
Innovations in Computer Science 2011

Property Testing via Set-Theoretic Operations

Victor Chen1 Madhu Sudan2∗ Ning Xie3†
1Princeton University

2 Microsoft Research New England
3 MIT CSAIL

vychen@princeton.edu madhu@microsoft.com ningxie@csail.mit.edu

Abstract: Given two testable properties P1 and P2, under what conditions are the union, intersection or
set-difference of these two properties also testable? We initiate a systematic study of these basic set-theoretic
operations in the context of property testing. As an application, we give a conceptually different proof that
linearity is testable, albeit with much worse query complexity. Furthermore, for the problem of testing disjunc-
tion of linear functions, which was previously known to be one-sided testable with a super-polynomial query
complexity, we give an improved analysis and show it has query complexity O(1/ε2), where ε is the distance
parameter.

Keywords: property testing, self-correction, set theory.

1 Introduction

During the last two decades, the size of data sets
has been increasing at an exponential rate, rendering a
linear scan of the whole input an unaffordable luxury.
Thus, we need sublinear time algorithms that read a
vanishingly small fraction of their input and still out-
put something intelligent and non-trivial about the
properties of the input. The model of property test-
ing [22,33] has been very useful in understanding the
power of sublinear time. Property testing is concerned
with the existence of a sublinear time algorithm that
queries an input object a small number of times and
decides correctly with high probability whether the
object has a given property or whether it is “far away”
from having the property.

We model input objects as strings of arbitrary
length, which can also be viewed as a function on ar-
bitrarily large domain. Formally, let R be a finite set
and D = {Dn}n>0 be a parametrized family of do-
mains. RD denote the set of all functions mapping
from D to R. A property P is simply specified by a
family of functions P ⊆ RD. A tester for property P
—————————

∗ Research supported in part by NSF Award CCR-
0514915.

† Research supported in part by NSF Award CCR-

0728645.

is a randomized algorithm which, given the oracle ac-
cess to an input functionf ∈ RDtogether with a dis-
tance parameter ε,distinguishes with high probability
(say, 2/3) between the case that f satisfies P and the
case that f is ε-far from satisfying P. Here, distance
between functions f, g : D → R, denoted dist(f, g),
is simply the probability that Prx∈D[f(x) 6= g(x)],
where x is chosen uniformly at random from D, and
dist(f,P) = ming∈P{dist(f, g)}. We say f is ε-far
from P if dist(f,P) > ε and ε-close otherwise. The
central parameter associated with a tester is the num-
ber of oracle queries it makes to the function f being
tested.

Property testing was first studied by Blum, Luby
and Rubinfeld [18] and was formally defined by Ru-
binfeld and Sudan [33]. The systematic exploration of
property testing for combinatorial properties was ini-
tiated by Goldreich, Goldwasser, and Ron [22]. Sub-
sequently, a rich collection of properties have been
shown to be testable [3-5,7,8,19,25,26,31].

Perhaps the most fundamental question in prop-
erty testing is the following: which properties have
local testing algorithms whose running time depends
only on the distance parameter ε? Are there any at-
tributes that make a property locally testable? Ques-
tions of this type in the context of graph property
testing were first raised in [22] and later received a
lot of attention. Some very general results have been
obtained [2,3,7,8,19.21], leading to an (almost) com-
plete qualitative understanding of which graph prop-

211

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4426692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

V. CHEN, M. SUDAN, N. XIE

erties are efficiently testable in the dense graph model
(see [14] for some recent progress in the sparse graph
model). In addition, for an important class of prop-
erties, namely H-freeness for fixed subgraphs H, it
is known exactly for which H, testing H-freeness re-
quires the query complexity to be super-polynomial
in 1/ε and for which only a polynomial number of
queries suffice: This was shown by Alon [1] for one-
sided error testers and by Alon and Shapira [6] for
general two-sided error testers. Progress toward simi-
lar understanding has also been made for hypergraph
properties [7,9,32].

However, much less is known for algebraic proper-
ties. In a systematic study, Kaufman and Sudan [27]
examined the query complexity of a broad class of
algebraic properties based on the invariance of these
properties under linear transformations. Roughly
speaking, they showed that any locally-characterized
linear-invariant and linear1 properties are testable
with query complexities polynomial in 1/ε. Non-
linear linear-invariant properties were first shown to
be testable by Green [24] and were formally studied
in [15]. The properties studied in [15,24] are “pattern-
freeness” of Boolean functions, which has been at-
tracting considerable attention [15,16,24,29,34], as
such a study may lead to a complete characterization
of testability for functions, analogous to the setting of
graphs.

1.1 Motivation for set-theoretic
operations

In this paper we propose a new paradigm to sys-
tematically study algebraic property testing. First,
decompose a natural algebraic property into the union
or intersection (or some other set operation) of a set of
“atomic properties”. Second, try to show that each of
these atomic properties is testable. Finally, prove that
some “composite” property obtained from applying
some set theoretic operations on the (testable) atomic
properties is also testable. A prominent example is
the set of low-degree polynomials [4,25,26]. It is easy
to see that the property of being a degree-d polyno-
mial over GF(2) is simply the intersection of 22d+1−2

atomic properties. Indeed, let Pd denote the set of n-
variate polynomials of degree at most d. Then, by the
characterization of low-degree polynomials (see, e.g.,

1A property F is linear if for any f and g that are in F
necessarily implies that f + g is in F .

[4]), f ∈ Pd if and only if for every x1, . . . , xd+1 ∈ Fn
2 ,

∑

∅6=S⊆[d+1]

f(
∑

i∈S

xi) ≡ 0 (mod 2).

Now fix an ordering of the non-trivial subsets of
[d + 1] = {1, 2, . . . , d + 1}. Let ~b be a bit-string of
length 22d+1−1 with an odd number of ones and Pd,~b
denote the set of functions f such that the string
〈f(

∑
i∈S xi)〉∅6=S⊆[d+1] is not equal to ~b. By defini-

tion, Pd is the intersection of 22d+1−2 “~b-free” proper-
ties Pd,~b’s.

2

In order to carry out this program of decompos-
ing an algebraic properties into atomic ones, one must
have a solid understanding of how basic set-theoretic
operations affect testability. For instance, given two
testable properties, is the union, intersection, or set-
difference also testable? Previously, Goldreich, Gold-
wasser and Ron considered such questions in their
seminal paper [22]. They observed that the union of
two testable properties is always testable (cf. Section
3.1) but also provided examples showing that in gen-
eral, testability is not closed under other set-theoretic
operations. Thus, current understanding of testability
via set-theoretic operations seems insufficient to carry
out the above mentioned program of attack.

1.2 Our results

In this paper, we show more positive results for
these basic set-theoretic operations and illustrate sev-
eral applications. We now describe our contribution
in more detail.

Set-theoretic operations We provide sufficient
conditions that allow local testability to be closed un-
der intersection and set difference. Given two locally
testable properties, we show that if the two properties
(minus their intersection) are sufficiently far apart,
then their intersection is also locally testable. For set
difference, a similar statement can also be made, al-
beit with more technicality, requiring that one of the
properties must be “tolerantly testable”.

A more detailed treatment of these set operations
appears in Section 3. We remark that in the general
case, testability is not closed under most set opera-
tions. Thus, putting restrictions on these properties
is not unwarranted.

2In fact, some of these 22d+1−2 properties are identical since
the set of non-trivial subsets generated by xi is invariant under
permutation of the xi’s.

212

PROPERTY TESTING VIA SET-THEORETIC OPERATIONS

Applications of these set-theoretic considerations
appear in Sections 4.2 and 4.3. Furthermore, Section
4.3 demonstrates the simplicity that comes from these
set-theoretic arguments. There, via set theory, we de-
fine a new property from an established one, and show
that the new property’s testability, in terms of both
upper and lower bounds, is inherited from the previ-
ous property.

Disjunction of linear functions In addition to
set theory, it is also natural to ask whether testability
is preserved under the closure of some fundamental,
unary operations. For instance, given a testable prop-
erty P, under what condition is its additive closure⊕P
testable? A similar question can also be asked for the
disjunctive operator ∧, which is one of the most basic
operations used to combine formulas. Given a testable
property P, is its disjunctive closure ∧P testable?

Trivially, if P is linear, then ⊕P = P and testabil-
ity is preserved. Furthermore, if P1 and P2 are both
linear and linear-invariant as introduced by Kaufman
and Sudan [27], then their sumset P1 +P2 is testable.
However, in general, not much can be said about how
these basic operations affect testability.

Here we focus on disjunction’s effect on one specific
property, namely the set of linear functions. Before
we describe our result, we note some previous works
in testing where disjunction played a role. For the dis-
junction of monomials, Parnas et. al. [31] gave a test-
ing algorithm for s-term monotone DNF with query
complexity Õ(s2/ε). Diakonikolas et. al. [20] gener-
alized Parnas et. al.’s result to general s-term DNF
with query complexity Õ(s4/ε2).

We take a different direction and ask how disjunc-
tion affects the testability of the set of linear func-
tions. The property of being a linear Boolean function
(see next section for a full discussion), first studied
by Blum, Luby and Rubinfeld [18], is testable with
query complexity O(1/ε). As observed in [15], the
class of disjunction of linear functions is equal to the
class of 100-free functions (see Preliminaries for a def-
inition). There they showed that a sufficiently rich
class of “pattern-free” functions is testable, albeit with
query complexity a tower of 2’s whose height is a func-
tion of 1/ε. In a different context, the authors in [23]
showed implicitly3 that the disjunction of linear func-
tions is testable with query complexity polynomial in
1/ε, but with two-sided error.

3We thank an anonymous reviewer from ICS 2011 for point-
ing this out.

Since both [15] and [23] seek to describe rich classes
of testable Boolean functions, the bounds from both
works do not adequately address how disjunction af-
fects the query complexity of the underlying property,
the set of linear functions. In Section 4.1, we give
a direct proof, showing that the disjunction of linear
functions is testable with query complexity O(1/ε2)
and has one-sided error. Thus, the blowup from the
disjunctive operator is O(1/ε). It will be interesting
to see if the blowup is optimal for this problem.

A different proof for linearity testing Linearity
testing, first proposed by Blum, Luby and Rubinfeld
[18], is arguably the most fundamental and extensively
studied problem in property testing of Boolean func-
tions. Due to its simplicity and important applications
in PCP constructions, much effort has been devoted to
the study of the testability of linearity [10-12,18,28].

For linearity, we indeed are able to carry out the
program of decomposing an algebraic property into
atomic pattern-free properties, and thus obtain a novel
new proof that linearity is testable in Section 4.2. In
particular, linearity is easily seen to be equal to the
intersection of two atomic properties, namely triangle-
freeness (see Section 2) and disjunction of linear func-
tions, which are both testable.

The query complexity of linearity in our proof is
of the tower-type, drastically worse than the optimal
O(1/ε) bound, where ε is the distance parameter. We
note that our effort in obtaining a new proof lies not in
improving the parameters, but in understanding the
relationships among these atomic, testable properties.
In fact, we believe that despite the poor upper bound,
our new proof is conceptually simple and gives evi-
dence that set theory may uncover new testable prop-
erties.

1.3 Techniques

Our new proof that linearity is testable is built on
the testability results for triangle freeness (see defini-
tion in Section 2) and the disjunction of linear func-
tions. The latter was already shown to be testable
in [15]. However, in this work, we give a completely
different proof using a BLR-styled approach. Our
proof is a novel variant of the classical self-correction
method. Consequently, the query upper bound we
obtain (quadratic in 1/ε) is significantly better than
the tower-type upper bound shown in [15]. In fact, to
the best of our knowledge, this is the first and only
polynomial query upper bound for testing pattern-

213

V. CHEN, M. SUDAN, N. XIE

freeness properties. All other analysis for testing
pattern-freeness properties apply some type of “reg-
ularity lemma”, thus making tower-type query upper
bounds unavoidable.

We believe that both the self-correction technique
and the investigation of set-operations may be use-
ful in the study of testing pattern-freeness. From the
works developed in [29,34], we know that for every d,
the property Pd,~1 is testable.4 However, for an arbi-
trary ~b, the testability of Pd,~b remains open. And in
general very little can be said about the testability
of an arbitrary intersection of these properties. Since
Pd is known to be testable using self-correction [4],
we believe that self-correction, applied in conjunction
with set-theory, may be useful for understanding these
pattern-free properties.

2 Preliminaries

We now describe some basic notation and defini-
tions that we use throughout the paper. We let
N = {0, 1, . . .} denotes the set of natural numbers and
[n] the set {1, . . . , n}. We view elements in Fn

2 as n-bit
binary strings, that is elements of {0, 1}n. For x ∈ Fn

2 ,
we write xi ∈ {0, 1} for the ith bit of x. If x and y are
two n-bit strings, then x + y denotes bitwise addition
(i.e., XOR) of x and y, and x ·y =

∑n
i=1 xiyi (mod 2)

denotes the inner product between x and y. We write
(x, y) to denote the concatenation of two bit strings
x and y. For convenience, sometimes we view a n-
bit binary string as a subset of [n], that is, for every
x ∈ Fn

2 there is a corresponding subset Sx ⊆ [n] such
that xi = 1 iff i ∈ Sx for every 1 6 i 6 n. We write |x|
to indicate the Hamming weight of x, i.e., the num-
ber of coordinates i such that xi = 1. Equivalently,
this is also the cardinality of subset Sx. By abuse of
notation, we use parentheses to denote multisets; for
instance, we write (a, a, b, b, b) for the multiset which
consists of two a’s and three b’s.

Let f : Fn
2 → {0, 1} be a Boolean function. The

support of f is supp(f) = {x ∈ Fn
2 : f(x) = 1}.

Recall that for two functions f and g defined over
the same domain, the (fractional) distance between
these two functions is dist(f, g)def= Prx∈D[f(x) 6= g(x)].
Let P1 and P2 be two properties defined over the
same domain D, then the distance between these
two properties, dist(P1,P2), is simply defined to be

4Actually, stronger theorems were proved in [29,34], but to
state their works in full, definitions not needed in this work will
have to be introduced.

minf∈P1,g∈P2{dist(f, g)}.

A Boolean function f : Fn
2 → {0, 1} is linear if for

all x and y in Fn
2 , f(x) + f(y) = f(x + y). We denote

the set of linear function by PLIN. Throughout this
paper, we will be working with the pattern generated
by the triple (x, y, x + y). To this end, we say that
a Boolean function f : Fn

2 → {0, 1} is (1, 0, 0)-free if
for all x and y in Fn

2 , (f(x), f(y), f(x + y)) 6= (1, 0, 0),
where here and after we view (f(x), f(y), f(x + y))
as well as (1, 0, 0) as multisets5. We denote the
set of (1, 0, 0)-free functions by P(100)-FREE. Simi-
larly, a (1, 1, 0)-free Boolean function is defined anal-
ogously. Lastly, we say that a Boolean function
f : Fn

2 → {0, 1} is triangle-free if for all x and y in Fn
2 ,

(f(x), f(y), f(x + y)) 6= (1, 1, 1). We denote the set
of triangle-free functions by P(111)-FREE. Note that
P(111)-FREE is monotone: if f ∈ P(111)-FREE and we
modify f by setting some of the points in Fn

2 from 1
to 0, then the new function is clearly also triangle-
free. We encapsulate this observation into the follow-
ing statement:

Observation 1. Let f and g be two Boolean functions
such that supp(f) ⊆ supp(g). Then

dist(f,P(111)-FREE) 6 dist(g,P(111)-FREE).

For concreteness, we provide a formal definition of
a tester.

Definition 1(Testability). Let R be a finite set and
D = {Dn}n>0 be a parametrized family of domains.
Let P ⊆ RD be a property.

We say a (randomized) algorithm T is a tester for
P with query complexity q(ε, n) if for any distance
parameter ε > 0, input size n and function f : Dn →
R, T satisfies the following:

• T queries f at most q(ε, n) times;
• (completeness) if f ∈ P, then Pr[T accepts] = 1;
• (soundness) if dist(f,P) > ε, then

Pr[T accepts] 6 1
3 , where the probabilities

are taken over the internal randomness used by
T .

We say that a property is locally testable if it has a
tester whose query complexity is a function depending
only on ε, independent of n. In this work, we actually
use the word testability to describe the stronger notion
of local testability. For our main results, we will work

5That is, for example, we do not distinguish the case
〈f(x), f(y), f(x + y)〉 = 〈1, 0, 0〉 from 〈f(x), f(y), f(x + y)〉 =
〈0, 1, 0〉.

214

PROPERTY TESTING VIA SET-THEORETIC OPERATIONS

with the model case when Dn = Fn
2 and R = {0, 1}.

3 Basic theory of set operations

In this section, we present some basic testabil-
ity results based on set-theoretic operations such
as union, intersection, complementation, and set-
difference. The proofs here are fairly standard and
are thus deferred to the Appendix.

3.1 Union

It is well known that the union of two testable prop-
erties remains testable. This folklore result first ap-
peared in [22]; for completeness, a proof is included in
Appendix A.

Proposition 1(Folklore). Let P1,P2 ⊆ RD be
two properties defined over the same domain D =
{Dn}n>0. For i = 1, 2, suppose Pi is testable with
query complexity qi(ε). Then the union P1 ∪ P2 is
testable with query complexity O(q1(ε) + q2(ε)).

3.2 Intersection

The case of set intersection is more complicated
than union. Goldreich et al. showed in [22] (see
Proposition 4.2.2) that there exist testable properties
whose intersection is not testable. Thus, in general,
testability does not follow from the intersection opera-
tion. However, testability may still follow in restricted
cases. In particular, we show that if two testable
properties P1 and P2 minus their intersection are suf-
ficiently far from each other, then their intersection
remains testable as well. A proof is included in Ap-
pendix B.

Proposition 2. Let P1,P2 ⊆ RD be two properties
defined over the same domain D = {Dn}n>0. Suppose
dist(P1 \ P2,P2 \ P1) > ε0 for some absolute constant
ε0, and for i = 1, 2, Pi is testable with query complex-
ity qi(ε). Then the intersection P1∩P2 is testable with
query complexity O(q1(ε) + q2(ε)),

3.3 Complementation

Here we examine the effect complementation has on
the testability of a property. As it turns out, all three
outcomes – both P and P̄ are testable, only one of P
and P̄ is testable, and neither P nor P̄ is testable –
are possible!

The first outcome is the easiest to observe. Note
that the property DR and the empty property are
complements of each other, and both are trivially
testable. The second outcome is observed in Proposi-
tion 4.2.3 in [22]. To our knowledge, the third outcome
has not been considered before. In fact, previous con-
structions of non-testable properties, e.g. [13,22], are
sparse. Hence, the complements of these non-testable
properties are trivially testable (by the tester that ac-
cepts all input functions). One may wonder if in gen-
eral the complement of a non-testable property must
also be testable. We disprove this in the following
proposition.

Proposition 3. There exists some property P ⊆ RD
where R = {0, 1} and D = {Fn

2}n>0, such that neither
P nor P is testable for any ε < 1/8.

By utilizing coding theory, we can bypass the spar-
sity condition to prove Proposition 3. Essentially,
property P consists of neighborhoods around func-
tions that have degree n/2 − 1 as polynomials over
F2n . Its complement contains functions that are poly-
nomials of degree n/2. Since, for any d > 0, d+1 eval-
uations are needed to specify a polynomial of degree
d, any tester for P or P needs (roughly) at least n/2
queries. Using a standard argument involving code
concatenation, one can construct P and P to be bi-
nary properties that require testers of query complex-
ity Ω(2n/2). A formal proof can be found in Appendix
C. However, it is still open whether there exist proper-
ties P such that both P and P require linear number
of queries to test, like those hard-to-test properties
constructed in [13,22].

3.4 Difference

Let P1 and P2 be two properties and let P = P1\P2

denote the set difference of the two properties. In this
section, we confine our attention to the simple case
that P2 ⊂ P1. Since complementation is a special
case of set-difference, from Section 3.3, we know that
in general we can infer nothing about the testability
of P from the fact that both P1 and P2 are testable.
However, under certain restrictions, we still can show
that P is testable.

First we observe a simple case in which P1 \ P2 is
testable. This simple observation, which is obvious
and whose proof we omit, is utilized in the proof of
Theorem 4 in Section 4.3.

Observation 2. Let P2 ⊂ P1 be two testable proper-

215

V. CHEN, M. SUDAN, N. XIE

ties defined over the same domain D = {Dn}n>0. If
for every f ∈ P2, there is some g ∈ P1 \ P2 such that
dist(f, g) = o(1), then P1 \ P2 is testable by the same
tester which tests property P1.

Our second observation on set difference relies on
the notion of tolerant testing, introduced by Parnas,
Ron, and Rubinfeld [30] to investigate testers that are
guaranteed to accept (with high confidence) not only
inputs that satisfy the property, but also inputs that
are sufficiently close to satisfying it.

Definition 2(Tolerant Tester[30]) Let 0 < ε1 < ε2 <
1 denote two distance parameters and P ⊆ RD be
a property defined over the domain D = {Dn}n>0.
We say that property P is (ε1, ε2)-tolerantly testable
with query complexity q(ε1, ε2) if there is a tester T
that makes at most q(ε1, ε2) queries, if for all f with
dist(f,P) 6 ε1, T rejects f with probability at most
1/3, and for all f with dist(f,P) > ε2, T accepts f
with probability at most 1/3.

We record in the following proposition that if P
and P2 are sufficiently far apart and P2 is tolerantly
testable, then P is also testable. We include a proof
in Appendix D.

Propostion 4. Let ε1 < ε2 < ε0 be three absolute
constants. Let P2 ⊂ P1 ⊆ RD be two properties de-
fined over the same domain D = {Dn}n>0. If for ev-
ery ε > 0, P1 is testable with query complexity q1(ε),
P2 is (ε1, ε2)-tolerantly testable with query complexity
q2(ε1, ε2), and dist(P1 \ P2,P2) > ε0, then P1 \ P2

is testable with query complexity O(q1(ε) + q2(ε1, ε2))
(and completeness 2/3).

We note that since P2 is tolerantly testable, it does
not have completeness 1. Thus, the set difference P1 \
P2 is not guaranteed to have one-sided error, either.

4 Main results

In this section we show two applications of the re-
sults developed in Section 3. We stress that set the-
oretic arguments may be used to show both upper
bound results (some properties are testable with only
a few number of queries) and lower bound results
(some properties can not be tested by any tester with
less than certain number of queries).

4.1 Testing disjunction of linear
functions

In this section, we employ a BLR-style analysis to
show that the class of disjunction of linear functions
is testable with query complexity O(1/ε2). We first
recall from [15] that a function is a disjunction of linear
functions iff it is (1, 0, 0)-free.

Propostion 5([5]). A function f : Fn
2 → {0, 1} is

(1,0,0)-free if and only if f is the disjunction (OR) of
linear functions (or the all 1 function).

Proof. The reverse direction is obvious. For the for-
ward direction, let S = {x ∈ Fn

2 : f(x) = 0}. If S is
empty, then f is the all 1 function. Otherwise let x and
y be any two elements in S (not necessarily distinct).
Then if f is (1, 0, 0)-free, it must be the case that x+y
is also in S. Thus S is a linear subspace of Fn

2 . Sup-
pose the dimension of S is k with k > 1. Then there
are k linearly independent vectors a1, . . . , ak ∈ Fn

2

such that z ∈ S iff {z · a1 = 0}∧ · · ·∧{z · ak = 0}.
Therefore, by De Morgan’s law, f(z) = 1 iff z ∈ S̄ iff
{z · a1 = 1}∨ · · ·∨{z · ak = 1}, which is equivalent to
the claim.

Recall that P(100)-FREE is the set of Boolean func-
tions that are free of (1, 0, 0)-patterns for any x, y and
x+y in Fn

2 . P(100)-FREE was shown to be testable with
a tower-type query upper bound in [15]. Observe that
the testability of property P(110)-FREE is the same as
the testability of P(100)-FREE. We now give a direct
proof that P(100)-FREE is testable.

Theorem 1. For every distance parameter ε > 0, the
property P(100)-FREE is testable with query complexity
O(1/ε2).

Proof. Suppose we have oracle access to some Boolean
function f : Fn

2 → {0, 1}. A natural 3-query test T
for P(100)-FREE proceeds as follows. T picks x and y
independently and uniformly at random from Fn

2 , and
accepts iff (f(x), f(y), f(x + y)) 6= (1, 0, 0).

Let R
def= Prx,y[(f(x), f(y), f(x + y)) 6= (1, 0, 0)] be

the rejection probability of T . If f ∈ P(100)-FREE,
then R = 0, i.e., T has completeness 1. For soundness,
in a series of steps, we shall show that for every ε > 0,
if R < ε2/128, then there exists a Boolean function g
such that (1) g is well-defined, (2) dist(f, g) < ε, and
(3) g is in P(100)-FREE.

Let µ0 denote Prx[f(x) = 0]. Suppose µ0 < 63ε/64.
Then dist(f,~1) < 63ε/64, where ~1 is the all-ones func-

216

PROPERTY TESTING VIA SET-THEORETIC OPERATIONS

tion. Then trivially, taking g = ~1 completes the proof.
Thus, henceforth we assume that µ0 > 63ε/64.

For a fixed x ∈ Fn
2 , let px

00 denote Pry[(f(y), f(x +
y)) = (0, 0)], and and px

10 is defined similarly. We
define g : Fn

2 → {0, 1} as follows:

g(x) =

0, if px
00 > ε/4;

1, if px
10 > ε/4;

f(x), otherwise.

Proof of (1). g is well-defined.

Suppose not, then there exists some x ∈ Fn
2 such

that px
00, p

x
10 > ε/4. Pick y and z independently and

uniformly at random from Fn
2 . Let E be the event

that

at least one of (f(y), f(z), f(y + z)) and
(f(x + y), f(x + z), f(y + z)) is (1, 0, 0).

By assumption, with probability at least ε2/16, f(y) =
1, f(x + y) = 0 and f(z), f(x + z) = 0, which will
imply that – regardless of the value of f(y+z) – event
E must occur. Thus, ε2/16 6 Pr[E]. On the other
hand, by the union bound, Pr[E] 6 2R < ε2/64, a
contradiction. ¤

Proof of (2). dist(f, g) < ε
32 .

Suppose x is such that f(x) 6= g(x). By construc-
tion, Pry[f(x), f(y), f(x+y)] > ε/4. This implies that
the rejection probability R is at least dist(f, g) · ε/4.
Since R < ε2/128, dist(f, g) < ε/32. ¤

Before proving (3), we first note that for every x ∈
Fn

2 ,

Pr
y

[(g(x), g(y), g(x + y)) = (1, 0, 0)] <
5ε

16
.

To see this, note that by construction of g, for every
x ∈ Fn

2 , Pry[(g(x), f(y), f(x + y)) = (1, 0, 0)] < ε/4.
Since dist(f, g) < ε/32, by the union bound, we can
deduce that the probability that g has a (1, 0, 0)-
pattern at (x, y, x + y) is less than ε/4 + 2 · ε/32.

Proof of (3). g is in P(100)-FREE.

Suppose not, that there exist x, y ∈ Fn
2 such that

g(x) = 1, g(y), g(x + y) = 0. Pick z uniformly at
random from Fn

2 . Let E denote the event that

• at least one of (g(x), g(z), g(x +
z)), (g(y), g(z), g(y + z)),

• and (g(x + y), g(x + z), g(y + z))

is (1, 0, 0).

A case by case analysis reveals that if g(z) = 0,
then event E must occur. Note that the probability
that g(z) = 0 is at least 63ε/64− ε/32 = 61ε/64, since
f(z) = 0 occurs with probability at least 63ε/64 and
dist(f, g) < ε/32. On the other hand, by union bound,
we have Pr[g(z) = 0] 6 Pr[E] 6 3 · 5ε/16, implying
that 61ε/64 6 15ε/16, an absurdity.

Therefore, we have shown that on any input func-
tion that is ε-far from P(100)-FREE, the rejection prob-
ability of T is always at least ε2/128. By repeating
the basic test T independently O(1/ε2) times, we can
boost the rejection probability of T to 2/3, and thus
completing the proof. ¤

4.2 A new proof that linearity is
testable

As an application of our results in Section 3.2, we
give a new proof that linear functions are testable
based on a set-theoretic argument. To this end, note
that the set of linear functions equals to the intersec-
tion of (1, 1, 1)-free functions and (1, 0, 0)-free func-
tions, i.e.,

PLIN = P(111)-FREE ∩ P(100)-FREE.

From the previous section, we know that P(100)-FREE

is testable. The following theorem due to Green [24]
asserts that P(111)-FREE is also testable.

Theorem 2([24]). The property P(111)-FREE is
testable with query complexity W (poly(1/ε)), where for
every t > 0, W (t) denotes the tower of 2’s of height
dte.

By Proposition 2, to show that linearity is testable,
it suffices to show that the two properties P(111)-FREE

and P(100)-FREE are essentially far apart. To this end,
let us define a new property PNLTF, where NLTF
stands for non-linear triangle-freeness:

PNLTF
def=P(111)-FREE \ PLIN.

Lemma 1. We have that P(100)-FREE \PLIN is 1
4 -far

from PNLTF.

We first establish a weaker version of Lemma 1.

Propostion 6. Suppose f is a disjunction of

217

V. CHEN, M. SUDAN, N. XIE

exactly two non-trivial linear functions. Then
dist(f,P(111)-FREE) is at least 1

4 .

P roof. Set N = 2n. Write f(x) = (α · x)
∨

(β · x),
where α 6= β ∈ Fn

2 denote two n-bit vectors not equal
to 0n. We say that a tuple (x, y, x+y) where x, y ∈ Fn

2

is a triangle in f if f(x), f(y), f(x + y) = 1. We shall
show that (1) f has N2/16 triangles and (2) for every
x, the number of y′s such that (x, y, x+y) is a triangle
in f is N/4. Together, (1) and (2) will imply that
dist(f,P(111)-FREE) is at least 1/4, since changing the
value of f at one point removes at most N/4 triangles.

To prove these two assertions, let A = {x ∈ Fn
2 :

α · x = 1} and B = {x ∈ Fn
2 : β · x = 1}. Since

supp(f) = A ∪B, for every triangle (x, y, x + y) in f ,
each of the three points x, y, x + y must fall in one of
the following three disjoint sets:

A \B, (A ∩B), B \A.

Furthermore, each of the three points must fall into
distinct sets. To see this, suppose that x, y ∈ A \
B. Then by definition, α(x + y) = α(x) + α(y) = 0
and β(x + y) = 0, implying that f(x + y) = 0, a
contradiction. So A \ B cannot contain two points
of a triangle, and by symmetry, neither can B \ A.
The same calculation also reveals that A ∩ B cannot
contain two points of a triangle.

Thus, a triangle (x, y, x+ y) in f must be such that
x ∈ A\B, y ∈ A∩B, and x+y ∈ B\A. In addition, it
is easy to check that given two points p1, p2 from two
distinct sets (say A \B and A∩B), their sum p1 + p2

must be in the third set (B\A). Since these three sets
A \ B, (A ∩ B), B \ A all have size N/4, this implies
that the number of triangles in f is N2/16, proving
(1).

(2) also follows easily given the above observations.
Suppose x ∈ A \B. For every y ∈ A ∩B, (x, y, x + y)
forms a triangle. Since any triangle that has x as a
point must also contain a point in A ∩ B (with the
third point uniquely determined by the first two), the
number of triangles in f containing x is N/4. The
case when x ∈ B \ A or x ∈ A ∩ B is similar. This
completes the proof. ¤

Now we prove Lemma 1.

Proof of Lemma 1. Let f ∈ P(100)-FREE \ PLIN and
write f = f1 ∨ f2, where f1 is a disjunction of ex-
actly two linear functions. By Proposition 6, it fol-
lows that dist(f1,P(111)-FREE) is at least 1/4. Since
P(111)-FREE is monotone and supp(f1) ⊆ supp(f), by

Observation 1, we know that dist(f,P(111)-FREE) >
1/4. Since PNLTF ⊂ P(111)-FREE, dist(f,PNLTF) >
dist(f,P(111)-FREE), completing the proof. ¤

By Theorem 2 and Theorem 1, both P(111)-FREE

and P(100)-FREE are testable. Now by combining
Proposition 2 and Lemma 1, we obtain the following:

Theorem 3. PLIN is testable.

We remark that the query complexity for testing lin-
earity in Theorem 3 is of the tower type (of the form
W (poly(1/ε)) because of Theorem 2. This is much
worse than the optimal linear query upper bound ob-
tained in [10,18].

4.3 A lower bound for testing non-
linear triangle-freeness

We first show that PLIN is a “thin strip” around
PNLTF.

Propostion 7. For any Boolean function f ,
dist(f,P(111)-FREE) > dist(f,PNLTF)− 2−n.

Proof. The statement is trivially true if
dist(f,P(111)-FREE) = dist(f,PNLTF). Since
PNLTF is a proper subset of P(111)-FREE, we can
assume that dist(f,PNLTF) is strictly larger than
dist(f,P(111)-FREE), implying that the function in
P(111)-FREE that has minimum distance to f is
actually in PLIN. Call this function g. Then it is easy
to see that there exists some function h in PNLTF

such that dist(g, h) = 2−n. To this end, note that if
g is the all-zero function, we can define h such that
h(x) = 1 for some x 6= 0n and 0 everywhere else. By
construction h is non-linear but triangle-free. If g is
a non-trivial linear function, then we can pick any
x ∈ supp(g) and define h(x) = 0 and h(y) = g(y) for
all y 6= x. By construction h is non-linear, and since
P(111)-FREE is monotone, h remains triangle-free.

Thus, by Triangle inequality, we know that
dist(f,P(111)-FREE) = dist(f, g) is at least dist(f, h)−
2−n. This implies that dist(f,P(111)-FREE) >
dist(f,PNLTF)− 2−n. ¤

Since any linear function is 2−n-close to a function
in PNLTF, intuitively we expect PNLTF, which is ob-
tained by deleting the strip PLIN from P(111)-FREE,
to inherit the testability features of P(111)-FREE. In-
deed, we record this next by using the set-theoretic
machinery set up in Section 3.

218

PROPERTY TESTING VIA SET-THEORETIC OPERATIONS

Theorem 4. PNLTF is testable, but any non-adaptive
6 tester (with one-sided error) for PNLTF requires
ω(1/ε) queries.

Proof. We first observe that PNLTF is testable with
one-sided error. By Proposition 7 and Observation 2,
the testing algorithm for PNLTF is simply the same
as the tester for P(111)-FREE [24].

Next we show that the lower bound for the query
complexity of PNLTF is the same as P(111)-FREE.
As shown in [17], any one-sided, non-adaptive tester
for P(111)-FREE requires ω(1/ε) queries.7 Suppose
PNLTF is testable with one-sided error and has
query complexity O(1/ε). Since PLIN is testable
with query complexity O(1/ε) [18], by Proposition 1
P(111)-FREE = PLIN ∪ PNLTF is testable with one-
sided error and has query complexity O(1/ε), a con-
tradiction. ¤

5 Concluding remarks

We have initiated a general study of the closure
of testability under various set operations. Our re-
sults show that such a study can lead to both up-
per and lower bound results in property testing. We
believe our answers are far from complete, and fur-
ther investigation may lead to more interesting re-
sults. For example, the symmetric difference be-
tween two properties P1 and P2 is defined to be
P1 4 P2

def=(P1 \ P2) ∪ (P2 \ P1). Under what condi-
tions is the property P1 4P2 testable if both P1 and
P2 are testable? Another natural generalization of
our approach is to examine properties resulting from
a finitely many application of some set-theoretic op-
erations.

Our proof that the class of disjunction of linear func-
tions is testable employs a BLR-style self-correction
approach. We believe that this technique may be
useful in analyzing other non-monotone, pattern-free
properties. In particular, it will be interesting to carry
out our approach of decomposing an algebraic prop-
erty into atomic ones for higher degree polynomials.
This will, in addition to giving a set-theoretic proof
for testing low-degree polynomials, sheds light on how

6A tester is non-adaptive if all its query points can be deter-
mined before the execution of the algorithm, i.e., the locations
where a tester queries do not depend on the answers to previous
queries.

7The specific lower bound shown in [17] is Ω((1
ε
)1.704···) but

can be improved to be Ω((1
ε
)2.423···) as observed independently

by Eli Ben-Sasson and the third author of the present paper.

pattern-free properties relate to one another.

Finally, our quadratic query complexity upper
bound for the disjunction of linear functions opens
up a number of directions. In our work, the blowup
in query complexity from the disjunction is O(1/ε).
One may vary the underlying properties and the op-
erators to measure the blowup in query complexity.
Of particular interest may be understanding how the
disjunction affects the testability of low-degree poly-
nomials.

Acknowledgments

We thank the anonymous referees for numerous sug-
gestions and the reference to [23].

References

[1] Noga Alon. Testing subgraphs in large graphs.
Random Structures and Algorithms, 21(3-4):359–
370, 2002.

[2] Noga Alon, Eldar Fischer, Michael Krivelevich,
and Mario Szegedy. Efficient testing of large
graphs. Combinatorica, 20(6):451–476, 2000.

[3] Noga Alon, Eldar Fischer, Ilan Newman, and
Asaf Shapira. A combinatorial characterization
of the testable graph properties: it’s all about
regularity. In STOC’06: Proceedings of the 38th
Annual ACM Symposium on Theory of Comput-
ing, pages 251–260, 2006.

[4] Noga Alon, Tali Kaufman, Michael Krivelevich,
Simon Litsyn, and Dana Ron. Testing low-degree
polynomials over GF(2). In Proceedings of Ran-
dom 2003, pages 188–199, 2003.

[5] Noga Alon, Michael Krivelevich, Ilan Newman,
and Mario Szegedy. Regular languages are
testable with a constant number of queries. SIAM
Journal on Computing, 30(6):1842–1862, 2000.

[6] Noga Alon and Asaf Shapira. Testing subgraphs
in directed graphs. Journal of Computer and Sys-
tem Sciences, 69(3):354–382, 2004.

[7] Noga Alon and Asaf Shapira. A characterization
of the (natural) graph properties testable with
one-sided error. In FOCS’05: Proceedings of the
46th Annual IEEE Symposium on Foundations of
Computer Science, pages 429–438, 2005.

219

V. CHEN, M. SUDAN, N. XIE

[8] Noga Alon and Asaf Shapira. Every monotone
graph property is testable. In STOC’05: Pro-
ceedings of the 37th Annual ACM Symposium on
Theory of Computing, pages 128–137, 2005.

[9] Tim Austin and Terence Tao. On the testability
and repair of hereditary hypergraph properties.
http://arxiv.org/abs/0801.2179, 2008.

[10] Mihir Bellare, Don Coppersmith, Johan H̊astad,
Marcos A.Kiwi,and Madhu Sudan.Linearity test-
ing over characteristic two.IEEE Transactions on
Information Theory,42(6):1781–1795, 1996.

[11] Mihir Bellare, Oded Goldreich, and Madhu Su-
dan. Free bits, PCPs, and nonapproximability—
towards tight results. SIAM Journal on Comput-
ing, 27(3):804–915, 1998.

[12] Mihir Bellare, Shafi Goldwasser, Carsten Lund,
and Alexander Russell. Efficient probabilistically
checkable proofs and applications to approxima-
tion. In STOC’93: Proceedings of the 25th An-
nual ACM Symposium on Theory of Computing,
pages 304–294, 1993.

[13] Eli Ben-Sasson, Prahladh Harsha, and Sofya
Raskhodnikova. Some 3CNF properties are hard
to test. SIAM Journal on Computing, 35(1):1–21,
2005. Early version in STOC’03.

[14] Itai Benjamini, Oded Schramm, and Asaf
Shapira. Every minor-closed property of sparse
graphs is testable. In STOC’08: Proceedings of
the 40th Annual ACM Symposium on Theory of
Computing, pages 393–402, 2008.

[15] Arnab Bhattacharyya, Victor Chen, Madhu Su-
dan, and Ning Xie. Testing linear-invariant non-
linear properties. In STACS’09, pages 135–146,
2009.

[16] Arnab Bhattacharyya, Elena Grigorescu, and
Asaf Shapira. A unified framework for testing
linear-invariant properties. In FOCS’10: Pro-
ceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, 2010.

[17] Arnab Bhattacharyya and Ning Xie. Lower
bounds for testing triangle-freeness in Boolean
functions. In SODA’10: Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 87–98, 2010.

[18] Manuel Blum, Michael Luby, and Ronitt Rubin-
feld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and
System Sciences, 47(3):549–595, 1993.

[19] Christian Borgs, Jennifer T. Chayes, László
Lovász, Vera T. Sós, Balázs Szegedy, and Katalin
Vesztergombi. Graph limits and parameter test-
ing. In STOC’06: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, pages
261–270, 2006.

[20] Ilias Diakonikolas, Homin K. Lee, Kevin Mat-
ulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco
Servedio, and Andrew Wan. Testing for concise
representations. In FOCS’07: Proceedings of the
48th Annual IEEE Symposium on Foundations of
Computer Science, pages 549–558, 2007.

[21] Eldar Fischer and Ilan Newman. Testing versus
estimation of graph properties. SIAM Journal on
Computing, 37(2):482–501, 2007.

[22] Oded Goldreich, Shafi Goldwasser, and Dana
Ron. Property testing and its connection to
learning and approximation. Journal of the
ACM, 45(4):653–750, 1998.

[23] Parikshit Gopalan, Ryan O’Donnell, Rocco A.
Servedio, Amir Shpilka, and Karl Wimmer. Test-
ing Fourier dimensionality and sparsity. In
ICALP (1), pages 500–512, 2009.

[24] Ben Green. A Szemerédi-type regularity lemma
in abelian groups, with applications. Geom.
Funct. Anal., 15(2):340–376, 2005.

[25] Charanjit S. Jutla, Anindya C. Patthak, Atri
Rudra, and David Zuckerman. Testing low-
degree polynomials over prime fields. In
FOCS’04: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science,
pages 423–432, 2004.

[26] Tali Kaufman and Dana Ron. Testing polynomi-
als over general fields. In FOCS’04: Proceedings
of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 413–422, 2004.

[27] Tali Kaufman and Madhu Sudan. Algebraic
property testing: The role of invariance. In
STOC’08: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pages 403–
412, 2008.

[28] Marcos Kiwi. Algebraic testing and weight distri-
butions of codes. Theoretical Computer Science,
299(1-3):81–106, 2003. Earlier version appeared
as ECCC TR97-010, 1997.

[29] Dan Král, Oriol Serra, and Lluis Vena. A removal
lemma for systems of linear equations over finite
fields, 2008.

220

PROPERTY TESTING VIA SET-THEORETIC OPERATIONS

[30] Michal Parnas, Dana Ron, and Ronitt Rubinfeld.
Tolerant property testing and distance approxi-
mation. Journal of Computer and System Sci-
ences, 72(6):1012–1042, 2006.

[31] Michal Parnas, Dana Ron, and Alex Samorodnit-
sky. Testing basic Boolean formulae. SIAM Jour-
nal on Discrete Mathematics, 16(1):20–46, 2003.

[32] Vojtěch Rödl and Mathias Schacht. Generaliza-
tions of the removal lemma. Combinatorica, To
appear. Earlier version in STOC’07.

[33] Ronitt Rubinfeld and Madhu Sudan. Robust
characterizations of polynomials with applica-
tions to program testing. SIAM Journal on Com-
puting, 25(2):252–271, 1996.

[34] Asaf Shapira. Green’s conjecture and testing
linear-invariant properties. In STOC’09: Pro-
ceedings of the 41st Annual ACM Symposium on
Theory of Computing, pages 159–166, 2009.

A Proof of Proposition 1

Let T1 be the tester for P1 with query complexity
q1(ε, n) and T2 be the tester for P2 with query com-
plexity q2(ε, n). We may assume that both T1 and T2

have soundness 1/6 with a constant blowup in their
query complexity. Define T to be the tester which, on
input function f , first simulates T1 and then T2. If
at least one of the two testers T1 and T2 accepts f , T
accepts f . Otherwise, T rejects.

Clearly the query complexity of T is O(q1+q2). For
completeness, note that if f is in P, then by definition
f is in at least one of P1 and P2. Thus, T accepts f
with probability 1. Now suppose dist(f,P) > ε. Then
we have both dist(f,P1) > ε and dist(f,P2) > ε. By
the union bound, the probability that at least one of
T1 and T2 accepts f is at most 1/6 + 1/6 = 1/3. ¤

B Proof of Proposition 2

Let T1 be the tester for P1 with query complexity
q1(ε), and T2 be the tester for P2 with query complex-
ities q2(ε). First we convert T1 into another tester T ′1
for P1 such that, on input distance parameter ε, T ′1
makes Q′1(ε) queries, where

Q′1(x) =

q1(x), if x <
ε0
2

;

max{q1(x), qi(
ε0
2

)}, otherwise.

In other words, T ′1 can be obtained from T1 by making

more queries when x is larger than ε0/2. Similarly, we
can construct T ′2 from T2 in the same manner. Since ε0
is a constant, we have Q′1(ε) = O(q1(ε)) and Q′2(ε) =
O(q2(ε)).

Define T to be the tester that on input function f ,
first simulates T ′1 and then T ′2. If both testers T ′1 and
T ′2 accept, then T accepts f . Otherwise, it rejects.
The query complexity of T is Q′

1(ε) + Q′2(ε), which is
O(q1(ε) + q2(ε)).

For the completeness, if f ∈ P, then both f ∈ P1

and f ∈ P2 hold. Therefore, T accepts with probabil-
ity at least 1. For the soundness, suppose dist(f,P) >
ε. We distinguish between two cases.

Case 1. ε 6 ε0
2 .

It suffices to show that f is ε-far from at least one of
P1 or P2. This fact then implies that T , in simulating
T ′ and T ′2, accepts f with probability at most 1/3.

To show the f is far from at least one of the
two properties, suppose not, that we have both
dist(f,P1) < ε and dist(f,P2) < ε. That is, there
exist g1 ∈ P1 and g2 ∈ P2 such that dist(f, g1) < ε
and dist(f, g2) < ε.

Since dist(f,P) > ε, g1, g2 /∈ P and therefore
g1 ∈ P1 \ P and g2 ∈ P2 \ P. By triangle in-
equality, dist(g1, g2) < 2ε 6 ε0, and consequently
dist(P1 \ P2,P2 \ P1) < ε0, contradicting our assump-
tion.

Case 2. ε > ε0
2 .

There are three sub-cases depending on where f is
located. We analyze each of them separately below.
Note that in each of the sub-cases, f is at least ε0/2-far
from one of P1 and P2.

1. f ∈ P1 \ P. Then by our assumption on the
distance between P1\P2 and P2\P1, dist(f,P2\
P) > ε0. It follows that

dist(f,P2) = min{dist(f,P), dist(f,P2 \ P)}
> min{ε, ε0}
> ε0/2.

2. f ∈ P2 \ P. Analogous to the case above, we
have dist(f,P1) > ε0/2.

3. f /∈ P1 ∪ P2. Then by triangle inequality,
max{dist(f,P1 \ P), dist(f,P2 \ P)} > ε0/2. So
there is some i ∈ {1, 2} such that dist(f,Pi \
P) > ε0/2. Since dist(f,P) > ε, it follows that

221

V. CHEN, M. SUDAN, N. XIE

dist(f,Pi) > min{ε, ε0/2} = ε0/2.

Thus, we conclude that there is some i ∈ {1, 2} such
that dist(f,Pi) > ε0/2. This implies that T ′i , which
makes at least Q′

i(ε) > qi(ε0/2) queries, accepts f with
probability at most 1/3. Hence, T accepts f with
probability at most 1/3 as well, completing the proof.

¤

C Proof of Proposition 3

We shall define a property P = {P2k}k>0, where
P2k ⊆ {0, 1}F2k

2 is a collection of Boolean functions
defined over F2k

2 , such that neither P2k nor P2k is
testable. Recall that a property P is said to be testable
if there is a tester for P whose query complexity is in-
dependent of the sizes of the inputs to the functions
(in our case, independent of k).

First, let the Hadamard encoding Had : Fk
2 × Fk

2 →
{0, 1} be Had(α, x) = α · x. Note that F2k is isomor-
phic to Fk

2 , so for every function g : F2k → F2k , the
Hadamard concatenation of g can be written as Had◦
g : F2k

2 → {0, 1} where (Had ◦ g)(x, y)def=Had(g(x), y).

We now define P2k as follows. Let f ∈ P2k if there
exists a polynomial p : F2k → F2k of degree at most
2k−1 − 1 such that dist(f, Had ◦ p) < 1/8. An im-
portant fact is that if g : F2k → F2k is a polyno-
mial of degree 2k−1, then Had ◦ g is not in P2k. To
see this, note that by the Schwartz-Zippel Lemma, if
q : F2k → F2k is a polynomial of degree at most 2k−1,
then Prx[q(x) = 0] 6 1/2. Therefore, for any poly-
nomial p of degree at most 2k−1 − 1, dist(p, g) > 1/2.
This implies that dist(Had◦p, Had◦g) > 1/4, since the
Hadamard encoding has relative distance 1/2.8 Be-
cause the Hadamard encoding of g is at least 1/4-far
from the Hadamard encoding of any degree 2k−1 − 1
polynomials, by construction of P2k, it follows that
we not only have Had ◦ g ∈ P2k, but also have
dist(Had ◦ g, P2k) > 1/8. Similarly, for any poly-
nomial h : F2k → F2k of degree at most 2k−1 − 1,
dist(Had ◦ h, P2k) > 1/8.

Now we show that neither P2k nor its comple-
ment is testable for any distance parameter ε < 1/8.
By polynomial interpolation, for every set of 2k−1

points, there exists a polynomial h of degree 2k−1 − 1
that agrees with these points. So any tester that
distinguishes between members of P2k and members

8In other words, suppose x ∈ F2k satisfies that p(x) 6= g(x).
Then the number of y’s such that Had(p(x), y) 6= Had(g(x), y)
is exactly 2k−1.

that are at least ε-far away from P2k needs at least
2k−1+1 queries. Similarly, as we have just shown that
Had ◦ g ∈ P2k when g is a degree-2k−1 polynomial,
it follows that any tester that distinguishes between
members of P2k and functions that are at least ε-far
away from P2k also needs at least 2k−1 + 2 queries.
To conclude, we have constructed a class properties P
defined over domains of sizes |D| = 22k but testing P
and P both require Ω(2k) = Ω(|D|1/2) queries. Thus,
neither the property or its complement is testable with
a query complexity independent of the sizes of the do-
mains, completing the proof. ¤

D Proof of Proposition 4

Let T1 be the tester for P1 with query complexity
q1(ε) and let T2 be the tolerant tester for P2 with query
complexity q2(ε1, ε2). First we convert T1 into another
tester T ′1 such that, on input distance parameter ε, T ′1
makes Q′1(ε) queries, where

Q′1(x) =
{

q1(x), if x < ε1;
max{q1(x), qi(ε1)}, otherwise.

Set P = P1 \ P2 and define its tester T as follows:
on input function f , T first simulates T1 and then T2.
T accepts iff T1 accepts and T2 rejects. Since ε1 is a
constant, Q′

1(ε)) = O(ε), and T has query complexity
O(q1 + q2).

For completeness, if f ∈ P, then by assumption
f ∈ P1 and dist(f,P2) > ε0 > ε2. This implies that
T1 always rejects f , T2 accepts f with probability at
most 1/3, and thus by a union bound argument T
accepts f with probability at least 2/3.

For soundness, suppose dist(f,P) > ε. We consider
two cases and note that in both of them, T accepts f
with probability at most 1/3.

Case 1. dist(f,P2) 6 ε1.

Since T2 is a tolerant tester, T2 rejects f with prob-
ability at most 1/3. Thus, T accepts with probability
at most 1/3 as well.

Case 2. dist(f,P2) > ε1.

Since P1 is the union of P and P2, we can con-
clude that dist(f,P1) = min{dist(f,P), dist(f,P2)},
which is at least min{ε, ε1}. Since T ′1 makes at least
max{q1(ε), q1(ε1)} queries, we know that T ′1 accepts f
with probability at most 1/3, and hence, T accepts f
with probability at most 1/3 as well. ¤

222

