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Sublinear DTD Validity

Antoine Ndione1,3,4, Aurelien Lemay2,3,4, and Joachim Niehren1,3,4

Inria Lille1 & Université de Lille2 & Cristal Lab3 & Links Project4

Abstract. We present an efficient algorithm for testing approximate dtd
validity modulo the strong tree edit distance. Our algorithm inspects xml
documents in a probabilistic manner. It detects with high probability the
nonvalidity of xml documents with a large fraction of errors, measured
in terms of the strong tree edit distance from the dtd. The run time
depends polynomially on the depth of the xml document tree but not
on its size, so that it is sublinear in most cases (because in practice xml
documents tend to be shallow). Therefore, our algorithm can be used to
speed up exact dtd validators that run in linear time.

1 Introduction

Validity checking for collections of large xml documents may quickly become
time consuming. With today’s technology, more than 10 minutes are needed to
validate a single document of more than 20 giga bytes, so that the treatment
of hundreds such documents may take days or weeks. This difficulty could be
overcome by sublinear algorithms that can quickly detect invalid documents
without reading them entirely.

Whether sublinear algorithms for xml schema validation exist is a principle
question. One approach to obtain sublinear algorithms for schema validation is
to use algorithms that evaluate schemas on xml streams in an online manner
[9,11]. In this manner, errors can be in sublinear time when they are localized
in a prefix of sublinear size of the xml streams, but not otherwise. In contrast,
our objective is to develop probabilistic approximation algorithms inspired by
property testing [8,7,2] which access a random fragment of constant size only, in
order to detect invalidity with high probability, if the input structure contains
many errors wheresoever located.

For approximate membership testing for unranked ordered trees as with xml,
we need a storage model that permits to randomly draw descendants of any
node from a uniform distribution, while giving deterministic access to its first
child, next sibling and parent. Such a storage model is easy to implement with
the techniques from xml databases. The number of errors is measured by the
minimal number of edit operations needed to repair the xml document so that
it satisfies the schema, but normalized with respect to the documents size. The
more edit operations are permitted, the smaller is the error measured, and the
easier becomes approximate membership testing. The only positive result so
far applies to testing DTD validity modulo the tree edit distance with subtree
moves [7]. But this edit distance is weaker than the usual edit distance, in that



it permits subtree moves beside of all usual operations. Thus the edit distance
with move can be very small compared to the usual edit distance and therefore
it detects less errors. Approximate membership for tree automata modulo the
usual edit distance would be nice to have, but its existence was stated as an
open question in [5]. It should also be noticed that property testers for graphs
are usually limited to local properties [15,13].

The first contribution of this paper is an approximate membership tester for
unranked tree automata modulo the usual tree edit distance [14,18], closing the
open problem from [5]. Indeed such a test can be obtained by linearization of
unranked trees into words. In order to show this, we use the nontrivial observation
that the usual edit distance between two trees is bounded in function of the edit
distance of their linearizations [1]. Thereby, can we apply the recent approximate
membership tester [12] for non-deterministic finite automata (nfas) modulo
the edit distance on words. This tester improves on a previous tester by Alon,
Krivelevich, and Newman [2] for the Hamming distance, so that it runs in
polynomial time in the size of the automaton and the inverse error precision, and
still independently of the size of the input word. However, the time complexity of
the so obtained tester for appoximate membership for unranked tree automata
depends exponentially on depth of the input tree. This is not a problem for
shallow trees, that are frequent in the case of xml, but leaves open whether this
depth dependence can be removed, or whether a polynomial depth dependence
can be obtained.

The second and main contribution of this paper is an efficient probabilistic
algorithm testing approximate dtd validity modulo the strong tree edit distance
from [17], which restricts the usual tree edit operations to leaf insertion, leaf
deletion, and node relabeling (while ruling out node inserting and deletion). Its
run time depends only on the depth of the xml document but not of its size.
Trivially, the same tester is also correct for all weaker distances such as the usual
tree edit distance. With inputs: an error precision ε > 0, a dtd D, and an xml
documents t that is ε-far (normalized by the size of t) from satisfying the dtd D
modulo the strong edit distance; the algorithm returns no with high probability.
It answers close for valid trees, and either close or no for all others. The
running time is polynomially bounded in the depth of t, 1/ε, and the mintree
size mD of the dtd, which is the maximum over element names a ∈ Σ of the
minimal sizes of a-labeled subtrees of D-valid trees. Even though mD may grow
exponentially with D, it seems to be close to the size of D for all practically
relevant dtds. Furthermore, mD can be computed in quadratic time in the size
of D, so unusual cases can be recognized efficiently and passed directly to exact
dtd validity checking.

The next difficulty is that we cannot use the linearization approach for
approximate membership testing modulo the strong tree edit distance. To remedy
the situation we study weighted words, i.e., words in which all positions are
assigned a weight. The edit distance on words is also lifted to weighted words,
such that the costs of edit operations are given by these weights. Then, we extend
the algorithm from [12] to a polynomial time nfa membership tester for weighted



words modulo the stong edit distance. We next contribute a direct reduction from
approximate dtd validity to approximate nfa membership of weighted words.

Outline. In Section 2 we recall preliminaries on xml data models and schemas.
In Section 3, we recall edit distances for trees and words. In Section 4, we present
our main result. In Section 5, we introduce weighted words, lift the edit distance,
and present our tester for membership of weighted words to regular languages
modulo the edit distance. In Section 6, we prove the main result. A long version
with full proofs is available at https://hal.inria.fr/hal-00803696.

2 Data Models and Schemas

We recall preliminaries on the xml data model and on xml schemas.

Words. An alphabet Σ is a finite set. We denote the set of words over alphabet
Σ by Σ∗. The length of a word w ∈ Σn is |w| = n and the set of its positions is
pos(w) = {1, . . . , n}. The empty word is denoted ε and w ·w′ is the concatenation
of w and w′.

A nondeterministic finite automaton with ε-transitions (nfa) is a tuple A =
(Σ, Q, init , fin, ∆), where alphabet Σ is a finite set, Q is a finite set of states
with subsets init and fin of initial and final states, and ∆ ⊆ Q× (Σ ] {ε})×Q
a transition relation.

For states q, q′ ∈ Q,
ε−→ is the relation such that q

ε−→ q′ if and only if
(q, ε, q′) ∈ ∆. In analogy, for any a ∈ Σ, q

a−→ q′ if and only if (q, a, q′) ∈ ∆.

The relation
ε−→∗ is the reflexive transitive closure of

ε−→. The relation
a

=⇒ includes
multiple ε-transitions and a single a-transition, i.e,

a
=⇒ is the composition of

relations
ε−→∗◦ a−→ ◦ ε−→∗.

A quasi-run of an nfa A on a word w = a1 . . . an over Σ is a function
r : pos(w) → Q such that r(i − 1)

ai=⇒ r(i). A run is a quasi-run such that :

∃q ∈ init , q
ε−→∗r(0). A run is called successful if r(n) ∈ fin. The language L(A)

recognized by A is the set of all words w that permit a successful run.
An nfa A = (Σ, Q, init , fin, ∆) is productive if every state in Q is reachable

from init and co-reachable from fin. Without loss of generality we might assume
all automata input by our algorithms as productive.

A fragment of a word w is a subset of its positions. A fragment of consecutive
positions (or without holes) is called an interval and denoted by I =]i, j] as
usual. A factor of w is the word located at an interval, and a subword is the
word located at a fragment. The subword of w at fragment F is denoted wF .

An interval I of w is called blocking for an nfa A if starting from any state of
A, every possible quasi-run of A on wI gets stuck, that is, none of those possible
quasi-runs occurs in some successful run on a word in L(A). As an example, if A
is an automaton recognizing L = ab∗, then the interval ]0, 2] of aab is blocking,
since after reading the first a, A cannot proceed with any second “a”. Whether a
fragment is blocking is defined similarly, except that the automaton is allowed to
jump over holes to arbitrary accessible states. We can decide whether a fragment
F is blocking for A in time O(|F | |A|) without reading the entire word [12].

https://hal.inria.fr/hal-00803696


XML Data Model. The xml data model essentially boils down to finite un-
ranked data trees when ignoring details of attributes, processing instructions and
comments. Since we only consider structural aspects of xml documents described
by dtds, we can safely ignore data values and thus simplify the xml data model
further to finite unranked trees over a finite alphabet (fixed by the dtd).

The set of unranked trees over an alphabet Σ is the least set T ∗Σ containing
all tuples a(t1, · · · , ti) where a ∈ Σ and t1 · · · ti in T ∗Σ . The set nod(t) of nodes
of an unranked tree t is a prefix closed subset of N∗ (words with labels in N).
The size |t| is the number of nodes of t. As usual, we have the binary relations
parent t, fct (firstchild) and nst (nextsibling) on nod(t). The root of t is denoted
by root t = root = ε and is the unique node without parent. The i-th child of a
node v is v · i. A leaf is a node without children. The depth d(t) of a tree is the
maximal number of edges on paths from some leaf to the root with parent edges
only. For any v ∈ nod(t) we denote by t|v the subtree of t rooted at node v, and by
t[v] ∈ Σ the label of v. Furthermore, we define word(t) ∈ Σ∗ to be the sequence
of labels of the children of the root of t. For instance, if t = c(b(a, a), b(a, a, a))
then word(t) = bb and word(t|root·2) = aaa.

Schemas. Various languages for defining schemas of xml documents were pro-
posed in the literature. Document type descriptors (dtds) are most basic, while
Xml Schemas are more expressive. Our choice of dtds is motivated by the fact
that equally efficient membership testers for more expressive formalisms such as
tree automata are difficult to find or may even not exist.

Standard dtds define regular languages of unranked trees by using regular
expressions. These can be compiled into nfas in linear time, but only when
permitting ε-transitions as we do [16,10]. It should also be noticed that all
regular expressions in dtds are deterministic (see the W3C recommendation).
Therefore they can be converted into deterministic finite automata in polynomial
time. However, this conversion might require quadratic time if not fixing the
alphabet [4]. For our purpose, it is therefore advantageous to define dtds based
on nfas with ε-transitions. In some examples we will use regular expressions for
illustration nevertheless.

Definition 1. A dtd D over an alphabet Σ is a tuple (Σ, init , (Aa)a∈Σ) where
init is an element of Σ, and all Aa are nfas with alphabet Σ.

An unranked tree t overΣ is valid for a dtd D iff t[root ] = init and word(t|v) ∈
L(At[v]) for all v ∈ nod(t). We denote the set of all D-valid trees by L(D). For all
labels a ∈ Σ and dtd D = (Σ, init , (Aa)a∈Σ), we denote by Da the dtd (Σ, a,
(Aa)a∈Σ). The mintree size mD is the maximum for all a ∈ Σ of all minimal sizes
of trees belonging to L(Da): mD = maxa∈Σ,L(Da) 6=∅min{|t| | t ∈ L(Da)}. Note
that one can compute mD in quadratic time from D even though this number
might be exponentially bigger than the size of D.

3 Edit Distances

We recall the the edit distance for words and trees.



Edit Operations. The (usual) edit operations on words permit to relabel, insert,
and delete a letter at a given position. The edit distance between two words w and
w′ is the least number of usual edit operations needed to transform w into w′. It is
denoted by e(w,w′). The usual edit operations on trees allow for node relabelling,
node inserting, and node deletion [18]. The (usual) edit distance on unranked
trees t and t′, that we will denote by estand (t, t′) is the least number of usual edit
operations required to transform t into t′. The strong edit operations [17] restricts
the usual edit operations to node relabelling, leaf insertion and leaf deletion.
We consider a tree t = C(a(t1, . . . , tn)) where C is a context with hole marker
at node v, so that t|v = a(t1, . . . , tn). The relabelling of v to b in t is the tree:
relv,b(t) = C(b(t1, . . . , tn)). The insertion of a b-leaf at a position 0 ≤ i ≤ n below
node v yields the tree: insv,i,b(t) = C(a(t1, . . . , ti, b, ti+1, . . . , tn)). The deletion
of a leaf v · i with 1 ≤ i ≤ n yields: delv·i(t) = C(a(t1, . . . ti−1, ti+1, . . . , tn)). The
strong edit distance between two trees t and t′ is the least number of strong edit
operation to transform t into t′. It is denoted by e(t, t′).

It always holds that estand (t, t′) ≤ e(t, t′). Furthermore, e(t, t′) ≤ |t|+ |t′| − 1
since we can first delete all nodes of t except the root, then relabel the root, and
finally add all non-root nodes of t′ one by one.

Farness. Let S be a set of structures and e : S × S → N0 a function called the
distance for S. We assume that any structure s ∈ S has a finite size |s| ∈ N0.
We define the distance of a structure s to a language L ⊆ S as the least
number of edit operations needed to transform s into a member of L, i.e.,
E(s, L) = mins′∈LE(s, s′).

Definition 2. Let ε > 0 and L(A) ⊆ S for some language definition A. A
structure s is called ε-far from A modulo distance E if the normalized distance of
s to L(A) is greater than ε, that is if E(s,L(A))/|s| ≥ ε, and ε-close otherwise.

Note that ε-farness from a dtd D with respect to the usual edit distance
implies ε-farness from D with respect to the strong edit distance. Furthermore,
since e(t, t′) ≤ |t|+ |t′| − 1 for any two unranked trees, it follows that e(t,Da) ≤
|t| + mD − 1 ≤ mD |t| for all labels a in the alphabet of a non-empty dtd D
(a tree always has a root, so |t|,mD ≥ 1). Since emptiness of dtds is linearly
decidable we only consider non empty dtds in the rest of the paper.

Linearization. The relationship from [1] between the usual edit distance on
trees t and t′ and the edit distance of their respective xml linearizations w and
w′ depends on the minimal depth of the two trees d:

e(w,w′)

2
≤ estand(t, t′) ≤ (2d+ 1) e(w,w′)

These estimations are thight up to a constant factor. For any tree t of depth
d, if t is ε-far from a dtd D modulo the usual tree edit distance, then its xml
linearization w is ε

2d+1 -far from the linearizations of any D-valid tree.
Note however, that the same upper bound does not hold for the strong tree

edit distance e(t, t′). This indicates already, that we will need a more general
method for testing dtd membership modulo the strong tree edit distance, than
for testing membership for finite word automata modulo the edit distance.



4 Main Results

Sublinear membership testers are not allowed to read the whole input structure.
Instead they only access some elements of the structure randomly and navigate
from there on. Which access operations are permitted can be defined by a
randomized data model. In this section, we introduce appropriate randomized
data models for words and trees, and then formulate our positive results.

Randomized Data Models. As usual, any word w with alphabet Σ defines
a unique relational structure Sw with domain dom(w) = pos(w) ∪ {0}, that is
Sw = (dom(w), startw, succw, (labwa )a∈Σ) where startw = {0}, succw = {(i, i+1) |
0 ≤ i < |w|}, and labwa is the set of positions of w labeled by a. The randomized
data model is similar except that it gives random access to elements of some
structure isomorphic to Sw. More formally, the randomized data model of a
word w and a bijection θ : dom(w) → V is the tuple rdmθ

w = (ele, start, succ,
lab), which contains a random generator ele that draws an arbitrary element of
V from a uniform distribution, a start position start ∈ V , a successor function
succ : V → V ∪ {⊥}, and a labeling function lab : V → Σ, such that θ is an
isomorphism between Sw and the relational structure (V , {start}, {(v, succ(v)) |
succ(v) 6= ⊥}, (θ(labwa ))a∈Σ).

Any xml document t, as an unranked tree over some alphabet Σ, defines
a unique relational structure St = (nod(t), root t, parent t, fct, nst, (labta)a∈Σ)
with domain nod(t). The randomized data model is similar except that it gives
random access to elements of some structure isomorphic to St. More formally,
the randomized data model of a word w and a bijection θ : nod(t) → V is
the tuple rdmθ

t = (desc, root , parent , fc, ns, lab, depth). For any node v of
t, desc(v) is a random generator that draws descendants of v from a uniform
distribution or returns ⊥ if v is a leaf, a root element root ∈ V , a parent
function parent : V \ {root} → V , the firstchild function fc : V → V ∪ {⊥}, the
nextsibling function ns : V → V ∪ {⊥}, and labeling functions lab : V → Σ. We
require that θ is an isomorphism from St to the relational structure (V , {root},
{(v, parent(v)) | v ∈ V }, {(v, fc(v)) | fc(v) 6= ⊥}, {(v,ns(v)) | ns(v) 6= ⊥},
(θ(labta))a∈Σ)). Finally, depth = d(t) is the depth of t.

Approximate Membership. Approximate membership is a special case of
property testing, aiming for probabilistic algorithms that read a sublinear part of
the input structure based on a randomized data model. For the formal definition,
we fix a class S of structures such that each structure s in S has randomized
data models denoted by rdms, and a class A of language definitions such that
each definition A in A defines a language  LA included in S and has a size |A| in
N.

Definition 3. An approximate membership tester for S and A is an algorithm
(possibly randomized) that receives as inputs a randomized data model rdms for
some structure s ∈ S, an error precision ε > 0 and a language definition A ∈ A,
and answers with probability 2

3 : close if s ∈ L(A) and no if s is ε-far from A.

The query complexity of a tester is the number of times it uses rdms during
the computation in dependence of the input (size). Its time complexity accounts



for all other operation performed by the algorithm in addition to the query
complexity.

Tree Edit Distance. We next sketch how to test approximate membership for
tree automata on unranked trees [6] modulo the usual tree edit distance, based
on tree linearization. Note that such tree automata subsume our dtds.

The idea is to use the upper bound estand(t, t′) ≤ (2d+ 1)e(w,w′) from [1],
where w is the xml linearization of t and w′ the xml linearization of t′. We want
to test approximately whether an unranked tree t of depth d is recognized by a
tree automaton B. If t is ε-far from B modulo the usual tree edit distance, then
its linearization is ε

2d+1 -far from the language of linearizations of trees recognized
by B of depth at most d. The tree automaton B can then be compiled into finite
automata A of exponential size |B|d that accepts all these linearizations. This
can be done by first compiling B into a nested word automaton [3] in linear time,
which in turn is compiled to a finite automaton by moving stacks up to depth
d into states. One can then apply the polynomial time membership tester for
finite automata modulo the edit distance on words from [12]. In order to do so,
one has to verify that the randomized data model of words can be simulated by
a randomized data model of the corresponding tree, which is straigthforward.
Since the tester in [12] never errs for correct words, and there is no requirement
on close trees, this method gives indeed a valid tester. The query complexity of
this test is in O(p(|A|, 1/ε, d)) where p is the polynomially bounded function that
satisfies for all positive real numbers a, e,d: p(a, e,d) = a3 e d log3(a2 e d) The
time complexity is in O(|A| p(|A|, 1/ε, d)). In combination we obtain:

Theorem 4. Whether an unranked tree t is approximatively recognized by a
tree automaton B can be tested with query complexity and time complexity in
O(p(|B|d(t), 1/ε, d(t))) and O(|B|d(t) p(|B|d(t), 1/ε, d(t))) respectively; modulo the
tree edit distance with error precision ε

Even though nontrivial, this theorem has three weaknesses. First of all, the
finite automaton A constructed from the tree automaton B and the depth d
may be of exponential size O(|B|d). Second, the tester does not apply to the
strong tree edit distance. And third, the query complexity of the tester depends
exponentially on the depth of the tree.

Strong Tree Edit Distance. Our main result is that all three problems can
be solved for dtd membership modulo the strong tree edit distance, as stated in
the following theorem.

Theorem 5. Whether an unranked tree t is valid for a dtd D = (Σ, init , (Aa)a∈Σ)
modulo the strong tree edit distance with error precision ε can be tested with query
complexity in O(d2 p(a, d/ε,mD)) and time complexity in O(a d2 p(a, d/ε,mD) +
|D|), where d = d(t) and a = maxa∈Σ |Aa| is smaller than |D|.

The dependency on the depth is reduced from exponential to polynomial.
In contrast, approximate membership of nfas can be done with constant query
complexity [12,2,7]. Nevertheless, as dtds are naturally connected to nfas, one
might want to reduce approximate membership of the former to the one of



the latter. We believe that this cannot be archieved. Instead, we will present a
reduction to a more general property tester for so called weighted words that we
will develop for this purpose.

5 Weighted Words

We present an approximate membership tester for finite automata on weighted
words modulo a weighted edit distance.

From Trees to Weighted Words. A weighted word over an alphabet Σ is a
word over the alphabet Σ × N. The idea for the introduction of weigthed words
is as follows. To any node v of a tree t we assign the weight |t|v|. The weighted
word associated to a node v is then the word word(t|v), in which each position is
weighted by the weight of the corresponding child of v.

We next illustrate the close link from trees to weighted words by example.
We consider the dtd D with rules r → ab∗, a→ a∗, b→ b∗. For any i ≥ 0, let ai
be the tree a(a, . . . , a) with i a-leaves and bi the tree b(b, . . . , b) with i b-leaves.
The tree t = r(a1, b2, b3, a4) of depth 2 is clearly invalid for D. Its distance is
e(t,D) = 5 since one must delete the whole last subtree to become valid and
this subtree has size 5. However, if we consider the regular language below the
root L = ab∗ and pick the word at the root w = word(t|ε) = abba, then we have
e(w,L) = 1 for the edit distance for words. One way to understand the problem
is that we cannot simply ignore the sizes of the subtrees as we did. Instead,
we should associate a weight to each position, and consider the weighted word
ω = (a, 2)(b, 3)(b, 4)(a, 5) for the above example. We also need to adapt the costs
of deleting a weighted letter such as (c, i) to its weight i. In this way, the weighted
distance of ω to L becomes 5 which is equal to the distance of t to D.

Any weighted word has the form w ∗ p for some w ∈ Σ∗ and p ∈ N∗, where w
and p have the same length. We call w the word part and p the weight part of
w ∗ p. We will also say that ω has at position i the weight k ∈ N and the label
a ∈ Σ if ω[i] = (a, k). The weight |ω|∗ is the sum of the weights at all positions
of ω. The word part of a weighted word is used to define its membership to word
regular languages while the weight part is used to define weighted words edit
distance. We say that a weighted word w ∗p is recognized by an nfa A if and only
if w ∈ L(A). The set of weighted words recognized by A is denoted by L∗(A).
The notions of blocking fragment and interval are lifted to weighted words by
deletion of the weights. For example, if A is a productive automaton recognizing
L = ab∗, then the interval I =]0, 2] of ω = (a, 1)(a, 3)(b, 4) is blocking for A, since
aa is the word part of the weighted word ωI located at I, and after reading the
first a, A cannot proceed with any second “a”.

The edit operations for weighted words are essentially the same as for words,
i.e, insertions, relabeling, and deletions. The only difference is that the costs
of these operations depend on the weights of the letters that are edited. For
a weighted word ω = σ1 . . . σn and a natural number i ∈ [0, n], the insertion
of a weighted letter σ ∈ Σ × N following position i in ω yields the weighted
word: insi,σ(ω) = σ1 . . . σiσσi+1 . . . σn. The cost of this insertion is the weight



of σ. The deletion of position 1 ≤ i ≤ n of w yields the following weighted
word: del i(ω) = σ1 . . . σi−1σi+1 . . . σn. The cost of such a deletion operation is
the weight of the deleted letter σi. The relabeling at position 1 ≤ i ≤ n of
ω into a letter b changes only the letter at this position but not its weight.
Let σi = (a, k) then the relabeling operation at position i costs k and yields:
rel i,b(ω) = σ1 . . . σi−1(b, k)σi+1 . . . σn.

Testing Weighted Words. We next show that approximate nfa membership
modulo the edit distance can be tested efficiently for weighted words. We will
prove the following result for the randomized data model of weighted words
defined below.

Theorem 6. Let A be an nfas that has k strongly connected components.
Whether a weighted word ω is approximately a member of L∗(A) modulo the
weighted edit distance with error precision ε can be tested with query complexity

O(k
2|A|
ε log3(k|A|ε )) and time complexity O(k

2|A|2
ε log3(k|A|ε )) independently of the

weight or size of ω.

So far, the ideas to Theorem 6 are essentially the same as for usual words [12].
What changes for weighted words is that many errors can be concentrated at some
position of high weight. This can be accounted by adapting the random drawing
of fragments. Instead of using a generator that draws positions uniformly in the
word, we use a random generator that draws positions depending on weights.
The probability to draw the i-th position of a weighted word ω = w ∗ p should be
p(i)/|ω|∗. We call such a random generator a drawing from a weighted distribution.
We can now define the random data model of a weighted word ω and a bijection
θ : pos(ω) → V in analogy to the case of words: rdmθ

ω = (ele, start, next , lab).
Here, ele is a random generator of positions for the weighted distribution. It
might be disturbing that such random generator cannot be obtained from a
weighted word without reading it entirely. However, as we will see, we can obtain
it from the randomized data model of a tree.

With respect to such random data models for weighted words, Theorem 6
become true. We prove this in two steps. We first consider the case where the
nfa is strongly connected, and second study the general case of automaton with
several strongly connected components.

Strongly Connected Automata. Let A be an nfa that is strongly connected.
An approximate membership testing for weighted words can proceed as follows.
The input is a randomized data model rdmθ

ω for some weighted word ω. The
tester then generates randomly sufficiently many positions of the word according
to their weights, reads sufficiently long factors starting there, and returns no if
one of them is blocking. What “sufficient” here means can be deduced from the
following Lemma.

Lemma 7. Let A = (Σ,Q, init ,fin, ∆) be an nfa that is strongly connected, ω a
weighted word, m a natural number bigger than |ω|∗, ε > 0 an error precision, and

γ = 8|Q|
ε . If e(ω,A) > εm and m ≥ 8γdlog(γ)e, then there is a length l ∈ [2, γ]

which is a power of 2, and a set of disjoint intervals Il with weight mβl such that:
all intervals of Il are of lentgh 2l and blocking for A. Where βl = l/(2γdlog(γ)e).



f un memberA(r, ε)

// r = rdmθ
ω for some weighted word ω

// and ε an error prec i s ion
l e t (ele, start, succ, lab) = r
l e t k be the number o f s t r ong l y connected components o f A

l e t γ′ =
16k|Q|
ε

i f |ω| < 8γ′dlog(γ′)e then
i f ω ∈ L(A)//run A via start, succ, lab
then r e t u r n close e l s e r e t u r n no

e l s e

f o r i = 1 to dlog(γ′)e do

l e t l = min(2i, γ′)

l e t αl = 30kγ′dlog(γ′)e2/l
l e t S be sequence o f αl po s i t i o n s o f ω randomly drawn by ele
l e t F be the union o f a l l i n t e r v a l s o f ω o f l ength 2l s t a r t i n g

at p o s i t i o n s in S
i f F i s b lock ing wrt . A

// run A via succ and lab
then r e t u r n no ; e x i t e l s e s k i p

end
r e t u r n close

Fig. 1. An approximate membership tester for weighted words.

General Automata. We generalised the previous result to automata with
multiple strongly connected components. We refine the results from [12], which
in turn adapts the schema from [2], and prove that drawing positions from the
weight distribution of ε-far weighted words, yields a blocking fragment with high
probability.

For integers l, α, weighted word ω and a sequence S = (i1, · · · , iα) of α
positions in ω, we denote by FS the fragment ∪1≤j≤α[ij ,min(ij + l, |ω|)]. And
we define S(ω, l, α) as the set of all fragments FS .

Lemma 8. Let A be a productive nfa with state set Q and k strongly connected

components. Let ε > 0, γ′ = 16k|Q|
ε and ω be a weighted word of weight greater

than 8γ′dlog(γ′)e. If ω is ε-far from A, then there exists a power of two l ∈ [2, γ′]
such that: with probability 5

6 , drawing αl = 30kγ′dlog(γ′)e2/l positions with the
weight distribution of ω yields some blocking fragment in S(ω, 2l, αl).

Finally, Theorem 6 is a consequence of Lemma 8. Indeed, the algorithm in
Figure 1 is a one sided membership tester for weighted words. In fact by the
previous lemma, drawing enough positions according to the weight distribution
gives a blocking fragment with probability at least 5

6 ≥
2
3 . The case of weighted

words with small lengths is easily detected using start, succ, lab and the exact
membership is checked; this case includes all light weighted words. Furthermore
weighted words in L(A) have no blocking fragments.

6 Testing Unranked Trees

We reduce dtd membership of trees to nfa membership of weighted words. For
a tree t, the reduction is based on the weighted words ωv = word(t|v) ∗ pv for



nodes v of t, where pv is the sequence of sizes |t|v′ | of subtrees rooted at the
children v′ of v in document order. Note that we do not need to compute the
values |t|v′ |. However, we can draw a child v′ of some node v in a tree t with
probability |t|v′ |/|t|v|, and this is the only thing needed by our weighted word
tester (Figure 1), as this drawing corresponds to the drawing of positions for the
weighted distribution of ωv. Therefore, by Theorem 6, for all nodes v of t, we
can test membership of ωv to nfas efficiently. However, the query complexity

measured in terms of accesses to tree t belongs only to O(d(t) · k
2|A|
ε log3(k|A|ε )),

since we need to draw children of v as explained above in order to draw positions
in ωv with the correct weight.

We now link the strong tree edit distance to dtds to the edit distance of
weighted words to nfas.

Lemma 9. Let D = (Σ, init , (Aa)a∈Σ) be a dtd, ε > 0 a precision, and t a tree.
If all nodes v ∈ nod(t) satisfy e(ωv, At[v]) ≤ ε

mD
|ωv|∗ and lab(root t) = init then

e(t,D) ≤ d(t)ε|t|.

Lemma 9 shows that trees ε-farness is witnessed by nodes with weighted
words far from their appropriate regular language. We next explain how to detect
such nodes. Indeed the next lemma states that the overall subtree sizes of nodes
whose corresponding weighted words are far from their regular word language is
important. A node v ∈ nod(t) is ε-bad if e(ωv, At|v) > ε

2mD ·d(t) |ωv|∗. Let Bt be

the set of bad nodes whose ancestors aren’t bad. |Bt| =
∑
v∈Bt |t|v| is the size of

Bt.

Lemma 10. For dtd D, precision ε > 0, and t a tree ε-far from D, one has
|Bt| > ε

2 |t|.

We describe now how this lemma translates to a membership tester. Let µ
be the random process that uniformly selects a node of t and returns its path
to the root π. The size of π is at most d(t) and for all nodes v ∈ nod(t), the
probability that v is in π is Prπ∼µ[v ∈ π] = |t|v|/|t|. Therefore, by Lemma 10, if
t is ε-far from D , then the probability that π contains an element of Bt is at least
ε
2 . Hence for dlog(5)/εe drawn paths, with probability 4

5 one drawn node is bad.
However we do not know which selected node is bad, so we need to verify them
all to detect ε-farness. We next use the membership tester of weighted words
in section 5, which answers correctly with probability at least 5

6 . It follows that
with probability at least 4

5 ·
5
6 = 2

3 we would find error in t.

Conclusion and Future Work. We have presented the first approximate
membership tester for dtds modulo the strong tree edit distance. The most
difficult part was to extend previous results for regular words languages to
regular tree languages that are restricted to locality in vertical direction (but not
horizontally). Some questions remain open. First of all, it might be possible that
approximate membership modulo the edit distance can be tested efficiently for
Xml Schemas by extending the methods presented here. In such a setting one
would preserve top-down determinism but give up vertical locality. A second more



difficult question is whether approximate membership can be tested efficiently
for bottom-up tree automata for ranked trees, while depending only on their
depth. The third yet more difficult question is whether efficient algorithms exist
for testing RelaxNG validity. Fourth, it might be interesting to study property
testing for schemas with key constraints.
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