659 research outputs found

    Rotational Subgroup Voting and Pose Clustering for Robust 3D Object Recognition

    Get PDF
    It is possible to associate a highly constrained subset of relative 6 DoF poses between two 3D shapes, as long as the local surface orientation, the normal vector, is available at every surface point. Local shape features can be used to find putative point correspondences between the models due to their ability to handle noisy and incomplete data. However, this correspondence set is usually contaminated by outliers in practical scenarios, which has led to many past contributions based on robust detectors such as the Hough transform or RANSAC. The key insight of our work is that a single correspondence between oriented points on the two models is constrained to cast votes in a 1 DoF rotational subgroup of the full group of poses, SE(3). Kernel density estimation allows combining the set of votes efficiently to determine a full 6 DoF candidate pose between the models. This modal pose with the highest density is stable under challenging conditions, such as noise, clutter, and occlusions, and provides the output estimate of our method. We first analyze the robustness of our method in relation to noise and show that it handles high outlier rates much better than RANSAC for the task of 6 DoF pose estimation. We then apply our method to four state of the art data sets for 3D object recognition that contain occluded and cluttered scenes. Our method achieves perfect recall on two LIDAR data sets and outperforms competing methods on two RGB-D data sets, thus setting a new standard for general 3D object recognition using point cloud data.Comment: Accepted for International Conference on Computer Vision (ICCV), 201

    Data-driven covariance estimation for the iterative closest point algorithm

    Get PDF
    Les nuages de points en trois dimensions sont un format de données très commun en robotique mobile. Ils sont souvent produits par des capteurs spécialisés de type lidar. Les nuages de points générés par ces capteurs sont utilisés dans des tâches impliquant de l’estimation d’état, telles que la cartographie ou la localisation. Les algorithmes de recalage de nuages de points, notamment l’algorithme ICP (Iterative Closest Point), nous permettent de prendre des mesures d’égo-motion nécessaires à ces tâches. La fusion des recalages dans des chaînes existantes d’estimation d’état dépend d’une évaluation précise de leur incertitude. Cependant, les méthodes existantes d’estimation de l’incertitude se prêtent mal aux données en trois dimensions. Ce mémoire vise à estimer l’incertitude de recalages 3D issus d’Iterative Closest Point (ICP). Premièrement, il pose des fondations théoriques desquelles nous pouvons articuler une estimation de la covariance. Notamment, il révise l’algorithme ICP, avec une attention spéciale sur les parties qui sont importantes pour l’estimation de la covariance. Ensuite, un article scientifique inséré présente CELLO-3D, notre algorithme d’estimation de la covariance d’ICP. L’article inséré contient une validation expérimentale complète du nouvel algorithme. Il montre que notre algorithme performe mieux que les méthodes existantes dans une grande variété d’environnements. Finalement, ce mémoire est conclu par des expérimentations supplémentaires, qui sont complémentaires à l’article.Three-dimensional point clouds are an ubiquitous data format in robotics. They are produced by specialized sensors such as lidars or depth cameras. The point clouds generated by those sensors are used for state estimation tasks like mapping and localization. Point cloud registration algorithms, such as Iterative Closest Point (ICP), allow us to make ego-motion measurements necessary to those tasks. The fusion of ICP registrations in existing state estimation frameworks relies on an accurate estimation of their uncertainty. Unfortunately, existing covariance estimation methods often scale poorly to the 3D case. This thesis aims to estimate the uncertainty of ICP registrations for 3D point clouds. First, it poses theoretical foundations from which we can articulate a covariance estimation method. It reviews the ICP algorithm, with a special focus on the parts of it that are pertinent to covariance estimation. Then, an inserted article introduces CELLO-3D, our data-driven covariance estimation method for ICP. The article contains a thorough experimental validation of the new algorithm. The latter is shown to perform better than existing covariance estimation techniques in a wide variety of environments. Finally, this thesis comprises supplementary experiments, which complement the article
    • …
    corecore