29 research outputs found

    Author index

    Get PDF

    Quantum Property Testing

    Get PDF
    A language L has a property tester if there exists a probabilistic algorithm that given an input x only asks a small number of bits of x and distinguishes the cases as to whether x is in L and x has large Hamming distance from all y in L. We define a similar notion of quantum property testing and show that there exist languages with quantum property testers but no good classical testers. We also show there exist languages which require a large number of queries even for quantumly testing

    Property Testing via Set-Theoretic Operations

    Get PDF
    Given two testable properties P1\mathcal{P}_{1} and P2\mathcal{P}_{2}, under what conditions are the union, intersection or set-difference of these two properties also testable? We initiate a systematic study of these basic set-theoretic operations in the context of property testing. As an application, we give a conceptually different proof that linearity is testable, albeit with much worse query complexity. Furthermore, for the problem of testing disjunction of linear functions, which was previously known to be one-sided testable with a super-polynomial query complexity, we give an improved analysis and show it has query complexity O(1/\eps^2), where \eps is the distance parameter.Comment: Appears in ICS 201

    Sublinear DTD Validity

    Get PDF
    International audienceWe present an efficient algorithm for testing approximate DTD validity modulo the strong tree edit distance. Our algorithm inspects XML documents in a probabilistic manner. It detects with high probability the nonvalidity of XML documents with a large fraction of errors, measured in terms of the strong tree edit distance from the DTD. The run time depends polynomially on the depth of the XML document tree but not on its size, so that it is sublinear in most cases. Therefore, our algorithm can be used to speed up exact DTD validators that run in linear time. We also prove a negative result showing that the run time of any approximate DTD validity tester must depend on the depth of the input tree. A long version is available here.</p

    Testing Linear-Invariant Non-Linear Properties

    Get PDF
    We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for "triangle freeness": a function f:\cube^{n}\to\cube satisfies this property if f(x),f(y),f(x+y)f(x),f(y),f(x+y) do not all equal 1, for any pair x,y\in\cube^{n}. Here we extend this test to a more systematic study of testing for linear-invariant non-linear properties. We consider properties that are described by a single forbidden pattern (and its linear transformations), i.e., a property is given by kk points v_{1},...,v_{k}\in\cube^{k} and f:\cube^{n}\to\cube satisfies the property that if for all linear maps L:\cube^{k}\to\cube^{n} it is the case that f(L(v1)),...,f(L(vk))f(L(v_{1})),...,f(L(v_{k})) do not all equal 1. We show that this property is testable if the underlying matroid specified by v1,...,vkv_{1},...,v_{k} is a graphic matroid. This extends Green's result to an infinite class of new properties. Our techniques extend those of Green and in particular we establish a link between the notion of "1-complexity linear systems" of Green and Tao, and graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the proceedings of STACS 200

    Recognizing well-parenthesized expressions in the streaming model

    Full text link
    Motivated by a concrete problem and with the goal of understanding the sense in which the complexity of streaming algorithms is related to the complexity of formal languages, we investigate the problem Dyck(s) of checking matching parentheses, with ss different types of parenthesis. We present a one-pass randomized streaming algorithm for Dyck(2) with space \Order(\sqrt{n}\log n), time per letter \polylog (n), and one-sided error. We prove that this one-pass algorithm is optimal, up to a \polylog n factor, even when two-sided error is allowed. For the lower bound, we prove a direct sum result on hard instances by following the "information cost" approach, but with a few twists. Indeed, we play a subtle game between public and private coins. This mixture between public and private coins results from a balancing act between the direct sum result and a combinatorial lower bound for the base case. Surprisingly, the space requirement shrinks drastically if we have access to the input stream in reverse. We present a two-pass randomized streaming algorithm for Dyck(2) with space \Order((\log n)^2), time \polylog (n) and one-sided error, where the second pass is in the reverse direction. Both algorithms can be extended to Dyck(s) since this problem is reducible to Dyck(2) for a suitable notion of reduction in the streaming model.Comment: 20 pages, 5 figure
    corecore