besov space Bm
q,p.

We say that the boundary of a Lipschitz graph domain � belongs to Bl−1/p
q,p (l =

1, 2, . . . , ) if, for any point of ∂�, there exists a neighborhood in which ∂� is specified
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in Cartesian coordinates by a function ϕ satisfying

∫

Rn−1

⎛
⎜⎝

∫

Rn−1

|∇l−1ϕ(x + h) − ∇l−1ϕ(x)|q dx

⎞
⎟⎠

p/q

dh

|h|n+p−2 < ∞ .

Corollary 3 Let p(l − 1) ≤ n and let � be a bounded Lipschitz graph domain with
∂� ∈ Bl−1/p

q,p , where

q ∈ [p(n − 1)/(p(l − 1) − 1),∞] if p(l − 1) < n

and

q ∈ (p,∞] if p(l − 1) = n.

Further, let ∂� be locally defined in Cartesian coordinates by y = ϕ(x), where ϕ is
a function with a Lipschitz constant less than c δ. Then ∂� ∈ Ml−1/p

p (δ).

Setting q = ∞ in Corollary 3, one obtains the simple sufficient condition for the
inclusion into Ml−1/p

p (δ) formulated in terms of the modulus of continuity ωl−1(t) of
∇l−1ϕ:

1∫
0

(
ωl−1(t)

t

)p

dt < ∞ . (3.7)

Since Bl−1/p∞,p ⊂ Bl−1/p
p , it follows that (3.7) is sufficient for ∂� ∈ Bl−1/p

p .

3.3 General elliptic boundary value problems

Consider either scalar or square matrix differential operators

P(z, Dz) =
∑

|α|≤2m

aα(z)Dα
z , Pj (z, Dz) =

∑
|α|≤k j

aα j (z)Dα
z , (3.8)

where z ∈ �, 1 ≤ j ≤ m, and Dz = (i−1∂z1 , . . . , i−1∂zn ). We consider the operator
of a boundary value problem {P; Tr P1, . . . , Tr Pm}.

The next result is proved essentially in the same manner as Theorem 14.3.1 in [57].

Theorem 6 Suppose that for any neighbourhood U ⊂ R
n there exist operators

PU (Dz) =
∑

|α|=2m

aU
α Dz, PU

j (Dz) =
∑

|α|=k j

aU
α j Dz
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with constant coefficients such that {PU ; Tr PU
j } is the operator of an elliptic boundary

value problem in the half-space {z = (x, y) : x ∈ R
n−1, y ≥ 0}.

Let
∑

|α|=2m

‖aα(z) − aU
α ‖L∞(U∩�) ≤ δ,

∑
|α|≤2m

ess‖aα‖
M(Wl−|α|

p (�)→Wl−2m
p (�))

≤ δ,
(3.9)

where l is integer, l ≥ 2m, 1 < p < ∞. The constant δ here and elsewhere is supposed
to be small in comparison with the norms of the inverse operators {PU ; Tr PU

j }−1 for
all U. Further, let the coefficients aα j satisfy conditions similar to (3.9), with 2m
replaced by k j .

Let the boundary ∂� belong to the class Ml−1/p
p (δ) if p(l − 1) ≤ n or to the class

Bl−1/p
p if p(l − 1) > n, in either case with 1 < p < ∞.
Then the operator

{P; Tr Pj } : W l
p(�) → W l−2m

p (�) ×
m∏

j=1

B
l−k j −1/p
p (∂�) (3.10)

is Fredholm. In particular, for all u ∈ W l
p(�) the a priori estimate

‖u‖Wl
p(�) ≤ c

⎛
⎝‖Pu‖Wl−2m

p (�)
+

m∑
j=1

‖Tr Pj u‖
B

l−k j −1/p
p (∂�)

+ ‖u‖L1(�)

⎞
⎠ (3.11)

holds; the last norm in the right-hand side can be omitted in the case of a unique
solution.

Note that even the most restrictive sufficient condition (3.7) on the domain for
Theorem 6 to hold is sharp. Let ω be an increasing function in C[0, 1] such that
ω(0) = 0,

δ

1∫
δ

ω(t)
dt

t2 +
δ∫

0

ω(t)
dt

t
≤ c ω(δ),

and

1∫
0

(
ω(t)

t

)p

dt = ∞.

It was shown in Sect. 4.4.3 of [57] that one can construct a function ϕ on R
n−1 such

that
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(i) the modulus of continuity of ∇l−1ϕ does not exceed c ω with c = const;
(ii) supp ϕ ⊂ Q2π , where Qd = {x ∈ R

n−1 : |xi | < d};
(iii) ϕ /∈ Bl−1/p

p (Rn−1).

Given ϕ, one can construct a bounded domain � in R
n such that the Neumann

problem

�v − v = g in�, ∂v/∂ν = h on∂� (3.12)

with g ∈ W l−2
p (�) and h ∈ Bl−1−1/p

p (∂�) may fail to be solvable in W l
p(�).

Next we describe conditions on the coefficients of (3.8) which are equivalent to
those formulated in Theorem 6 and follow from the results in [57], Ch. 7. In its for-
mulation, we use the notion of capacity of a compact set in R

n defined similarly to
(3.5).

Corollary 4 Conditions (3.9) in Theorem 6 can be stated as follows:

(i) The coefficients aα with |α| = 2m are in the class W l−2m
p (�) if p(l − 2m) > n

and satisfy the inequality

‖aα(z) − aU
α ‖L∞(U∩�) + lim

ε→0
sup

{e⊂�:diam(e)≤ε}
‖∇l−2maα‖L p(e)(
C p,l−2m(e)

)1/p ≤ δ

if p(l − 2m) ≤ n;
(ii) The coefficients aα with |α| < 2m are in the class W l−2m

p (�) if p(l − |α|) > n
and satisfy the inequality

lim
ε→0

(
sup

{e⊂�:diam(e)≤ε}
‖∇l−2maα‖L p(e)(
C p,l−|α|(e)

)1/p + sup
x∈�,ρ≤ε

ρ2m−|α|−n/p‖aα‖L p(Bρ (x)∩�)

)
≤δ

if p(l − |α|) ≤ n. Here Bρ(x) is a ball in R
n with radius ρ and center x.

Various other sufficient conditions for (3.9) follow from the results in [57].

3.4 The Dirichlet problem in terms of traces

Let us first consider the Dirichlet problem as a particular case of the general boundary
value problem dealt with in Sect. 3.3. We write the scalar or square matrix elliptic
operator P in the form

Pu =
∑

|α|,|β|≤m

(−1)|α|∂α
(

Aαβ(z)∂βu
)
, (3.13)

where ∂ = (∂x1, . . . , ∂xn ). Suppose that the coefficients Aαβ are in Cl−m(�̄), l ≥ m,
and that the coercivity condition

Re
∫
�

∑
|α|=|β|=m

Aαβ(z)∂αu ∂βu dz ≥ c ‖u‖2
W m

2 (�) (3.14)
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holds for u ∈ C∞
0 (�). Assume that � is a Lipschitz graph domain.

We introduce a sufficiently small finite open covering {U } of �̄ and a corresponding
partition of unity {ζU }. Let

PjU = ∂ j−1/∂y j−1, j = 1, . . . , m if U ∩ ∂� �= ∅

and

PjU = 0 if U ∩ ∂� = ∅.

The Dirichlet boundary conditions will be prescribed by the operators

Pj =
∑

U

ζU PjU .

We give a formulation of the Dirichlet problem. Let us look for a function u ∈
W l

p(�) such that

Pu = f in �, Tr Pj u = f j on ∂�, j = 1, . . . , m, (3.15)

where f and f j are functions in W l−2m
p (�) and Bl+1− j−1/p

p (∂�) respectively.
Here is the principal result relating the problem (3.15) borrowed from Subsec. 14.5.4

in [57].

Theorem 7 Let any of the following conditions hold:

(α) m = 1, p(l − 1) ≤ n; ∂� ∈ Ml−1/p
p (δ), where δ depends on the coefficients of

the principal homoheneous parts of P and Pj ;

(β) m = 1, p(l − 1) > n; ∂� ∈ Bl−1/p
p ;

(γ ) m > 1, ∂� ∈ Ml−1/p
p and ∂� is locally defined by equations of the form

y = ϕ(x), where ∇ϕ ∈ M Bl−1−1/p
p (Rn−1) and ϕ is a function with a small

Lipschitz constant (for p(l − 1) > n, this is equivalent to ∂� ∈ Bl−1/p
p ).

Then the operator

{P; Tr Pj } : W l
p(�) → W l−2m

p (�) ×
m∏

j=1

Bl+1− j−1/p
p (∂�)

is an isomorphism.

An example in Subsection 14.6.1 of [57] shows that for p(l −1) ≤ n and for m = 1
the condition ∂� ∈ Ml−1/p

p (δ) in part (α) of Theorem 7 cannot be replaced by the

assumption that ∂� belongs to the class Ml−1/p
p ∩ Cl−1. To be precise, a domain �

is constructed with ∂� ∈ M3/2
2 ∩ C1 for which the problem

− �u = f in �, Tr u = 0 on ∂� (3.16)
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is not generally solvable in W 2
2 (�) for f ∈ L2(�). This means that the smallness

of the seminorm ‖∇ϕ‖
M B1/2

2 (Rn−1)
in the definition of M3/2

2 (δ) is essential for the

solvability of problem (3.16) in W 2
2 (�).

The next assertion, which follows directly from the Implicit Function Theorem
9.5.2 in [57], shows that the condition ∂� ∈ Bl−1/p

p with p(l − 1) > n is necessary
for the solvability of problem (3.15) in W l

p(�) for the operator P of higher than second
order.

Theorem 8 Let � be a bounded Lipschitz domain and let l be integer, l ≥ 2m,
p(l − 1) > n, 1 < p < ∞, and m > 1. If there exists a solution u ∈ W l

p(�) of the
problem

Pu = 0 in �, Tr u = 0, Tr P2u = 1, Tr Pj u = 0, j = 3, . . . , m, (3.17)

then ∂� ∈ Bl−1/p
p .

Under the additional assumption ∂� ∈ Cl−2,1, the necessity of the inclusion ∂� ∈
Bl−1/p

p for p(l − 1) ≤ n is proved in Subsection 14.6.2 of [57].

Theorem 9 Let ∂� be in the class Cl−2,1 and let l be integer, l ≥ 2m, p(l − 1) ≤ n,
1 < p < ∞, and m > 1. If there exists a solution u ∈ W l

p(�) of problem (3.17), then

∂� ∈ Bl−1/p
p .

A similar result for the second order operator P in Subsection 14.6.2 of [57] runs
as follows.

Theorem 10 Let l be integer, l ≥ 2, 1 < p < ∞, m = 1, and P1 ≤ 0. Let � be
a domain with ∂� ∈ C1 and let the modulus of continuity ω1 of the normal to ∂�

satisfy the Dini condition

1∫
0

ω1(t)
dt

t
.

If, for a nonpositive function f ∈ C∞
0 (�), there exists a solution u ∈ W l

p(�) of the
problem

Pu = f in �, Tr u = 0, (3.18)

then ∂� ∈ Bl−1/p
p .

Note that the convergence requirement (3.7), the most restrictive assumption on �

made in Corollary 3, is in a sense a sharp condition for solvability of the Dirichlet
problems (3.17) and (3.18) in W l

p(�). The corresponding domain is constructed with
the help of the same function ω as in the case of the Neumann problem (3.12) (see
Example 15.6.1 in [57]).
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Example 15.5.2 from [57] shows that surfaces in the class Ml−1/p
p (δ)with p(l−1) <

n may have

conic vertices if n > p(l − 1)

and

s-dimensional edges if s < n − p(l − 1).

Suppose that for any point O ∈ ∂� there exists a neighborhood U such that U ∩�

is C∞-diffeomorphic to the domain

R
s × {(x, y) : y > ϕ(xs+1, . . . , xn−1)}, 0 ≤ s ≤ n − 2,

i.e., the dimensions of boundary singularities are at most n − 1 − s. Then (3.4) is
equivalent to

‖∇ϕ‖
M Bl−1−1/p

p (Rn−1−s )
≤ c δ

and, in particular, it takes the form

‖∇ϕ‖
Bl−1−1/p

p,unif (Rn−1−s )
≤ c δ,

if n − s < p(l − 1) ≤ n. In two last inequalities c is a positive constant depending
on p, n, l, and s. In other words, ∂� ∈ Ml−1/p

p (δ) if and only if the (n − 1 − s)-

dimensional domain {(x, y) : y > ϕ(xs+1, . . . , xn−1)} belongs to Ml−1/p
p (c δ). Here

Bl−1−1/p
p,unif (Rn−1−s)) is the space of functions with the norm

sup
x∈Rn−1−s

⎛
⎜⎝
⎛
⎜⎝
∫
B1

‖�h∇l−2u‖p
L p(B1(x))

|h|2+s−n−pdh

⎞
⎟⎠

1/p

+ ‖u‖Wl−2
p (B1(x))

⎞
⎟⎠

and B1(x) is the ball in R
n−1−s of unit radius and center at x , B1 = B1(0).

3.5 Dirichlet problem in a variational formulation

It turns out that for equations and systems of order higher than two, the formulation of
the Dirichlet problem can be changed so that the solvability condition � ∈ Ml−1/p

p (δ)

is replaced by the better one � ∈ Ml+1−m−1/p
p (δ). We comment on this referring to

Section 14.5 of [57].
Let � be open subset R

n and let P be the operator (3.13), where Aαβ ∈ Cl−m(�̄),
l ≥ m. Further, let the coercivity condition (3.14) hold for u ∈ C∞

0 (�).
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We say that u ∈ W l
p(�) is a variational solution of the Dirichlet problem if

Pu = f, u − g ∈ W l
p(�) ∩ W̊ m

p (�), (3.19)

where f and g are given functions in the spaces W l−2m
p (�) and W l

p(�) respectively.
We present an a priori estimate for solutions of problem (3.19).

Theorem 11 If

(i) either p(l − m) ≤ n, 1 < p < ∞ and ∂� ∈ Ml+1−m−1/p
p (δ), where δ depends

on the coefficients of the principal homogeneous part of P or
(ii) p(l − m) > n, 1 < p < ∞, and ∂� ∈ Bl+1−m−1/p

p ,

then

‖u‖Wl
p(�) ≤ c (‖Pu‖Wl−2m

p (�)
+ ‖u‖L1(�)) (3.20)

for all u ∈ (W l
p ∩ W̊ m

p )(�).

Next we state two corollaries of (3.20).

Proposition 4 Let � satisfy the conditions of Theorem 11.

(i) If the kernel of the operator

P : (W l
p ∩ W̊ m

p )(�) → W l−2m
p (�) (3.21)

is trivial, then the norm ‖u‖L1(�) in (3.20) can be omitted.
(ii) The kernel of the operator (3.21) is finite-dimensional and the range of this

operator is closed.

Proposition 5 Let � satisfy the conditions of Theorem 11. Further, let U and V be
open bounded subsets of R

n, Ū ⊂ V and u ∈ (W l
p ∩ W̊ m

p )(�). Then

‖u‖Wl
p(U∩�) ≤ c

(
‖Pu‖Wl−2m

p (V ∩�)
+ ‖u‖L1(V ∩�)

)
.

Finally we formulate a theorem concerning the solvability of (3.19) established in
[57].

Let the coercivity condition (3.14) hold for all u ∈ C∞
0 (�). Then, as is well known,

the equation Pu = f with f ∈ W −m
2 (�) is uniquely solvable in W̊ m

2 (�).

Theorem 12 Let ∂� ∈ Ml+1−m−1/p
p for p(l −m) ≤ n and let ∂� belong to the class

Bl+1−m−1/p
p for p(l − m) > n.

(i) If f ∈ W l−2m
p (�) ∩ W −m

2 (�), g ∈ W l
p(�) ∩ W m

2 (�), 1 < p < ∞, and if

u ∈ W m
2 (�) is such that Pu = f , u − g ∈ W̊ m

2 (�), then u ∈ W l
p(�) and

u − g ∈ W̊ m
p (�).

(ii) The problem (3.19) has exactly one solution u ∈ W l
p(�).
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3.6 Strong solvability of the Dirichlet problem for the Stokes system

Here we complement Sect. 2 by a theorem on solvability of the Dirichlet problem for
the Stokes system in weighted Sobolev spaces of higher order.

Let l be noninteger, l > 1. We use the notation Ml
p(δ) for the class of three-

dimensional Lipschitz graph domains subject to

‖∇ϕ‖M Bl−1
p (R2)

≤ δ

for an arbitrary coordinate system on ∂�, where δ is a positive number.
We conclude this section by stating a strong solvability result for the Dirichlet

problem for the Stokes system

�u − ∇π = f, div u = g in �,

Tr u = h on ∂�.
(3.22)

We assume that g and h satisfy the compatibility condition (2.3) and use the space
W m,a

p introduced in Sect. 1.3. The proof is essentially the same as that of Theorem
15.1.2 in [57].

Theorem 13 Let p ∈ (1,∞), a = 1 − {l} − 1/p, where l is noninteger, l > 1.
Suppose that ∂� ∈ Bl

p for p(l − 1) > 2 and ∂� ∈ Ml
p(δ) with some δ = δ(p, l) for

p(l − 1) ≤ 2. Then, for every triple

( f, g, h) ∈ W [l]−1,a
p (�) × W [l],a

p (�) × Bl
p(∂�)

there exists a unique solution (u, π) of the problem (3.22) in W [l]+1,a
p (�)×W [l],a

p (�).

Note that under the conditions of the last theorem, the operator

W [l]+1,a
p (�) × W [l],a

p (�) � (u, π)

�⇒ (�u − ∇π, div u, Tr u) ∈ W [l]−1,a
p (�) × W [l],a

p (�) × Bl
p(∂�)

is continuous.

4 Asymptotic behavior of solutions to elliptic equations near a point

4.1 Asymptotics of solutions near Lipschitz boundary

Results of a new type were obtained by Kozlov and Maz’ya [44] for solutions of the
Dirichlet problem for higher order elliptic equations in Lipschitz graph domains. We
mean an explicit description of the asymptotic behaviour of solutions near a point O
of the Lipschitz boundary.

Consider the special Lipschitz graph domain

G = {x = (x ′, xn) ∈ R
n : xn > ϕ(x ′)},
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where ϕ(0) = 0 and ϕ has a small Lipschitz constant. The authors of [44] study solu-
tions of arbitrary strongly elliptic equation of order 2m with constant complex-valued
coefficients

L(∂x )u(x) = f (x) onB1 ∩ G (4.1)

with zero Dirichlet data on (B1 ∩ ∂G)\O, where Bρ = {x : |x | < ρ} and ∂x =
(∂1, . . . , ∂n). It is assumed that the operator L has no lower-order terms and the coef-
ficient in front of ∂2m

n is equal to (−1)m .
One of the results in [44] is the existence of a solution U ∈ W m

2 (G) of the homo-
geneous equation (4.1) which admits the asymptotic representation

U(x) = exp

⎛
⎜⎝−

∫
|x |<|y′|<1/2

ϕ(y′)∂m
n E(y′, 0) dy′ + O

⎛
⎜⎝

1∫
|x |

�2(ρ)
dρ

ρ

⎞
⎟⎠
⎞
⎟⎠

×
⎛
⎜⎝(xn − ϕ(x ′))m + O

⎛
⎜⎝|x |m+1−ε

⎛
⎜⎝

1∫
|x |

�(ρ)
dρ

ρ2−ε
+ 1

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠. (4.2)

Here ε is a poisitive constant,

�(ρ) = sup
|y′|<ρ

|∇ϕ(y′)|,

and E is the Poisson solution of the equation L(∂x )E(x) = 0 in the upper half-space
R

n+ which is positive homogeneous of degree m − n and is subject to the Dirichlet
conditions on the hyperplane xn = 0

∂
j

n E = 0, 0 ≤ j ≤ m − 2, and ∂m−1
n E = δ(x ′),

where δ is the Dirac function.
It is also shown that a multiple of U is the main term in the asymptotic representa-

tion of an arbitrary solution u if both u and f are subject to mild growth conditions
near O.

Solutions with the weakest possible singularity at O are studied in [44] as well. The
authors construct a solution U of the homogeneous equation (4.1) which is subject to
the asymptotic formula

U(x) = exp

⎛
⎜⎝

∫
|x |<|y′|<1/2

ϕ(y′)∂m
n E(y′, 0) dy′ + O

⎛
⎜⎝

1∫
|x |

�2(ρ)
dρ

ρ

⎞
⎟⎠
⎞
⎟⎠

×
⎛
⎜⎝E(xn − ϕ(x ′)) + O

⎛
⎜⎝|x |m−n+1−ε

⎛
⎜⎝

1∫
|x |

�(ρ)
dρ

ρ2−ε
+ 1

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠.

(4.3)
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The asymptotic formulas (4.2) and (4.3) can be simplified under additional condi-
tions on �(ρ). Let, in particular,

1∫
0

�2(ρ)
dρ

ρ
< ∞.

Then, in the special case of the polyharmonic equation

(−�)mu = 0 on B1 ∩ G,

any solution u satisfying |u(x)| = O(|x |m−n+1−ε) is subject to the following alterna-
tives: either

u(x) ∼ C
(xn − ϕ(x ′))m

|x |n exp

⎛
⎜⎝m

�(n/2)

πn/2

∫
|x |<|y′|<1/2

ϕ(y′) dy′

|y′|n

⎞
⎟⎠

or

u(x) ∼ C (xn − ϕ(x ′))m exp

⎛
⎜⎝−m

�(n/2)

πn/2

∫
|x |<|y′|<1/2

ϕ(y′) dy′

|y′|n

⎞
⎟⎠.

4.2 Asymptotics of solutions to equations with discontinuous coefficients
near a smooth boundary

Proofs of the just mentioned results in [44] rely upon the papers [42,43] on the
asymptotic formulas for solutions to the Dirichlet problem for arbitrary even order
2m strongly elliptic equations of divergence form near a point O at the smooth bound-
ary. It is required only that the coefficients of the principal part of the operator have
small oscillation near this point, and the coefficients in lower order terms are allowed
to have singularities at the boundary.

We say a few words on the proof of asymptotic formulas in [42,43]. The elliptic
equation is transformed to a first-order evolution system with the matrix whose entries
are partial differential operators on the hemisphere with time dependent coefficients.
Thus, the question of asymptotics of solutions to the original Dirichlet problem is
reduced to the study of the long-time behaviour of solutions of the evolution system
just mentioned. The structure of the operator matrix in the system is rather complicated,
because it has been obtained from a higher order partial differential equation in the
variational form. Moreover, the study of this system is aggreviated by the scantiness
of information about the behaviour of the operator matrics at infinity. This difficulty
is overcome by a right choice of function spaces, characterizing the solutions and the
right-hand side of the evolution system by certain seminorms depending on time. To
obtain an asymptotic formula for the solution, the authors apply a particular spectral
splitting of the system into one-dimensional and infinite-dimensional parts. A general
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asymptotic theory of differential equations with operator coefficients in Banach spaces
which is the basis of [42,43] is developed in [41].

As an illustration, we describe a corollary of the main result in [42] concerning
second order equations. Consider the uniformly elliptic equation

− div (A(x)∇u(x)) = f (x) in � (4.4)

complemented by the Dirichlet condition

u = 0 on ∂�, (4.5)

where� is a domain in R
n with smooth boundary. We assume that elements of the n×n-

matrix A(x) are measurable and bounded complex-valued functions. One consideres
a solution u with a finite Dirichlet integral and supposes, for simplicity, that f = 0 in
a certain δ-neighborhood �δ = {x ∈ � : |x | < δ} of the origin. Further, it is assumed
that there exists a constant symmetric matrix A with positive definite real part such
that the function

σ(r) := sup
�r

‖A(x) − A‖

does not exceed a sufficiently small constant for r < δ.
We introduce the function

R(x) = 〈(A(x) − A)ν, ν〉 − n〈A−1(A(x) − A)ν, x〉〈ν, x〉〈A−1x, x〉−1

|Sn−1|(detA)1/2〈A−1x, x〉n/2 ,

where |Sn−1| is the Lebesgue measure of the unit sphere in R
n , 〈z, ζ 〉 = z1ζ1 + · · · +

znζn and ν is the interior unit normal at a point O on the boundary of �. (For the
notation (detA)1/2 see [35], Sect. 3.4).

The following asymptotic formula for an arbitrary solution of (4.4), (4.5) with finite
energy integral is a special case of the main theorem in [42]:

u(x) = C exp

⎛
⎜⎝−

∫
�δ\�|x |

R(y)dy + O

⎛
⎜⎝

δ∫
|x |

σ(ρ)2 dρ

ρ

⎞
⎟⎠
⎞
⎟⎠

×
⎛
⎜⎝dist(x, ∂�) + O

⎛
⎜⎝|x |2−ε

δ∫
|x |

σ(ρ)
dρ

ρ2−ε

⎞
⎟⎠
⎞
⎟⎠+ O(|x |2−ε), (4.6)

where C = const and ε is a small positive number.
Using (4.6), it is an easy matter to derive sharp two-sided estimate for the Hölder

exponent of u at the origin. Another direct application of (4.6) is the following criterion.
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Under the condition

δ∫
0

σ(ρ)2 dρ

ρ
< ∞ (4.7)

all solutions u are Lipschitz at the origin if and only if

lim inf
r→+0

∫
�δ\�r

ReR dx > −∞. (4.8)

Needless to say, this new one-sided restriction (4.8) is weaker than the classical Dini
condition at the origin. The complementary assumption (4.7) appeared previously in
several papers dealing with other problems of the boundary behaviour of solutions to
equation (4.4) (see the articles by Fabes et al. [27], by Dahlberg [17], by Kenig [39]).

Let v be a solution of the equation (4.4) complemented by the Dirichlet condition

v = 0 on ∂�\{O}, O ∈ ∂�,

which has an infinite energy integral and the least possible singularity. We state a
particular case of the main theorem in [42] which is the following asymptotic repre-
sentation for v:

v(x) = C exp

⎛
⎜⎝

∫
�δ\�|x |

R(y)dy + O

⎛
⎜⎝

δ∫
|x |

σ(ρ)2 dρ

ρ

⎞
⎟⎠
⎞
⎟⎠

×
⎛
⎜⎝ dist(x, ∂�)

〈A−1x, x〉n/2 + O

⎛
⎜⎝|x |2−n−ε

δ∫
|x |

σ(ρ)
dρ

ρ2−ε

⎞
⎟⎠
⎞
⎟⎠+ O(|x |1−ε), (4.9)

where C = const and ε is a small positive number.
In general, theorems proved in [42,43] provide asymptotic formulas similar to (4.6)

and (4.9) for solutions of the Dirichlet problem for the higher order uniformly elliptic
equations with complex-valued coefficients

∑
0≤|α|,|β|≤m

(−∂x )
α(Lαβ(x) ∂β

x u(x)) = f (x) on B+
δ ,

where B+
δ = R

n+ ∩ Bδ , R
n+ = {x = (x ′, xn) ∈ R

n : xn > 0} and Bδ = {x ∈ R
n :

|x | < δ}. The only a priori assumption on the coefficients Lαβ is smallness of the
function

∑
|α|=|β|=m

|Lαβ(x) − Lαβ | +
∑

|α+β|<2m

x2m−|α+β|
n |Lαβ(x)|,

where x ∈ B+
δ and Lαβ are constants.
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4.3 Corollaries of the asymptotic formulas in Sect. 4.1

The last section in [44] concerns, in particular, solutions to the Dirichlet problem
for elliptic equations of order 2m with constant coefficients in plane domains with a
small Lipschitz constant of the boundary as well as arbitrary bounded plane convex
domans �. Let � be a bounded domain in R

2. Consider a strongly elliptic operator
with constant coefficients

L(∂x ) =
∑

0≤k≤2m

ak ∂k
1 ∂2m−k

2 ,

and denote by w a weak solution to the Dirichlet problem

L(∂x )w = f, w ∈ W̊ m
2 (�). (4.10)

If f ∈ W −m
2 (�), this problem is uniquely solvable. let us assume that

� ∩ B2δ0 = {(x1, x2) : x2 > ϕ(x1), |x | < 2δ0},

where ϕ is a Lipschitz function on [−2δ0, −2δ0] and ϕ(0) = 0. Note that one does
not require convexity of ϕ.

The next result concerning solutions to problem (4.10), which stems from (4.2), is
as follows.

Theorem 14 Suppose that the Lipschitz norm of ϕ on [−2δ0, −2δ0] does not exceed
a certain constant depending on the coefficients of L. Let f be equal to zero in �∩ B2δ .
Then, there exist positive constants b and c depending only on m and the coefficients
of L such that for all δ ∈ (0, δ0), x ∈ � ∩ Bδ and k = 1, . . . , m − 1,

|∇kw(x)| ≤ c A(2δ)|x |m−k

× exp

⎛
⎜⎝−a

δ∫
|x |

ϕ(ρ) − ϕ(−ρ)

ρ2 dρ + b

δ∫
|x |

max|t |<ρ
|ϕ′(t)|2 dρ

ρ

⎞
⎟⎠. (4.11)

Here

A(δ) = δ−1−m‖w‖L2(�∩Bδ) (4.12)

and the notation

a = 1

2π
Im

∑
1≤k≤m

(ζ+
k − ζ−

k ),

is used, where ζ+
1 , . . . , ζ+

m and ζ−
1 , . . . , ζ−

m are roots of the polynomial L(1, ζ ) with
positive and negative imaginary parts, respectively. This value of a is best possible.
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Note that for the operator �m one has ζ±
k = ±i , which implies a = −m/π .

The next assertion is a consequence of Theorem 14 when the function ϕ is convex.

Theorem 15 Suppose that the function ϕ describing the domain � near the pointO is
non-negative and convex, and |ϕ′(±2δ)| does not exceed a sufficiently small constant
l0 depending on m and the coefficients of L(∂x ). Furthermore, let f be zero in �∩ B2δ

and let w be a solution of (4.10), which is extended by zero outside �. Then

‖∇mw‖L∞(Bδ) ≤ c A(8δ), (4.13)

where δ < δ0/8 and A(δ) is given by (4.12).

One of the main results obtained in [44] concerns the Green function GL of the
Dirichlet problem for the operator L with real coefficients.

Theorem 16 Let � be an arbitrary bounded convex domain in R
2 and let the coeffi-

cients of L be real. Then, for all x, y in �,

∑
|α|=|β|=m

|∂α
x ∂β

y GL(x, y)| ≤ C |x − y|−2, (4.14)

where C is a positive constant depending on �.

The case of complex coefficients is more complicated.

Theorem 17 Let L be an arbitrary strongly elliptic operator with complex coeffi-
cients. Suppose that � is a bounded convex domain such that the jumps of all angles
between the exterior normal vector to ∂� and the x-axis is smaller than a constant
depending on m and the coefficients of L(∂x ). Then, for all x, y in �, estimate (4.14)
holds.

Theorem 16 implies the following regularity result.

Corollary 5 Let � be an arbitrary bounded convex domain in R
2 and let the coeffi-

cients of L be real. Then the solution w of problem (4.10) with f ∈ W 1−m
q (�), q > 2,

satisfies

∑
|α|≤m

‖Dαw‖L∞(�) ≤ C ‖ f ‖W 1−m
q (�)

, (4.15)

where the constant C depends on �, m, q, and the coefficients of L(∂x ).

Generally, this assertion does not hold for operators with complex coefficients.
More precisely, if there exists an angle vertex on the boundary of a convex domain
�, one can construct a second order strongly elliptic operator L(∂x ) with complex
coefficients such that the Dirichlet problem (4.10) with f ∈ C(�) has a solution with
unbounded gradient (see [45], Sect. 8.4.3). By Theorem 17, the statement of Corol-
lary 5 for L with complex coefficients holds if jumps of the normal vector are either
absent or small.
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4.4 Classical asymptotics of solutions near a point of the domain

Now, we present some results borrowed from Sect. 14.9 of the book by Kozlov and
Maz’ya [41] which concerns the asymptotic behaviour of solutions to elliptic equa-
tions near an interior point O of the domain. Here a modified Dini-type condition on
the coefficients is introduced which guarantees the preservation of the asymptotics of
solutions to the main part of the equation with coefficients frozen at O .

Let

P(Dx ) =
∑

|α|=2m

pα Dα
x

and let G denote the Green matrix of this operator, i.e. the solution of the system

P(Dx ) G(x) = Il δ(x) in R
n, (4.16)

where Il is the l × l identity matrix and δ is the Dirac function. It is well-known (see
John’s book [37]) that G admits the representation

G(x) =
{

llr2m−n Q(ω) if 2m ≥ n, n odd, or 2m < n,

R(x) log r + r2m−n S(ω) if 2m ≥ n, n even,

where Q and S are smooth matrix-functions on the unit sphere in R
n and R is a

homogeneous polynomial matrix of degree 2m − n.
Let us consider the elliptic operator

Q(x, Dx ) =
∑

|α|≤2m

qα(x) Dα
x

with measurable coefficients in the punctured ball Br0\{0}. We introduce the function

S(r) = sup
Kr

⎧⎨
⎩
∑

|α|=2m

|qα(x) − pα| +
∑

|α|<2m

|x |2m−|α||qα(x)|
⎫⎬
⎭,

where Kr = {x ∈ R
n : e−1r < |x | < r}, and assume that S(r) does not exceed a

small positive constant. We shall also use the notation

‖u‖W2m
2 (Kr )

=
⎛
⎝ ∑

|α|≤2m

r2|α|−n ‖Dα
x u‖2

L2(Kr )

⎞
⎠

1/2

.

We formulate three theorems on the asymptotic representation as x → 0 for solu-
tions u ∈ W 2m

2,loc(Br0\{0}) of

Q(x, Dx )u = 0 on Br0\{0} (4.17)
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satisfying, for small r ,

‖u‖W2m
2 (Kr )

= O(rk+δ) (4.18)

with some δ > 0 and integer k.

Theorem 18 (see Theorem 14.9.1 in [41]) Let 2m < n and

r0∫
0

S(r) | log r |γ−1 dr

r
< ∞, (4.19)

where γ is a positive integer.

(i) If k ≥ 0, then

u(x) =
∑

|α|=k+1

cα xα + v(x), (4.20)

where cα = const and

‖v‖W2m
2 (Kr )

= o(rk+1| log r |1−γ ) (4.21)

as r → 0.
(ii) If k ≤ 2m − n − 1, then

u(x) =
∑

|α|=2m−n−k−1

Cα Dα
x G(x) + v(x), (4.22)

where Cα = const and G is the Green matrix introduced by (4.16) and v

satisfies (4.21).
(iii) If k = 2m − n, then

u(x) = const + v(x), (4.23)

where

‖v‖W2m
2 (Kr )

= o(| log r |1−γ )

as r → 0.

The asymptotics (4.23) can be made more precise under the assumption that the
operator Q contains no derivatives of order |α| < s, that is

Q(x, Dx ) =
∑

s≤|α|≤2m

qα(x) Dα
x .
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The formula (4.23) can be replaced by

u(x) =
∑
|α|≤s

cα xα + v(x),

where

‖v‖W2m
2 (Kr )

= o(rs | log r |1−γ )

as r → 0.

Theorem 19 (see Theorem 14.9.2 in [41]) Let n be odd, 2m > n and let S be subject
to (4.19). Then

u(x) =
∑

|α|=k+1

cα xα +
∑

|β|=2m−n−k−1

Cβ Dβ
x G(x) + v(x), (4.24)

where cα and Cβ are constants and v satisfies (4.21). If either k < −1 or k > 2m −n,
then the first or the second sum in (4.24) should be omitted.

Theorem 20 (see Theorem 14.9.4 in [41]) Let n be even, 2m > n.

(i) If k ≤ −2 and (4.19) holds, then u satisfies (4.14) with v subject to (4.21).
(ii) If k ≥ 2m − n and (4.19) holds, then u satisfies (4.20) with v subject to (4.21).

(iii) Let −1 ≤ k ≤ 2m − n − 1 and let (4.19) be valid with γ ≥ 2. Then u is
represented by (4.24) with

‖u‖W2m
2 (Kr )

= o(rk+1 | log r |3−γ )

as r → 0.

4.5 Asymptotics of solutions of the second order equation
with square-Dini coefficients

The asymptotic behaviour of solutions near the isolated point O of the domain was
recently considered by Maz’ya and McOwen [49,50] for the case of the second order
elliptic operator in nondevergence form

L(x, Dx )u(x) =
∑

1≤i, j≤n

ai j (x) ∂i∂ j u. (4.25)

It is assumed that the coefficients have the modulus of continuity ω satisfying the
square-Dini condition

1∫
0

ω2(t)
dt

t
< ∞. (4.26)
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If the coefficients are real, then, without loss of generality one can put ai j (0) = δi j .

An important role is played by the function

I (r) = 1

|Sn−1|
∫

r<|z|<ε

(
trace (Az) − n

〈Az z, z〉
|z|2

)
dz

|z|n , (4.27)

where Az stands for the matrix ai j (z), 〈, 〉 is the inner product in R
n , and ε is a

sufficiently small positive number.
If the coefficients are subject to the usual Dini condition

1∫
0

ω(t)
dt

t
< ∞, (4.28)

then, obviously, there exists a finite limit of I (r) as r → 0, but (4.28) is not necessary
for the existence of this limit. In general, under (4.26), I (r) may be unbounded as
r → 0, but, clearly, for every λ > 0 there exists Cλ such that

|I (r)| ≤ λ | log r | + Cλ for 0 < r < ε. (4.29)

The results in [49] and [50] are formulated in terms of the L p-means

Mp(w, r) :=
(∫

−
r<|x |<2r

|w(x)|p dx

)1/p

. (4.30)

The main theorem in [49] can be stated as follows.

Theorem 21 Suppose that

|ai j (x) − δi j | ≤ ω(|x |) as x → O,

where ω satisfies (4.26). For p ∈ (1,∞) and ε > 0 sufficiently small, there exists a
weak solution Z ∈ L p,loc(Bε) of

∑
1≤i, j≤n

∂i∂ j
(
ai j (x) Z

) = 0 (4.31)

satisfying

Z(x) = e−I (|x |)(1 + ζ(x)), (4.32)

where the remainder term ζ satisfies

Mp(ζ, r) ≤ c max(ω(r), σ (r)) with σ(r) :=
r∫

0

ω2(t)

t
dt. (4.33)
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Moreover, if u ∈ L p,loc(Bε\{O}) is a weak solution of

∑
1≤i, j≤n

∂i∂ j
(
ai j (x) u

) = 0

in Bε subject to the growth condition

Mp(u, r) ≤ c r2−n+ε0 ,

for some ε0 > 0, then there exists a constant C, depending on u, such that

u(x) = C Z(x) + w(x), (4.34)

where the remainder term w satisfies

Mp(w, r) ≤ c r1−ε1

for 0 < r < ε and any ε1 > 0.

Combining (4.34) and (4.32), one obtains the asymptotic representation

u(x) = c e−I (|x |)|x |n(1 + o(1)) as x → O. (4.35)

Now let us turn to the behaviour of a solution to the homogeneous nondivergence
equation with an isolated singularity at x = O . We assume that n > 2. The results
obtained in [50] imply the existence of the solution

Z(x) ∼ |x |2−n

n − 2
eI (|x |) as x → O. (4.36)

The behaviour of I (|x |) as x → O not only controls the leading asymptotics of Z(x)

but whether we can solve the equation

L(x, Dx )F(x) = δ(x).

There are three important cases to consider.

1. I (0) = limx→O I (|x |) exists and is finite.
In this case Z(x) may be scaled by a constant factor to make it asymptotic to the
fundamental solution for the Laplacian. In fact, the distributional equation

− L(x, Dx )Z(x) = C δ(x) (4.37)

can be solved to find

C = |Sn−1| eI (0). (4.38)
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2. I (|x |) → −∞ as x → O.

We see that

Z(x) = o(|x |2−n) as x → O,

and we can solve (4.37) to find C = 0. Thus, in this case we obtain the interesting
corollary that

Lu = 0 in Bε (4.39)

admits a solution u = Z that is quite singular at x = O:

|Z(x)| ≥ Cλ|x |2−n+λ

for every λ > 0. In particular, local regularity of solutions of the homogeneous
equation (4.39) does not hold.

3. I (|x |) → ∞ as x → O.

Now we find that

Z(x)|x |n−2 → ∞ as x → O,

so this solution grows more rapidly than the fundamental solution for the Laplacian.
Although Z still satisfies (4.37), we can no longer find C .
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61. Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris,
Academia, Éditeurs, Prague (1967)

62. Palagachev, D.K., Softova, L.G.: Singular integral operators, Morrey spaces and fine regularity of
solutions to PDE’s. Potential Anal. 20, 237–263 (2004)

63. Pipher, J., Verchota, G.C.: Dilation invariant estimates and the boundary Gårding inequality for higher
order elliptic operators. Ann. Math. 142(1), 1–38 (1995)

123



Recent progress in elliptic equations 77

64. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial
differential equations. Walter de Gruyter, Berlin (1996)

65. Rychkov, V.: On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to
Lipschitz domains. J. Lond. Math. Soc. (2) 60(1), 237–257 (1999)

66. Shen, Z.: A note on the Dirichlet problem fir the Stikes system in Lipschitz domains. Proc. Am. Math.
Soc. 123, 801–811 (1995)

67. Solonnikov, V.A.: General boundary value problems for systems elliptic in the sense of A. Douglis
and L. Nirenberg, II. Trudy Mat. Inst. Steklov 92, 233–297 (1966)

68. Stroffolini, B.: Elliptic systems of PDE with BMO-coefficients. Potential Anal. 15, 285–299 (2001)
69. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and

its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1977)
70. Uspenskiı̆, S.V.: Imbedding theorems for classes with weights. Trudy Mat. Inst. Steklov. 60, 282–303

(1961)
71. Verchota, G.C.: The biharmonic Neumann problem in Lipschitz domains. Acta Math. 194, 217–279

(2005)
72. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math.

Soc. 36, 63–89 (1934)

123


	Recent progress in elliptic equations and systems of arbitrary order with rough coefficients  in Lipschitz domains
	Abstract
	0 Introduction
	1 Weak solvability of the Dirichlet problem for higher order elliptic systems  in Lipschitz domains with boundary data in Besov classes
	1.1 Background
	1.2 Domains and function spaces
	1.3 Solvability of the Dirichlet problem in Wpm,a(Ω)
	1.4 Comments on tools used in the proof of Theorem 1

	2 The Stokes system
	2.1 Weak solvability in Besov and Triebel-Lizorkin spaces
	2.2 Dirichlet data in Lp(Ω)
	2.3 Lipschitz continuous solutions

	3 Higher regularity of solutions
	3.1 Preliminaries
	3.2 Subclasses of Lipschitz graph domains
	3.3 General elliptic boundary value problems
	3.4 The Dirichlet problem in terms of traces
	3.5 Dirichlet problem in a variational formulation
	3.6 Strong solvability of the Dirichlet problem for the Stokes system

	4 Asymptotic behavior of solutions to elliptic equations near a point
	4.1 Asymptotics of solutions near Lipschitz boundary
	4.2 Asymptotics of solutions to equations with discontinuous coefficients  near a smooth boundary
	4.3 Corollaries of the asymptotic formulas in Sect. 4.1
	4.4 Classical asymptotics of solutions near a point of the domain
	4.5 Asymptotics of solutions of the second order equation  with square-Dini coefficients

	Acknowledgments
	References


