128 research outputs found

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

    Get PDF
    Ortho-Radial drawings are a generalization of orthogonal drawings to grids that are formed by concentric circles and straight-line spokes emanating from the circles\u27 center. Such drawings have applications in schematic graph layouts, e.g., for metro maps and destination maps. A plane graph is a planar graph with a fixed planar embedding. We give a combinatorial characterization of the plane graphs that admit a planar ortho-radial drawing without bends. Previously, such a characterization was only known for paths, cycles, and theta graphs, and in the special case of rectangular drawings for cubic graphs, where the contour of each face is required to be a rectangle. The characterization is expressed in terms of an ortho-radial representation that, similar to Tamassia\u27s orthogonal representations for orthogonal drawings describes such a drawing combinatorially in terms of angles around vertices and bends on the edges. In this sense our characterization can be seen as a first step towards generalizing the Topology-Shape-Metrics framework of Tamassia to ortho-radial drawings

    A Schnyder-type drawing algorithm for 5-connected triangulations

    Full text link
    We define some Schnyder-type combinatorial structures on a class of planar triangulations of the pentagon which are closely related to 5-connected triangulations. The combinatorial structures have three incarnations defined in terms of orientations, corner-labelings, and woods respectively. The wood incarnation consists in 5 spanning trees crossing each other in an orderly fashion. Similarly as for Schnyder woods on triangulations, it induces, for each vertex, a partition of the inner triangles into face-connected regions (5~regions here). We show that the induced barycentric vertex-placement, where each vertex is at the barycenter of the 5 outer vertices with weights given by the number of faces in each region, yields a planar straight-line drawing.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure

    On the number of regular edge labelings

    Get PDF
    We prove that any irreducible triangulation on n vertices has O (4:6807n ) regular edge labeling,s and that there are irreducible triangulations on n vertices with (3:0426n ) regular edge labelings. Our upper bound relies on a novel application of Shearer's entropy lemma. As an example of the wider applicability of this technique, we also improve the upper bound on the number of 2-orientations of a quadrangulation to O (1:87n ). Keywords: Counting; Regular edge labeling; Shearer's entropy lemm

    4-labelings and grid embeddings of plane quadrangulations

    Get PDF
    AbstractA straight-line drawing of a planar graph G is a closed rectangle-of-influence drawing if for each edge uv, the closed axis-parallel rectangle with opposite corners u and v contains no other vertices. We show that each quadrangulation on n vertices has a closed rectangle-of-influence drawing on the (n−3)×(n−3) grid.The algorithm is based on angle labeling and simple face counting in regions. This answers the question of what would be a grid embedding of quadrangulations analogous to Schnyder’s classical algorithm for embedding triangulations and extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden.A further compaction step yields a straight-line drawing of a quadrangulation on the (⌈n2⌉−1)×(⌈3n4⌉−1) grid. The advantage over other existing algorithms is that it is not necessary to add edges to the quadrangulation to make it 4-connected

    Orientation-Constrained Rectangular Layouts

    Full text link
    We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientation-constrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.Comment: To appear at Algorithms and Data Structures Symposium, Banff, Canada, August 2009. 12 pages, 5 figure
    • …
    corecore