5 research outputs found

    On the existence of (r,g,χ)(r,g,\chi)-cages

    Full text link
    In this paper, we work with simple and finite graphs. We study a generalization of the \emph{Cage Problem}, which has been widely studied since cages were introduced by Tutte \cite{T47} in 1947 and after Erd\" os and Sachs \cite{ES63} proved their existence in 1963. An \emph{(r,g)(r,g)-graph} is an rr-regular graph in which the shortest cycle has length equal to gg; that is, it is an rr-regular graph with girth gg. An \emph{(r,g)(r,g)-cage} is an (r,g)(r,g)-graph with the smallest possible number of vertices among all (r,g)(r,g)-graphs; the order of an (r,g)(r,g)-cage is denoted by n(r,g)n(r,g). The Cage Problem consists of finding (r,g)(r,g)-cages; it is well-known that (r,g)(r,g)-cages have been determined only for very limited sets of parameter pairs (r,g)(r, g). There exists a simple lower bound for n(r,g)n(r,g), given by Moore and denoted by n0(r,g)n_0(r,g). The cages that attain this bound are called \emph{Moore cages}.Comment: 18 page

    The face pair of planar graphs

    Get PDF
    AbstractHarary and Kovacs [Smallest graphs with given girth pair, Caribbean J. Math. 1 (1982) 24–26] have introduced a generalization of the standard cage question—r-regular graphs with given odd and even girth pair. The pair (ω,ε) is the girth pair of graph G if the shortest odd and even cycles of G have lengths ω and ε, respectively, and denote the number of vertices in the (r,ω,ε)-cage by f(r,ω,ε). Campbell [On the face pair of cubic planar graph, Utilitas Math. 48 (1995) 145–153] looks only at planar graphs and considers odd and even faces rather than odd and even cycles. He has shown that f(3,ω,4)=2ω and the bounds for the left cases. In this paper, we show the values of f(r,ω,ε) for the left cases where (r,ω,ε)∈{(3,3,ε),(4,3,ε),(5,3,ε), (3,5,ε)}

    On the structure of graphs without short cycles

    Get PDF
    The objective of this thesis is to study cages, constructions and properties of such families of graphs. For this, the study of graphs without short cycles plays a fundamental role in order to develop some knowledge on their structure, so we can later deal with the problems on cages. Cages were introduced by Tutte in 1947. In 1963, Erdös and Sachs proved that (k, g) -cages exist for any given values of k and g. Since then, large amount of research in cages has been devoted to their construction. In this work we study structural properties such as the connectivity, diameter, and degree regularity of graphs without short cycles. In some sense, connectivity is a measure of the reliability of a network. Two graphs with the same edge-connectivity, may be considered to have different reliabilities, as a more refined index than the edge-connectivity, edge-superconnectivity is proposed together with some other parameters called restricted connectivities. By relaxing the conditions that are imposed for the graphs to be cages, we can achieve more refined connectivity properties on these families and also we have an approach to structural properties of the family of graphs with more restrictions (i.e., the cages). Our aim, by studying such structural properties of cages is to get a deeper insight into their structure so we can attack the problem of their construction. By way of example, we studied a condition on the diameter in relation to the girth pair of a graph, and as a corollary we obtained a result guaranteeing restricted connectivity of a special family of graphs arising from geometry, such as polarity graphs. Also, we obtained a result proving the edge superconnectivity of semiregular cages. Based on these studies it was possible to develop the study of cages. Therefore obtaining a relevant result with respect to the connectivity of cages, that is, cages are k/2-connected. And also arising from the previous work on girth pairs we obtained constructions for girth pair cages that proves a bound conjectured by Harary and Kovács, relating the order of girth pair cages with the one for cages. Concerning the degree and the diameter, there is the concept of a Moore graph, it was introduced by Hoffman and Singleton after Edward F. Moore, who posed the question of describing and classifying these graphs. As well as having the maximum possible number of vertices for a given combination of degree and diameter, Moore graphs have the minimum possible number of vertices for a regular graph with given degree and girth. That is, any Moore graph is a cage. The formula for the number of vertices in a Moore graph can be generalized to allow a definition of Moore graphs with even girth (bipartite Moore graphs) as well as odd girth, and again these graphs are cages. Thus, Moore graphs give a lower bound for the order of cages, but they are known to exist only for very specific values of k, therefore it is interesting to study how far a cage is from this bound, this value is called the excess of a cage. We studied the excess of graphs and give a contribution, in the sense of the work of Biggs and Ito, relating the bipartition of girth 6 cages with their orders. Entire families of cages can be obtained from finite geometries, for example, the graphs of incidence of projective planes of order q a prime power, are (q+1, 6)-cages. Also by using other incidence structures such as the generalized quadrangles or generalized hexagons, it can be obtained families of cages of girths 8 and 12. In this thesis, we present a construction of an entire family of girth 7 cages that arises from some combinatorial properties of the incidence graphs of generalized quadrangles of order (q,q)

    A lower bound on the order of regular graphs with given girth pair

    No full text
    The girth pair of a graph gives the length of a shortest odd and a shortest even cycle. The existence of regular graphs with given degree and girth pair was proved by Harary and Kovács [Regular graphs with given girth pair, J Graph Theory 7 (1983), 209–218]. A (δ, g)-cage is a smallest δ-regular graph with girth g. For all δ ≥ 3 and odd girth g ≥ 5, Harary and Kovács conjectured the existence of a (δ,g)-cage that contains a cycle of length g + 1. In the main theorem of this article we present a lower bound on the order of a δ-regular graph with odd girth g ≥ 5 and even girth h ≥ g + 3. We use this bound to show that every (δ,g)-cage with δ ≥ 3 and g ∈ {5,7} contains a cycle of length g + 1, a result that can be seen as an extension of the aforementioned conjecture by Harary and Kovács for these values of δ, g. Moreover, for every odd g ≥ 5, we prove that the even girth of all (δ,g)-cages with δ large enough is at most (3g − 3)/2
    corecore