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Résumé

Les nuages de points en trois dimensions sont un format de données très com-

mun en robotique mobile. Ils sont souvent produits par des capteurs spéciali-

sés de type lidar. Les nuages de points générés par ces capteurs sont utilisés

dans des tâches impliquant de l’estimation d’état, telles que la cartographie ou

la localisation. Les algorithmes de recalage de nuages de points, notamment l’al-

gorithme ICP (Iterative Closest Point), nous permettent de prendre des mesures

d’égo-motion nécessaires à ces tâches. La fusion des recalages dans des chaînes

existantes d’estimation d’état dépend d’une évaluation précise de leur incerti-

tude. Cependant, les méthodes existantes d’estimation de l’incertitude se prêtent

mal aux données en trois dimensions. Ce mémoire vise à estimer l’incertitude de

recalages 3D issus d’Iterative Closest Point (ICP). Premièrement, il pose des fon-

dations théoriques desquelles nous pouvons articuler une estimation de la co-

variance. Notamment, il révise l’algorithme ICP, avec une attention spéciale sur

les parties qui sont importantes pour l’estimation de la covariance. Ensuite, un

article scientifique inséré présente CELLO-3D, notre algorithme d’estimation de

la covariance d’ICP. L’article inséré contient une validation expérimentale com-

plète du nouvel algorithme. Il montre que notre algorithme performe mieux que

les méthodes existantes dans une grande variété d’environnements. Finalement,

ce mémoire est conclu par des expérimentations supplémentaires, qui sont com-

plémentaires à l’article.
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Abstract

Three-dimensional point clouds are an ubiquitous data format in robotics. They

are produced by specialized sensors such as lidars or depth cameras. The point

clouds generated by those sensors are used for state estimation tasks like map-

ping and localization. Point cloud registration algorithms, such as Iterative Clos-

est Point (ICP), allow us to make ego-motion measurements necessary to those

tasks. The fusion of ICP registrations in existing state estimation frameworks

relies on an accurate estimation of their uncertainty. Unfortunately, existing co-

variance estimation methods often scale poorly to the 3D case. This thesis aims

to estimate the uncertainty of ICP registrations for 3D point clouds. First, it

poses theoretical foundations from which we can articulate a covariance esti-

mation method. It reviews the ICP algorithm, with a special focus on the parts

of it that are pertinent to covariance estimation. Then, an inserted article intro-

duces CELLO-3D, our data-driven covariance estimation method for ICP. The

article contains a thorough experimental validation of the new algorithm. The

latter is shown to perform better than existing covariance estimation techniques

in a wide variety of environments. Finally, this thesis comprises supplementary

experiments, which complement the article.
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Foreword

Chapter 4 of this work consists in an inserted paper. It was submitted to the IEEE
International Conference on Robotics and Automation (ICRA) on September 15th,
2018. ICRA is a world-leading robotics conference, with an h5-index of 75 as of this
year.1 It was accepted for publication, but is not published at this time of writing these
lines. In the meantime, the paper is available as a preprint in the arXiv repository
with ID 1810.01470. I am the main author of the publication, and as such I was
responsible of its redaction and the underlying experiments. My two co-authors,
François Pomerleau and Philippe Giguère, are also the co-supervisors of my masters.
They provided guidance for this endeavour and assisted me in the redaction of the
paper. François also designed some of the figures. The paper is inserted almost
exactly as submitted. The section numbers and figure numbers were modified to
better integrate to the rest of this document. Some footnotes were added to better
connect the paper with the rest of this work. The layout was modified to fit the one of
a standard masters thesis at Université Laval. Some notation mistakes were corrected
after we became aware of them.

1https://scholar.google.com/citations?view_op=top_venues
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Introduction

As robots leave factory floors and laboratories, they need to navigate in environ-
ments that are complex and challenging [1]. Of particular importance is the need
for robots to localize in unknown environments with accuracy. Various sensors are
used to this end, such as cameras or radars. Lidar sensors draw particular attention
because of their high level of precision and robustness to lighting change. This type
of sensor is increasingly commoditized, as production scales up to meet the demand
of the automotive industry.2 Interestingly, this better cost efficiency makes the use
of 3D lidars possible where only 2D sensors could be afforded in the past.

Lidar sensors produce point clouds at a regular interval, e.g. ten scans per second.
Point clouds are a set of 3D points that live in the frame of reference of the sensor.
Lidars points represent the location of objects that reflected laser beams. Those scans
provide a rich and accurate representation of the surrounding environment.

The process of aligning two scans into one another is called point cloud registration. It
is illustrated in Figure 1. The important feature of point cloud registration is that it
measures the displacement from the location of first point cloud to the second. We
refer to this displacement, a roto-translation in space, as the registration transforma-
tion. Knowing this transformation allows the robot to localize inside the environ-
ment, or build a map of it.

The Iterative Closest Point (ICP) algorithm [2], [3] is one such point cloud registra-
tion algorithm. It estimates a registration transformation using a two steps proce-
dure. First, it associates the closest points in a pair of point clouds. It then finds
a transformation that minimizes a distance between those pairs. This procedure is
repeated iteratively until convergence. Since its introduction in the early 1990’s, ICP
has been widely used by the robotics community. It now has abundant variants [4]

2https://arstechnica.com/cars/2018/01/driving-around-without-a-driver-lidar-

technology-explained/3/
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Figure 1 – Point cloud registration is the process of aligning two point clouds into one an-
other. By measuring the registration transformation applied on the point clouds in doing so,
a robot can measure its displacement in space.

that aim to make it more accurate and robust.

Mobile robotics being a science of uncertainty, it is important to know the precision
and accuracy [5] of any measurement. Since the very introduction of ICP, estimat-
ing its uncertainty (in the form of a covariance) has been identified as an interesting
research avenue [3]. This problem has attracted interest recently [6]–[9] because the
existing solutions do not seem to scale well to 3D point clouds [10]. Consequently,
we pose our research questions as follows: How to improve our knowledge of the uncer-
tainty of ICP measurements? How to estimate it at speeds that allow an online use?

This thesis contains an inserted article, and is articulated around that publication.
Chapters 1, 2 and 3 provide a more complete theoretical background. Their purpose
is to bring the reader up to speed in terms of the ICP algorithm. They draw particular
attention to the parts of ICP that are important to covariance estimation. They ex-
plain the theoretical context in which the article was written, and justify our formu-
lation. More precisely, Chapter 1 introduces the SE(3) Lie group and its companion
Lie algebra, which give us mathematical tools to deal with roto-translations in 3D. It
is followed by Chapter 2, that studies the ICP algorithm in more details. It poses ICP
as a chain of five well-defined blocks, and explains the effect of each of these blocks
on the uncertainty of ICP. Chapter 3 considers this uncertainty. First, it clarifies the
key terms uncertainty and covariance. This helps the discussions of the inserted ar-
ticle. Then, Chapter 3 also tackles the surprisingly challenging process of sampling
ICP registrations to estimate their distribution. The inserted article [11], in Chap-

2



ter 4, is the heart of this work. It uses the groundwork made previously to elaborate
a covariance estimation algorithm for 3D ICP. We put the algorithm through a com-
plete experimental validation, thus demonstrating its usefulness. Finally, Chapter 5
extends on the submitted article by providing supplementary experiments. These
experiments improve our knowledge of the capabilities of the introduced algorithm,
and point at research directions which could improve ICP covariance estimation in
the future.
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Chapter 1

Mathematical background

Mobile robotics is a very tangible domain that requires us to think in terms of dis-
placements in space. This chapter introduces mathematical formalism which allows
us to do so. We present the Special Euclidian group SE(3) and its companion Lie
algebra se(3). We show how to use them to represent rigid transformations in 3D
space. Then, we also introduce how to manipulate this representation to think about
rigid transformations in a probabilistic manner. Finally, we use this algebraic rep-
resentation to compound rigid transformations and keep track of their cumulative
uncertainty.

1.1 Special Euclidian group

Roto-translations in 3D are typically represented as a 4ˆ 4 matrix

T =

[
R t
0J 1

]
, (1.1)

where R P SO(3) is a rotation matrix, and t P R3 is a translation vector. The nota-
tion 0 represents a null vector, which has three dimensions in this case. The matrix
T is a member of the Special Euclidian group SE(3), which is the space of all roto-
translations. SE(3) is a Lie group. Consequently, it has an associated Lie algebra
se(3). Indeed, every member of SE(3) has an associated vector representation that
lives in se(3). The vector representation has six dimensions. The rotations them-
selves also form a Lie group. The matrix R is in fact an element of the Special Or-
thogonal group SO(3), which comprises all 3D rotations. Consequently, any opera-
tion defined on a Lie group applies both to full transformations T , but also simple
rotations R.
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The mapping of roto-translations to se(3) is useful because it allows us to think those
transformations in an almost linear fashion [12]. Also, the Lie algebra representation
is optimal in that it has as many terms as 3D roto-translations have degrees of free-
dom. There are no redundant terms. This makes optimization easier, because no
regularization is needed to make a valid roto-translation from a Lie algebra vector.
This is an advantage over quaternions (which have to be normalized) or full trans-
formation matrices (which need an orthonormal R), for instance.

The caveat is that we have to be careful about singularities when mapping from a
group to its algebra, and vice versa. Our general strategy is to use the numerical
stability [12, p. 267] of the SE(3) group representation when possible, and use the
linear model se(3) when it is useful. This way, we get the best of both worlds.

1.1.1 Exponential map

To go from a Lie algebra to its group, we use the exponential map [12]. For SE(3),
we pose exp(¨) such that

T = exp(ξ) and ξ =

[
u
ω

]
. (1.2)

Here, the vector ξ P se(3) is decomposed in a translation part u P R3 and an axis-
angle rotation ω P R3. Given that the angle of rotation is θ =

?
ω ¨ω, we have a

closed-form expression for this exponent:

exp(ξ) =

[
R Vu
0 1

]
(1.3)

such that

R = I +
(sin θ

θ

)
ωˆ +

(1´ cos θ

θ2

)
ω2
ˆ (1.4)

and

V = I +
(1´ cos θ

θ2

)
ωˆ +

(θ ´ sin θ

θ3

)
ω2
ˆ. (1.5)

Here, the ˆ operator indicates the cross product matrix of a vector such thatx
y
z


ˆ

=

 0 ´z y
z 0 ´x
´y x 0

 . (1.6)

This closed-form expression is derived using a Taylor-expansion [13].
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1.1.2 Log map

We may also wish to do the reverse mapping, i.e., go from a transformation matrix
T to a Lie algebra representation ξ. With that in mind, we first use the Rodriguez
formula

θ = arccos
( tr(R)´ 1

2

)
(1.7)

to find the angle of rotation θ. Then, the rotation part ω can be recovered with

ln(R)ˆ = ωˆ =
θ

2 sin θ
(R´ RJ). (1.8)

For the translation part t, we simply reuse Equation 1.5 such that

t = V´1u. (1.9)

We restate that one should be careful about singularities when using exp(¨) and
log(¨). More concretely, when the angle of rotation is small we should replace the
components of Equation 1.3 and Equation 1.8 with their Taylor series, for the sake of
numerical stability [13]. The Taylor series are developed in Appendix C.

1.2 Normal distributions over rigid transformations

One of the main benefits of representing rigid transformations using Lie groups and
Lie algebras is that the linearity of se(3) allows us to express uncertain transforma-
tions easily [13]. Suppose an uncertain transformation

T = exp(ξ)T̄ (1.10)

where T̄ P SE(3) is the mean transformation, and ξ P se(3) is a small perturbation
applied to it. We say that T is normally distributed according to a covariance Y when
we have

T „ N (T̄ , Y), (1.11)

which is shorthand for

ξ „ N (0, Y). (1.12)

6



The above equations apply to any Lie group, but for 3D transformations they imply
that the covariance Y P R6ˆ6. Furthermore, transposing the anatomy of the ξ vector
from Equation 1.2, we can subdivide the covariance with

Y =

[
Yuu Yuω

Yωu Yωω

]
. (1.13)

A method for applying a transformation A P SE(3) on a distribution emerges quite
naturally from this context. Applying A on both sides of Equation 1.10, we get

AT = A exp(ξ)T̄ (1.14)

= exp(AdjA ξ)AT̄ . (1.15)

Note the use of the adjoint AdjA P R6ˆ6 here, which by definition is the matrix that
allows us to commute a transformation from one side of the exponential map to
another. From there, we can show [13] that the transformed distribution is in fact

AT „ N (AT̄ , AdjA ¨Y ¨AdjJA). (1.16)

Instructions to compute AdjA, as well as other useful Lie algebras identities, are
available in Barfoot [12] and Eade [13].

1.2.1 Computing moments

This formulation creates an interesting problem when it comes to computing the
moments of samples of registration transformations. Indeed, the mean T̄ found in
Equation 1.10 cannot be computed in closed form given n samples T0...n. Instead, we
rely on an iterative approach. At iteration j = 0 we set T̄ Ð T0 (or any other element
of the sample). Using this initial guess, we can iteratively compute new estimates
for the mean and the covariance. Given

ξi = log(T iT̄
´1
j ), (1.17)

we have

T̄ j+1 = exp
( 1

n

n
ÿ

i=0

ξi

)
T̄ j (1.18)

Y j =
1
n

n
ÿ

i=0

ξiξ
J
i . (1.19)
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This procedure usually takes three to four iterations to converge [13]. Afterwards,
T̄ j and Y j are estimates of the first and second moment of the samples T0..n. We can
make the estimate of the covariance unbiased by replacing 1

n by 1
n´1 in Equation 1.19.

The effect of this replacement is minimal in the present context, since we typically
use samples of size n ą 1000. Our large sample sizes are required by the large
dimensionality of SE(3).

1.3 Compounding uncertain poses

For this work, we also wish to understand the compounding of uncertain poses in
SE(3). Given

T = T1T2 (1.20)

with T1 „ N (T̄1, Y1) and T2 „ N (T̄2, Y2) a pair of uncertain poses, we want to
compute the cumulative uncertainty of T . This proves useful, for instance, to track
the uncertainty of odometry. To compute this uncertainty, we need to compound the
smaller uncertainties Y i of the individual localization estimates, in order to better
represent the larger uncertainty of the integrated result T .

There are approximations up to the fourth order for this compounding [12]. The
resulting expressions are actually quite daunting, and are left out in the interest of
space. Here, we simply denote important properties of the compounding formu-
las. Two equations are provided in Barfoot [12], a second-order approximation and
a fourth-order approximation. The second-order approximation is mathematically
much simpler. It has the drawback that it does not capture all the “leak” from ro-
tational components into additional degrees of freedom. In other words, using the
second approximation, a rotational uncertainty may not provoke a translational un-
certainty at the next time step (even though it should). The fourth-order approxi-
mation captures this phenomenon better, at the cost of being more complicated to
express.

In both cases, we have to remember that we only have approximations at hand. The
compounding error will grow as uncertainty grows. It grows much more slowly for
the fourth-order approximation than for the second-order one [12, Fig. 7.7]. Still,
these approximations should be used to keep track of small transforms when possi-
ble, in order to minimize the approximation errors. Knowing this, it is wise to store
many small uncertain transformations instead of a single larger one.

8



Chapter 2

Iterative Closest Point algorithm

ICP is a point cloud registration algorithm that has applications in various fields,
such as medical imagery and computer vision. For mobile robotics applications,
which are of interest to us, it is commonly used to register point clouds from lidar
sensors. With two lidar scans of the same environment (but from different point
of views), we can find a rigid transformation between two reference frames. This,
in turn, is very useful for a robot to keep track of its position. The present chap-
ter describes the ICP algorithm in broad terms. It lists the components of an ICP
pipeline, and the effect of these components on the uncertainty. Finally, we discuss
the objective function of ICP, and how it creates an optimization landscape. The
optimization landscape is a metaphor for the shape of the objective function as it is
optimized. This notion will be useful to discuss the covariance of ICP later on.

2.1 Defining ICP

ICP is attributed to Besl et al. [2] and Zhang [14]. It is a procedure to find the trans-
formation A

BT that brings a reading point cloud BQ in the frame of reference point
cloud AP. It does so by first associating every point in Q with its nearest neigh-
bor in P. Then, some metric of the distance between the associated points is mini-
mized. This reassociation/minimization procedure is repeated iteratively until con-
vergence. Figure 1 illustrates a successful ICP registration.

Like any non-convex algorithm, ICP is sensitive to local minima. To alleviate this,
we want to provide a good initial estimate

A
B

qT before initiating the registration, i.e.,
something better than identity. This estimate could be the result of the odometry of
the wheels when moving the sensor from A to B, for instance.

9



2.2 ICP pipeline

A large collection of variants of ICP was developed over the years [4]. They are for-
malized into a chain with well-defined blocks. These blocks, as well as an example
choice for each of them, are shown in Figure 2.1. The figure contains the five main
blocks that comprise an ICP toolchain.

Figure 2.1 – Example of ICP toolchain configuration. The reading Q and reference P point
clouds are input into the pipeline at the top. Some of the choices made here can largely
influence the uncertainty of ICP. Source: http://github.com/ethz-asl/libpointmatcher.

Firstly, we select the data filters, which are the preprocessing operations applied to
the point clouds before they are used for registration. In the current case, Random
sampling indicates that a random subsampling of the points is used. In practice,
data filters are also the opportunity to augment the points with supplementary data.

10
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For instance, a data filter could supplement every point with information about its
neighborhood, such as the estimated plane formed by the neighborhood or the den-
sity of points in it. This supplementary data can then be used in the subsequent steps
of the registration.

The second step in the pipeline is the point matcher. It has the responsibility of find-
ing the nearest neighbors between the reference P and the reading Q point clouds.
The k-dimensional tree (k-d tree) is popular for this, because it allows for nearest
neighbors searches in a sub-linear time (with respect to the number of points) [15].

Next, the outlier filters have the responsibility of filtering spurious point associa-
tions. They aim to remove associations between points that are unrelated, e.g., points
from a house associated with the points from a tree. With this objective, outlier fil-
ters often remove the pairs of points for which the error metric is too large. Choosing
what “too large” means in this context is an active research area [16]. Outlier filtering
is very important to the accuracy of ICP. Indeed, it makes it a lot more robust, and
thus less susceptible to suffer from local minima. A typical choice of outlier filter
is trimmed distance, which keeps a percentage of associations that have the smallest
error according to the minimizer.

Minimizers represent the choice of error metric between the pairs of associated points.
For instance, using the point-to-point error metric minimizes the Euclidian distance
between the associated points. Other possible choices include plane-to-plane, point-
to-Gaussian or Gaussian-to-Gaussian. In Figure 2.1, the choice of error metric is
point-to-plane. With this metric, ICP minimizes the distance between a point and
the estimated plane around the other point. Note that changing the minimizer changes
the closed-form equations that are minimized during the iterative process. Conse-
quently, it modifies the function that ICP optimizes (the objective function).

Finally, transformation checkers are simply convergence criteria for the iterative pro-
cess. In Figure 2.1, we have both a counter and a differential transformation checker.
The counter puts an upper bound on the number of iterations. The differential trans-
formation checker detects convergence by looking at the delta between successive
iterations. If the delta becomes small enough, we consider that convergence is at-
tained and the iterative process is stopped.

Of all the steps in an ICP toolchain, the choice of minimizer (error metric) is the one
that has the most importance to uncertainty estimation. That is because it dramati-
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cally affects the shape of the objective function. In turn, this changes the optimiza-
tion landscape of ICP, and affects where the algorithm is likely to converge. The
objective function of ICP is studied in more details in Section 2.3.

To a lesser extent, the transformation checkers also affect the uncertainty of ICP. This
is illustrated in Figure 2.2. The dots in the figure represent 5000 ICP registrations at
different moments of the optimization process. The subject of registration is a pair
of identical cubes, modulo a Gaussian noise on the individual points. The Gaussian
noise simulates the measurement noise that we find on real lidar sensors. For visu-
alization purposes, we only illustrate the u part of ξ here, which corresponds to the
translation of the registration transformation.

From this figure, we conclude that transformation checkers that are too aggressive
yield registrations transformations that are more scattered. That is because ICP did
not have enough iterations to converge correctly. More scatter in the ξ vectors trans-
lates in a larger covariance (see Equation 1.19). We do not study the impact of the
transformation checkers in detail, because their effect on the uncertainty is minimal
if they are configured correctly. On the contrary, the effect of the choice of error met-
ric on the uncertainty is, in a way, unavoidable. There is no objectively “correct”
way to select an error metric for ICP, which explains the wide variety of metrics still
in use today.

The effect of the remaining blocks of the toolchain (Data Filters, Matcher, Outlier
Filters) on the uncertainty was not controlled for this work. The data filters and the
matcher are expected to have a minimal impact, though validating this experimen-
tally is potential future work. For the outlier filters, the application domain dictates
what the correct choice is. We are interested by the covariance of ICP given that
choice. Consequently, we made a choice that we thought was reasonable (trimmed
distance, keep 70 %), and maintained this configuration throughout the experiments.

2.3 ICP objective function

The choice of ICP pipeline affects the objective function. Consequently, once we
establish that pipeline, we can explore the objective function of ICP in more details.
From an optimization point of view, the problem of ICP can be formulated as finding

arg min
ξ

J
(

exp(ξ)qT
)
, (2.1)
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n = 10

n = 50

n = 100

Figure 2.2 – The translation u P R3 to which ICP converges when the maximum number of
iterations n varies. The point cloud of a cube is registered against itself here. The progression
of 5000 ICP registration is illustrated. If n is too low, ICP will stop before convergence. This
increases the spread of ICP registration transformations, which means the uncertainty is
increased.
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where J(¨) is the objective function of ICP. The behavior of this function changes
given the point clouds being registered, or the configuration of the ICP pipeline. We
can think of that objective function as being the sum of the error metric for every
pair of associated points (modulo the outliers).

In that framework, ξ is the perturbation applied on the initial estimate qT that best
registers the point clouds. As an experiment, we can manipulate ξ to plot the value
of J(¨) for a given rigid transformation. Figure 2.3 illustrates the value of J(¨) when
registering a simple pair of cubes. To the left, we see the pair of cubes being regis-
tered. Currently, the blue cube is ill-aligned with the red one. The points of the blue
cube are, in average, far from their closest neighbor in the red cube. Consequently,
the value of the objective function is high. To minimize it, ICP must find a ξ that bet-
ter aligns both cubes, and thus minimizes the value of J(¨). To the right, we plot the
value of the objective function for different values of ξ. The perturbation is varied in
two axes, the value of ux and uy.

This plot gives us an overall portrait of the objective function landscape, over two
dimensions out of six. We could expect to find a discrete minimum for J(¨) in this
situation. However, the data shows a cross shape. This shape is explained by the
outlier filter, which we set to a 70 % trimmed distance filter (see Section 2.2). If the
transformation is perfectly aligned in the x axis, then the outlier filter is free to re-
move errors in the y axis, letting ICP move more freely in that axis. The reverse is
also true: if the cubes are perfectly aligned in the y axis, there is some freedom in the
x axis. This leeway in both x and y creates the cross shape.

In practice, this modified shape of the objective function means that ICP could con-
verge more slowly to the ground truth. Experiments show that the registration trans-
formations live longer on the axes of the cross before converging to the ground truth
in the middle. In fact, we already observed this “slow down on the cross” effect
in Figure 2.2. The cross of the objective function shows up in the configuration of
the registration transformations themselves. In a way, Figure 2.2 and Figure 2.3 are
looking at the same phenomenon from two different point of views.

The duality between those figures shows that there is an intimate relationship be-
tween ICP’s objective function and its uncertainty. A family of uncertainty predic-
tion algorithms, called the closed-form estimates, use the derivative of the objective
function directly to make their predictions [17]. Closed-form algorithms cannot cope
with point reassociations well, and thus must make supplementary assumptions
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Figure 2.3 – Left: A pair of noiseless cubes being registered. Right: ICP objective function
when registering the pair. A high value of the objective function means that the sum of errors
for every pair of associated points is high for a given roto-translation. Two dimensions out
of six are plotted: the translation in x and the translation in y (ux and uy).

about the association of points. They either assume that the pairing does not change,
or that the changes in pairing affect the objective function very little [7]. Chapter 4,
the inserted article, gives a more complete overview of these algorithms, and the
consequences of ignoring point reassociation for uncertainty estimation.

Coming back to the objective function, we are not limited to plotting the x and y
translation axes. Figure 2.4 shows the same objective function, but this time plotted
along a translation and a rotation axis. The figure shows that the rotation has a more
important impact on the objective function than the translation for this pair of point
clouds. Consequently, we consider that the rotation is more constraining than the
translation in this case. Notice the difference in the scale of the objective function
score in this figure, comparatively to that of Figure 2.3.

With those experiments in mind, we can progress towards real pairs of point clouds.
To this purpose, we use pairs of point clouds from the Challenging data sets for point
cloud registration algorithms [18]. This dataset contains dense point clouds from six lo-
cations, ranging from structured to unstructured and indoor to outdoor. It was cho-
sen because it provides ground truth data accurate to the millimeter. For the present
experiment, we pick point clouds from the Gazebo and Hauptgebaude locations. Fig-
ure 2.5 shows photographs of these locations. The value of J for these locations is
shown in Figure 2.6. Since Hauptgebaude (on the right) is an almost featureless hall-
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Figure 2.4 – ICP objective function when registering a pair of noiseless cubes. The vertical
axis shows the impact of a rotation on the objective function (ωz). In this case, the rotation is
more constraining than the translation.

Figure 2.5 – Photographs of the locations point cloud registration datsets. Left: Gazebo Sum-
mer. Right: Hauptgebaude. Source: https://projects.asl.ethz.ch/datasets/doku.php?

id=laserregistration:laserregistration.

way, the ICP registration is underconstrained in the x axis, which is clearly seen on
the objective function. In practice, this means that ICP will have a large uncertainty
in that axis. On the contrary, the Gazebo Summer pair is well constrained on both
axes. Consequently, its objective function is a smooth descent towards a global min-
imum. Detecting underconstrainted directions is perhaps the most difficult part of
designing an uncertainty prediction algorithm.
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Figure 2.6 – Value of the objective function of ICP for pairs of point clouds from real datasets.
The value is plotted for two point cloud pairs: on the left clouds 15 and 16 from Gazebo
Summer, on the right clouds 15 and 16 from Hauptgebaude.

One particularity of the objective function of ICP is that it is made noisy by the re-
association of points. Indeed, at every iteration, ICP pairs every point with their
nearest neighbor. The optimal pairing changes constantly as the estimated transfor-
mation pT is being optimized. This is visible on Figure 2.7. On it, the changes in point
associations (the transition of the “plateaus” in the figure) are clearly visible. No-
tice the very small scale (in the order of the micro-meter) at which these transitions
happen. It was necessary to zoom down to this level, because the optimal pairing
changes very frequently when pT changes.

We already showed the tight coupling between uncertainty and objective function.
One can wonder if modelling the noisiness of Figure 2.7 is necessary to a correct
estimation of the covariance. This question is explored in the inserted article.
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Figure 2.7 – Zoom in on the objective function of ICP for a pair from the Plain dataset (point
clouds 15 and 16). At a small scale, the objective function is not smooth, because of the
reassociation of nearest neighbors.
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Chapter 3

From uncertainty to covariance

The motivation of this work is to better integrate ICP in probabilistic state estima-
tion frameworks such as Kalman Filters or Simultaneous Localization and Map-
ping (SLAM). We plan to achieve this by studying ICP’s uncertainty. One might
wonder how uncertainty relates to covariance, which is in the title of this work. The
purpose of this section is to pose ICP in a more formal probabilistic framework. It
better identifies the random variables at stake and how they relate to the results we
have seen so far. This will clarify the difference between uncertainty and covariance,
and help us discuss those concepts more clearly.

3.1 ICP as a random variable

Strictly speaking, ICP is a function of a reading point cloud Q, a reference point
cloud P, and an initial guess qT of the transformation between P and Q:

icp(P, Q, qT) = pT . (3.1)

It yields an estimate pT P SE(3) of the rigid transformation between the frames of
the point clouds. Consequently, ICP is not an inherently random process. To see
the uncertainty, we must remember the experimental context. First, the point clouds
themselves are uncertain: lidar sensors indeed suffer from noise. Also, the point as-
sociations are uncertain, because both scans P and Q did not sample the exact same
locations of the environment. In underconstrained environments such as Hauptge-
baude (see Figure 2.6), the objective function is not always able to steer ICP towards
good point associations. Consequently, the structure of the environment is also a
source of uncertainty for ICP. Finally, the initial guess qT often stems from odometry,
and as such is uncertain.
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We summarize all those sources of uncertainty in two distributions. First, we pose
the distribution O such that qT „ O. This O is meant to represent the uncertainty
from the odometry. Finally, we pose the uncertain output I of ICP such that pT „ I .
If the chosen ICP toolchain is robust, and the input point clouds P and Q are easily
“registerable”, ICP will converge to a distribution I that is both accurate and precise.
Otherwise the size of I—the uncertainty—becomes larger.

The distributions O and I have shapes that vary wildly from one experiment to
another. Still, an integration to known tools such as a Kalman Filter is deemed ben-
eficial. Consequently, we must describe O and I in terms that allow for common
tools to be used. This is why we pose them as normal distributions for this work,
and focus our efforts towards estimating the covariance of I . We described how to
mathematically express normal distributions over SE(3) in Section 1.2.

The Gaussianity assumption is actually oversimplifying. Figure 3.1 shows the dis-
tribution I for two point cloud pairs. We observe results that are often clustered and
non-symmetric. Whether the normal distribution supposition can be correctly made
is left for future work. For now, we try to find normal distributions that represent I
as well as possible.

In summary, this work considers that the uncertainty of ICP stems from various fac-
tors, such as the structure of the environment, the sensor noise and the uncertainty of
the initial estimate. The distributions O and I encapsulate this uncertainty. To make
our computations tractable, we make the simplifying assumption that O and I are
normal distributions. This formulation is justified because it makes the integration
to existing states estimation toolchains seamless.

3.2 Sampling ICP

To build an intuition of the distribution I , we sample ICP a large number of times for
various pairs of point clouds. This approach was recently applied to 3D ICP [9]. The
high dimensionality of the problem (6 dimensions) forces us to have a large num-
ber of samples in order to represent the distribution of registration transformations
correctly. In the larger scheme of things, sampling ICP allows us to generate train-
ing examples for data-driven algorithms. The plan here is to perform the computa-
tionally expensive sampling on some point cloud pairs, and then train a covariance
estimation model that would automatically generate predictions.
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Figure 3.1 – Sampled registration transformations for the Apartment 03 (top) and Plain 30
(bottom) locations. The registered point clouds are displayed in red. The black spheres
represent the density of registration transformations at that location. Once again, the u part
of the full perturbations ξ is shown. To better cover SE(3), 5000 initial transformations were
used. One can observe that the distributions are hardly normally centered on their ground
truth.
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We can see an example of such a sampling by looking once again at Figure 3.1. To
estimate the covariance of ICP, we must filter outliers out of this sampling. This
outlier filtering should not be confused with the outlier filtering performed during
an ICP registration (see Section 2.2).

Indeed, existing covariance estimation algorithms make the assumption that ICP
“converged to the attraction region of the true solution” [6], [17]. We know that this
notion of attraction region is loosely defined, because of what we learned about the
objective function in Section 2.3. There, we saw that the objective function of ICP
is littered with small local minima (see Figure 2.7). Consequently, the attraction
region of the true solution cannot be a clearly defined region, where the gradient
constantly points towards a global minimum. We speculate that the attraction region
of the global minimum intuitively corresponds to the larger scale behavior of the
objective function, as seen for instance in Figure 2.6. On these objective functions, if
we ignore the noise that happens at very small scales, we can intuitively identify a
region that always converges towards a global minimum. We are not aware of a way
to identify this region automatically. Consequently, we have to resort to heuristics
to distinguish the transformations that converged inside of it from the ones that
converged outside. That is, we want and heuristic to separate convergent samples
from divergent samples.

We use an example pair of point clouds to illustrate the potential impact of out-
lier filtering. Figure 3.2 shows the distribution of ICP registration transforms when
registering an Apartment point cloud pair. The red ellipsoid is the Yuu part of the
sampled covariance. It was obtained by computing Equation 1.19 directly, on all the
samples. The shape of the ellipsoid seems roughly valid. However, a closer inspec-
tion reveals that 97% of the registration transformations live immediately around the
ground truth. With that in mind, we may wish to consider that the results far from
the large sphere are outliers. This is equivalent to considering that, for this pair of
point clouds, the covariance of ICP is only the covariance of the centermost samples.

Figure 3.3 shows the distribution of registration transformations when we filter those
outliers away. Notice the dramatic change in scale of the figure. Once the 3 % of
outliers are filtered away, the covariance is of the order of the millimeter. Without
outlier filtering, it is in the order of a meter. This example justifies the exploration of
heuristics that identify the registration transformations that converged correctly.

For this work, we explored many different heuristics. We present heuristics based
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Figure 3.2 – Distribution of ICP registrations when registering a pair of point clouds from
the Apartment dataset. The red point cloud is being registered against the blue point cloud.
Simultaneously, we plot the u part of 5000 ICP registration results. The size of the black
spheres indicates the density of ICP registration transformations at this location. The red
ellipsoid represents the covariance of the registration transformations if no outlier filtering
is applied.

on a fixed distance threshold, a density threshold, and clustering similar to Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [19]. The advan-
tages and disadvantages of every heuristic are discussed.

3.2.1 Fixed distance threshold

A typical criterion to detect the convergence of ICP is a fixed distance threshold. To
detect if a registration transformation is an outlier, we compute the perturbation

ξ =

[
u
ω

]
= log(T̄´1

pT). (3.2)
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Figure 3.3 – Zoom in on the distribution of registration transformations when registering
point clouds 7 and 10 from the Apartment dataset. The data is projected on the xy plane.
Every black dot represents a registration transformation. The red ellipse is a 95 % confidence
interval for the distribution. On this figure, 3 % of the data was filtered to eliminate outliers.

Then we have two options: we can filter away all the perturbations that have

}ξ} ą τξ (3.3)

or filter the registration transforms that have one of the following:

}u} ą τu (3.4)

}ω} ą τω. (3.5)

This method has the advantage of being simple and easy to compute. Its main dis-
advantage is that it imposes an upper bound on the covariance. Indeed, this method
imposes a maximum norm for the ξ vector, which means that the covariance ma-
trix also has a maximum norm (see Equation 1.19). The effect of this upper bound
on the covariance matrix is felt especially when the registration transformations are
arranged like in Figure 4.1. In this figure, the registration transformations have a
very elongated distribution. If we were to consider that all the registrations with
}u} ą τu have diverged, we would loose much of that elongated aspect in the final
covariance. This incapacity to capture elongated distribution disqualifies the fixed
distance threshold as a method for filtering divergent registration transformations.
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3.2.2 Density threshold

The density threshold method supposes that registration transforms converge into
the attraction region of the true solution much more frequently than they diverge
elsewhere. Hence, after all the iterations of ICP, there should be a greater density of
registration transformations in the region of the true solution. This justifies the use
of the density of points as a heuristic to detect outlier.

To detect outliers using a density threshold, we first compute a large sample of ICP
registrations. For every transformation sampled, we find the k nearest neighbors.
Every neighbor i has a distance

δi = }ξi ´ ξ} (3.6)

from the sample of interest ξ. We estimate the density ρ by computing

ρ =
k

max δi
. (3.7)

Afterwards, we simply filter away all the registration transformations ξ that have an
estimated density ρ smaller than parameter τρ.

This method is relatively easy to compute, although it is more computationally ex-
pensive than the fixed distance threshold. The computational complexity lies in the
nearest neighbors search. It can be mitigated by first computing a k-d tree on the
sample of registration transformations.

Since this heuristic does not depend on the distance from the ground truth, it does
not impose an upper bound on the covariance of the filtered results. It has the dis-
advantage of having a parameter that is not intuitive to set (τρ). Experimentation is
required to find principled values for this parameter. Furthermore, good values for
τρ change with the number of samples, and the overall behavior or the registration
for the pair of point clouds. Figure 3.4 illustrates this well. It plots the trace of the
covariance matrix as the threshold varies. The trace of the covariance matrix is used
here as a measurement of the size of the covariance. The results would be similar
using other metrics, such as the Frobenius norm. On the figure, the Apartment has
registration transformations that are very well clustered around the ground truth.
Even with very aggressive filtering parameters, 97 % of the registration transforma-
tions remain in the distribution. The covariance becomes very compact (but does
not reach zero) even though it contains the large majority of the results. In fact, the
small covariance that is near zero on that figure corresponds to the cluster of results
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Figure 3.4 – Trace of the covariance of ICP registrations against the value of the parameter
τρ used to filter outliers. On the left, a point cloud pair (clouds 7 and 10) from the Apartment
dataset is used. On the right, a point cloud pair (clouds 8 and 11) form the Plain dataset is
used. The dashed lines are the proportion of registration results that remain after filtering.

shown in Figure 3.3. This is a situation where τρ is relatively easy to choose. Any
value that reaches a plateau in terms of size of covariance, but still keeps most of the
registration results inside the distribution, is a good choice.

The Plain dataset is more challenging. The registration transformations from this
sampling are more spread out. Consequently, the covariance has a larger size in
the beginning. The size of the covariance diminishes progressively as the density
threshold is increased, but so does the proportion of registration results that remain.
The filter designer must choose a value of the parameter that filters as much outliers
as possible, while keeping a healthy number of samples inside the distribution. We
are looking for values that minimize the size of the covariance, but do not take it to
zero. For this case, values of τρ between 105 and 106 seem appropriate. Anything
beyond that incurs the risk of over-filtering the data.

3.2.3 DBSCAN like clustering

The last heuristic to determine what registration transformations converged close
to the ground truth is inspired by the DBSCAN clustering algorithm [19]. This al-
gorithm progressively enlarge clusters by running nearest neighbors searches. The
outlier filtering algorithm we used for this work is a simplified version of DBSCAN.
Indeed, DBSCAN can accommodate an arbitrary number of clusters. However, for
the current work we suppose there is only one cluster: the cluster of convergent
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registration transformations. Consequently, we can simplify DBSCAN to improve
performance.

Algorithm 1 describes this simplification precisely. It begins with a call to FIND-
SEED which initializes the border set B. FINDSEED is a function that, given a set
of registration transformations S and a ground truth value T̄ , finds the registration
transformation in S that best initializes the clustering. One potential implementation
of FINDSEED is simply to find the transformation in S that is closest to the ground
truth. Then, the algorithm iterates on the border set B. For every p point in the
border set, a nearest neighbors query is executed. If at least k neighbors are inside
a radius τr, then the point p is considered a member of the cluster. It is added to
the set C. Its neighbors are added to B and will be considered next. In the end, the
set C contains the points that are considered to have converged inside the attraction
region of the ground truth.

Algorithm 1 Simplified DBSCAN

B Ð tFINDSEED(S , T̄)u Ź B the border set
C Ð tu Ź C the set of points inside the cluster
while |B| ą 0 do

p Ð POP(B)
nns, distancesÐ KNN(p,S , k)
if MAX(distances) < τr then

C Ð C Y tpu Ź p is a core point
B Ð B Y (nns z nnsX C) Ź Add potentially new core points in B

end if
end while
return C

This algorithm needs two parameters to function: the number of neighbors k and the
maximum radius τr. Schubert et al. [19] present a rule of thumb where k should be
about two times the dimensionality of the problem, and then τr should be adjusted
experimentally. Figure 3.5 shows how the covariance varies when we manipulate
τr. The point cloud pair from the Apartment dataset is almost insensitive to this pa-
rameter. A very wide range of values causes it to keep about 97 % of the data, and
have a rather small covariance. The Plain dataset, once again, is more challenging.
Increasing τr causes nearly discrete jumps in the size of the covariance. Every dis-
crete jump is explained by a cluster of registration transformations being included
in the distribution of convergent transformations. Consequently, appropriate values
of the parameter are values that contain only one cluster: the cluster that is closest
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Figure 3.5 – Trace of the covariance of ICP registration transformations when the DBSCAN
clustering radius τr varies. The covariances are computed using point clouds from the Apart-
ment (7-10) and Plain (8-11) datasets.

to ground truth. In other words, τr should be as small as possible while including
a healthy proportion of the registration transformations inside the distribution of
convergent transformations. In that spirit, values of τr between 10´5 and 10´4 seem
appropriate for that pair of point clouds.

This clustering algorithm similar to DBSCAN is a good heuristic to detect convergent
registration transformations. Like the density threshold filter, it does not impose an
upper bound to the covariance. Furthermore, it corresponds the intuition we have
about the nature of the attraction region of the ground truth. We think of it as a
region in the objective function where the gradient steadily descends towards the
ground truth. Consequently, we expect that all the convergent registration transfor-
mations will be relatively close to one another. We expect the presence of gaps be-
tween the clusters of results associated to the various global minima. The DBSCAN
heuristic algorithm relies on the presence of these gaps to work properly.

As of now, we consider that the DBSCAN based heuristic is the best way to fil-
ter away divergent transformations from a sample of ICP registrations. The fixed
threshold is disqualified, because it imposes an upper bound on the norm of the
covariance. Furthermore, DBSCAN is better than the density filtering in that it is
better able to use the spatial relationship between registration transformations in the
sample. One good illustration of the superiority of the DBSCAN like filtering strat-
egy over the density threshold filtering is seen in the lower right part of Figure 4.4.
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There are two clusters in those registration transformations: the inner line and the
outer ring. Both clusters have a good density: it would be difficult to discriminate
between those two using a density based filtering. However, the presence of a large
gap between both clusters makes it easy for our DBSCAN clustering to separate the
middle line (which is convergent) from the outer ring (which is divergent).

With such a way to filter away divergent registrations, we can now compute a co-
variance from a sample of registration transformations. We now have all the tools
we need to work on a data-driven covariance prediction algorithm.
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Chapter 4

CELLO-3D: Estimating the Covariance
of ICP in the Real World
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Résumé

La fusion de recalages d’ICP avec les outils existants d’estimation d’état repose

sur une estimation précise de leur intertitude. Cet article étudie l’estimation de

cette incertitude sous la forme d’une covariance. Premièrement, nous étudions

les limites de méthodes d’estimation de covariance existantes sur des jeux de

données 3D. Ensuite, nous estimons la covariance d’ICP avec une approche ba-

sée sur les données, utilisant plus de 5 100 000 recalages calculés sur 1020 paires

de nuages de points 3D tirés d’environnements réels. Nous évaluons la solution

sur une large collection d’environnements, allant de structurés à non-structurés

et intérieurs à extérieurs. La capacité de notre algorithme à prédire des cova-

riances est évaluée, ainsi que l’utilité des prédictions pour faire l’estimation de

l’incertitude sur des trajectoires. La méthode proposée fait des prédictions qui

sont plus précises que les solutions analytiques existantes. Ces prédictions sont

consistantes avec des trajectoires observées expérimentalement.
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Abstract

The fusion of ICP registrations in existing state estimation frameworks relies on

an accurate estimation of their uncertainty. In this paper, we study the estima-

tion of this uncertainty in the form of a covariance. First, we scrutinize the limita-

tions of existing closed-form covariance estimation algorithms over 3D datasets.

Then, we set out to estimate the covariance of ICP registrations through a data-

driven approach, with over 5 100 000 registrations on 1020 pairs from real 3D

point clouds. We assess our solution upon a wide spectrum of environments,

ranging from structured to unstructured and indoor to outdoor. The capacity of

our algorithm to predict covariances is accurately assessed, as well as the useful-

ness of these estimations for uncertainty estimation over trajectories. The pro-

posed method estimates covariances better than existing closed-form solutions,

and makes predictions that are consistent with observed trajectories.
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4.1 Introduction

The ICP algorithm [2], [3] is ubiquitous in mobile robotics for the tasks of localization
and mapping. It estimates the rigid transformation between the reference frames of
two point clouds, by iteratively pairing closest points in both point clouds and mini-
mizing a distance between those pairs. This is equivalent to optimizing an objective
function that maps rigid transformations to a scalar optimization score for a pair
of point clouds. There is an abundance of ICP variants [4], each of which yields
slightly different transformations due to their different objective functions. One no-
table variation is the choice of error metric between each pair of points, where com-
mon choices of metric are point-to-point [2] and point-to-plane [3]. The registration
process is subject to a number of sources of uncertainty and error, because of a bad
adequation between the objective function and the desired result. Chief among them
is the presence of local minima in the objective function. Other causes of uncertainty
comprise noise from the range sensor, and underconstrained environments such as
featureless hallways [17].

The fusion of ICP measurements in existing state estimation frameworks (e.g. SLAM)
relies on an appropriate estimation of the uncertainty of ICP, expressed as a covari-
ance [14]. In this context, ICP is modeled as a function of input point clouds and
an initial estimate which yields a registration transformation that is normally dis-
tributed. Optimistic covariance estimates can lead to inconsistency and navigation
failures, whereas pessimistic ones inhibit efficient state estimation. Figure 4.1 illus-
trates the process of estimating the covariance of a registration. The registration
process shown takes place in a hallway, and is consequently loosely constrained in
one axis. In this figure, optimistic covariance estimation frameworks might miss this
underconstrainedness and encompass only the central samples.

This paper focuses on the problem of estimating the covariance of ICP in such real
3D environments. To this effect, we first provide an experimental explanation as
to why current covariance estimation algorithms may perform poorly in that con-
text. Furthermore, we present CELLO-3D, a data-driven approach to estimating the
uncertainty of 3D ICP that works with any error metric.
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Sampled  
uncertainty

Covariance

Figure 4.1 – A reading point cloud (red) is being registered against a reference point cloud
(blue). This paper studies the estimation of covariances like the green ellipsoid to allow
integration of ICP in state estimation toolchains. The result of ICP was sampled, and the
black balls indicate the density of registration transformations at a particular location. There
are three larger clusters which correspond to local minimas in the objective function caused
by the regularly spaced pillars. We project the translation part of a covariance in R3 for
illustration purposes, but in general the covariances of a 6 degrees of freedom phenomenon
is studied here.

4.2 Related works

There are many approaches to estimating the covariance of the ICP algorithm, each
of which must balance quality of prediction and computation time. On one end of
the spectrum, Monte-Carlo (also called brute force) algorithms such as [9], [20] pro-
vide an accurate estimate ICP’s covariance. They consist in sampling a large number
of ICP registration transformations, and using the covariance of the sampled results
as the covariance estimation. If a model of the environment is available, brute-force
algorithms can take sensor noise into account by simulating many scans of the en-
vironment given some noise model. However, Monte-Carlo algorithms cannot be
used online due to their high computational cost. This limits their practicality in
mobile robotics applications.

Another important category of covariance estimation algorithms rely on the objec-
tive function’s Hessian [17], [20]–[24]. These closed-form methods are motivated by
the need for a covariance estimation that can be used online. Their underlying as-
sumption is that the objective function J(T) used in ICP can be linearized around
the point of convergence. This allows the use of linear regression theory to derive a
covariance from the Hessian of J. If J is analytically differentiable, then the Hessian
can be computed directly [20], [23]. Otherwise, it can also be approximated numer-
ically by sampling [21], [22]. This approach accounts for errors that are due to the
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environment structure, but not for errors due to sensor noise. However, modelling
the effect of sensor noise on the objective function J proves to be crucial for covari-
ance estimation algorithm. Censi [17] addresses this by using the implicit function
theorem. His model of the covariance contains the Hessian of J, but also the effect
of the sensor noise on it. It is successfully evaluated on 2D datasets. The equations
for the 3D case are derived in [24], but Censi’s algorithm is considered to be largely
optimistic in that situation [10]. More elaborate noise models alleviate this difficulty,
but only for specific sensors [8].

Closed-form approaches have the shortcoming of not taking point reassociation into
account. Therefore, they must assume that 1) ICP converged to a loosely defined
region of attraction of the “true” solution [17], and 2) the reassociation of points that
occur in that region have a negligible influence on the objective function. Bonnabel
et al. [7] show that for point-to-point ICP variants, the second assumption is broken.
However, they present a proof that Censi’s method is accurate using the point-to-
plane ICP variant in a noiseless context. They do so by demonstrating that changes
in J due to point reassociations are small enough for the covariance estimation meth-
ods to remain valid under certain conditions. In spite of this, Mendes et al. [10] indi-
cates that this covariance is still optimistic in a noisy experimental context.

A data-driven alternative to covariance estimation emerged from the Covariance Es-
timation and Learning through Likelihood Optimization (CELLO) framework [6].
It is a general covariance estimation strategy that projects point clouds in a de-
scriptor space, then estimate the covariance within this space. It uses a machine
learning algorithm that first estimates a distance metric between the predictors, and
then uses this metric to weigh the learning examples during online inference. This
procedure can be done with ground-truth data [6], but also without it [25] exploit-
ing expectation-maximization. In the presence of ground-truth data, expectation-
maximization should be avoided to simplify the machine learning process. The gen-
eral strategy of CELLO was successfully applied to the estimation of the reliability of
visual features for visual-inertial navigation [26], [27]. Peretroukhin et al. [27] used
the prediction space to generate a noise model for visual landmarks, which in turn
was used to predict the ego-motion of the sensor. For an application to 3D ICP, these
data-driven approaches are challenging in that extracting relevant features from 3D
point clouds is still an open problem. Hand-crafted feature designers must tread
carefully between the expressiveness and the generality of the descriptor for this
approach to be viable. Consequently, this method was never assessed in a 3D ICP
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Figure 4.2 – The objective function of point-to-plane ICP around the ground truth when
registering a simple cube. The black dots are sampled registration transformations, with
their associated translation projected on the xy plane. The green circle is a 3σ covariance
ellipse of the distribution of registration transformations. The white dashed circle is a similar
representation, but of Censi’s covariance estimate. Rightmost frame: the transitions from one
plateau to another are explained by point reassociations. At a scale smaller than the scale of
the covariance of the registration transformations, the error landscape is dominated by point
reassociations.

context to the best of our knowledge. Finally, Liu et al. [28] circumvent the explicit
design of features by training a deep neural network directly on the sensor data.
Their method successfully estimates the covariance of 2D visual odometry. Unfortu-
nately, the use of deep neural networks on 3D point clouds is still an active research
area, and further work is required to apply this method to such data.

4.3 Shortcomings of closed-form covariance estimation

algorithm

As discussed earlier, Bonnabel et al. [7] point out that closed-form covariance estima-
tion methods are potentially ill-founded if point reassociations occur at a scale that
is smaller than that of the covariance to be estimated. Our own analysis on 3D simu-
lated data shows that it is likely that point reassociations happen at a scale this small.
For example, Figure 4.2 shows the objective function J(T) observed when register-
ing a pair of 1ˆ 1ˆ 1 m cube shaped point clouds. The points lie on the surface of the
cube and have a σ = 0.01 m noise applied on them on every axis. At a larger scale,
this objective function J(T) corresponds to our intuition, with a seemingly-smooth
slope towards large global minimum. At a smaller scale, however, it is composed of
a large number of “plateaus”, each of them corresponding to one fixed association of
points between the reading and the reference. This litters the objective function with
local minima to which ICP is sensitive. In turn, a larger covariance of ICP results is
observed.
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There is a mathematical explanation for the optimism of Censi’s algorithm for the
point-to-point variant of ICP in Bonnabel et al. [7]. We do not know of such a proof
the point-to-plane case. Furthermore, the results in Bonnabel et al. [7] were encourag-
ing about the validity of Censi’s algorithm in the point-to-plane case. They show that
the change in the objective function provoked by point reassociations is bounded un-
der certain conditions, proving the correctness of Censi’s estimate. On the contrary,
our own experiments show that caution is required even in the point-to-plane case.
Indeed, Figure 4.3 shows that sensor noise significantly impacts the empirically sam-
pled covariance of ICP as it grows. On the other hand, Censi’s covariance estimate
grows slowly as the estimate of the sensor noise grows. To use Censi’s estimate in
that experimental context, we would need to inflate our estimation of the sensor
noise to values that are beyond a meaningful range.

Consequently, we argue that a viable covariance estimation algorithm for ICP should
take into account the effect of noise. More precisely, it should model both the direct
effect of the sensor noise on the objective function of ICP, but also the point reassoci-
ations that it provokes around ground truth. Monte-Carlo based approaches circum-
vent those difficulties by incorporating the effect of noise directly. The complexity
we observe in the 3D registration process motivates our shift from analytical to data-
driven solutions. Our general approach is to implement the CELLO framework [6]
for 3D ICP and work towards learning covariance models from training data gen-
erated through a sampling process. We aim at getting the best of both worlds: the
accuracy of brute-force methods and the rapid inference of machine learning ap-
proaches.
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Figure 4.3 – Trace of ICP covariance estimation against sensor noise. Censi’s covariance
estimate increases slowly as the sensor noise model grows. The sampled covariance of ICP
increases dramatically with sensor noise, even on simulated datasets. This is attributed to
the point reassociation provoked by sensor noise.

37



4.4 3D covariance estimation of ICP

Casting CELLO onto a 3D registration problem requires a primer on notations. A
rigid transformation a

bT P SE(3) allows to express a point cloud bP P R3ˆn in the
coordinate system b in a second coordinate system a. Using the Lie algebra, we can
express the matrix T as a vector ξ P se(3) using log(T) and reverse the process using
exp(ξ). The vector ξ is split into a translation u P R3 and an angle-axis rotation
ω P R3. This allows us us to express the uncertainty on a rigid transformation as a
covariance matrix Y P R6ˆ6, such that

ξ =

[
u
ω

]
(4.1)

and

Y =

[
Yuu Yuω

Yωu Yωω

]
. (4.2)

Generally speaking, we need to rely on prior information, for which we use the
notation |(¨), to produce an estimate x(¨) of a true quantity ¯(¨). For example, having
access to a reference point cloud Q P R3ˆm, it is possible to produce a transformation
estimate pT that reduces the alignment error between P and Q by relying on a prior
transformation qT (see Figure 4.4). A typical solution to this registration problem is
the ICP algorithm:

pT = icp(P, Q, qT). (4.3)

The initial transformation qT can be seen as an element randomly selected from a dis-
tribution of transformations O, for which the shape typically depend on odometry
computation. Similarly, the estimated value pT comes from a distribution of transfor-
mations I which has a complex shape that depends on both point clouds, O and the
configuration of icp(¨). Estimating the covariance Y of ICP corresponds to making
the (oversimplifying but tractable) assumption that the I is normally distributed

I « N (T̄ , Y), (4.4)

where the right hand side is shorthand for

qT = exp(ξ)T̄ (4.5)

with

ξ „ N (0, Y). (4.6)
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Figure 4.4 – Overview of different variables used to estimate the covariance of ICP. Top
row: A single example of two cylinders being registered together using ICP and converging
to well aligned point clouds P (blue) and Q (red). Middle row: A view of the translation
components u of a set of initiation transformation O before ICP (left) and after ICP (right).
Bottom row: Same view, but for the rotational components ω. For the rotations, the spread
along the vertical axis is explained by the cylinder being unconstrained around one axis.
The presence of points in the outer ring is explained by P first turning upside down and then
being unconstrained around the same axis.

Note the use of T̄ in Equation 4.4, which supposes that ICP is unbiased. Figure 4.4
shows an example of those symbols, with two cylinders being registered starting
with a wrongful initial alignment qT . The distribution O was manually configured
and sampled to feed multiple qT to ICP. The 5000 resulting transformations pT form
a distribution with covariance Y that approximates I . The covariance approximates
the translations well, but some points in rotations were considered divergent and
filtered away.
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4.4.1 Covariance prediction

Vega-Brown et al. [6] propose a data-driven framework for covariance estimation,
in which the estimation function pF is posed as a weighted average of training ex-
amples. The first step in such an approach is to collect a training dataset D =

t(d0, Y0), ..., (dn, Yn)u composed of point cloud descriptors dk and sampled covari-
ances Yk. Our formulation differs from the original CELLO framework, which has
error vectors in the place of the covariance matrices Yk.1 This was rendered neces-
sary due to the limited availability of 3D point cloud pairs with associated ground
truth: it allows us to extract more knowledge from existing point cloud pairs.

The descriptors dk are computed by a function g(aP, a
bT bQ) that extract features

from a registered point cloud pair. One can then predict a covariance pF(d) for an
unseen example d using

pF(d) =
1

ř

k s
(

ρ(d, dk)
) ÿ

k

s
(

ρ(d, dk)
)

Yk. (4.7)

The function ρ is a distance between a pair of point cloud descriptors which is de-
fined as

ρ(d, d1) = (d´ d1)JΘJΘ(d´ d1) (4.8)

where Θ is an upper triangular matrix. The weighing function s(x) = e´x is chosen
here, but any decreasing positive function is appropriate [6]. Large datasets could
motivate a choice of s that completely ignores examples with large distances to make
runtime predictions more efficient [27]. For the training of Θ, the loss for an individ-
ual covariance prediction pF(dk) is

L(pF(dk)|Θ) = det
(

pF(dk)
)
+ tr

(
pF(dk)

´1Yk)
)

, (4.9)

along with a regularization term [6].

4.4.2 3D point cloud descriptor

It is important for a point cloud descriptor dk to contain relevant information to the
prediction of the covariance for P, Q, while being small enough to be amenable to
machine learning algorithms. Thus, the descriptor extraction function g(¨) should
capture the geometry of the scene, in a way that translates our assumption that this

1Both formulations are mathematically equivalent: see Appendix B.
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geometry is an important factor of the covariance. One consequence of this is that
the extracted descriptors should not be rotation invariant, so as to capture the cor-
rect orientation of the covariance. For instance, the covariance of ICP in a featureless
hallway should be aligned with its walls, as depicted in Figure 4.1. There is a wide
variety of descriptors that could be used for 3D point clouds [29], but a more thor-
ough evaluation of the existing descriptors is a question that is left for future work.

ICP—at least in its robust version—acts mainly on the overlapping region of point
clouds. Consequently, descriptors should only be extracted from this overlapping
region. In our approach, g first extracts a single point cloud S containing the subset
of points from both P and Q that are overlapping, after registration. Then, descrip-
tors are extracted from S. The extraction pipeline separates the space into a fixed-size
grid, from which all local descriptors are extracted.

First, two descriptors capture the overall “planarity” p and “cylindricality” c of the
entire voxel, from the average values of these two metrics defined in [30] computed
at each point within the voxel. Then, the orientation of the estimated surface normals
vectors for every point in a voxel are summarized in a 9-histogram th1, ..., h9u [31].
The local descriptor of voxel i, j, k is vijk = tp, c, h1, ..., h9u. The full descriptor d for
the overlaping point cloud S is the concatenation of the local descriptors for every
voxel. This way, our descriptor preserves a certain amount of global information,
namely the spatial distribution of the local features.

4.4.3 Covariance sampling

We employ a brute-force approach similar to [9] to estimate the covariance of ICP
for training. We sample the result of ICP for every point cloud pair in our dataset.
Every sample uses an initial estimate qT drawn from O. The distribution of results is
then used to compute a sampled covariance Yk for the point cloud pairs through

Yk =
1

n´ 1

ÿ

i

ξiξ
J
i (4.10)

with ξi = log(T̄´1
k

pT i) the n perturbations of the sampled transformations. In some
cases, like in the lower row of Figure 4.4, ICP converges to many clusters. If we sup-
pose that we estimate the covariance of ICP when it converges, it is ultimately up to
the designer to decide what converged from what did not. We use the DBSCAN clus-
tering algorithm [19] on the set of ξi, and keep only the points in the cluster which
is closest to ground truth. This filtering method has the benefit of avoiding unrepre-
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sentative sampled covariances Y in the training dataset. It does so without imposing
an upper bound to the covariance of the samples. One more look at Figure 4.4 il-
lustrates the results of this procedure. The central line of samples is explained by
the fact that rotations around the z axis are not constrained on this cylinder. The
outer ring corresponds to situations where ICP converged upside-down, and then
spun freely around the z axis. Our filtering strategy is able to remove results that
converged incorrectly (i.e., the outer ring) while capturing the information about an
underconstrained axis (i.e., the central line).

4.5 Experiments

4.5.1 Training datasets

To be realistic, we used datasets that are representative of a wide variety of en-
vironments that a mobile robot can encounter. Consequently, we used a subset
of the Challenging data sets for point cloud registration algorithms [18]. It comprises
point clouds taken in environments ranging from structured to unstructured, and
indoor to outdoor. Every Challenging dataset contains a sequence of l point clouds
Pi as well as ground truth positions T̄ i for them. To generate a learning dataset
D = t(d0, Y0), ..., (dn, Yn)u, we considered pairs of point clouds Pi, Pj for all i, j such
that i ă j ă l and j´ i ď 4.

The descriptors dk were generated using g(¨). We used a grid of 4ˆ 4ˆ 4 spanning
25 m in the x and y axes (parallel to the ground plane) and 10 m in the z axis (per-
pendicular to the ground plane) [29]. This grid was chosen because it encapsulates
the typical spatial extent of a point cloud from the Challenging datasets.

Each sampled covariance Yk was computed from 5000 registrations. Every regis-
tration had a O that was centered at the ground truth and a covariance of aI. We
set a = 0.05 to simulate a reasonable odometry scenario. A typical ICP registra-
tion pipeline was used, featuring the point-to-plane error metric. Table 4.1 describes
the full registration pipeline, in terms of the framework layed down in [32]. As
discussed in Section 4.4.3, the outliers were filtered from the registration transfor-
mations to enforce the assumption that ICP converged. Point cloud pairs where ICP
failed consistently were removed from the training dataset. To do so we identified
the pairs where ICP converged on average more than 1m or 1rad away from ground
truth. In total, this work uses the data from about 5 100 000 registrations on 1020
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Table 4.1 – ICP pipeline used for the sampled covariance computation

Pipeline Element Configuration

Point cloud filters Maximum density, random subsampling
Point matcher k-d tree, 3 nearest neighbors
Outlier filter Trimmed distance (keep the closest 70% of

associations)
Error minimizer point-to-plane

Transformation checkers Max. 80 iterations

pairs. These registrations were performed on Compute Canada’s computing clus-
ters using a total of approximately 5 CPU-Years.

Data augmentation was performed to extract more knowledge from the computa-
tionally expensive sampling of the Yk. By applying a transformation T on the point
clouds before sending them in g(¨), we obtained new descriptors daug. The sam-
pled covariances were transformed similarily using the adjoint representation of T
such that Yaug = AdjT ¨Yk ¨AdjJT . For our application we chose to perform data aug-
mentation only by rotating the frames of reference around the z axis of the reference
point cloud. The z axis was chosen to preserve the 2.5D aspect of the dataset, while
giving some rotation invariance to our algorithm. Other rotations were expected to
create examples that are not close to the registration pairs encountered online, such
as examples where the trees of a forest are sideways. A 6-DOF robot would warrant
a more complete data augmentation.

4.5.2 ICP trajectories computation

Once the models were trained, we evaluated our covariance estimation algorithm
for state estimation on indoor and outdoor trajectories. In that spirit, we computed
an ICP odometry from our trajectory datasets. Since the point cloud pairs are in a
sequence of length l, we compounded their ICP registration transformations using

pTF =
0
1
pT

1
2
pT ...

l´1
l
pT (4.11)

where pTF is the final pose estimate of the odometry. The distribution of initial trans-
formations was O « N ( i

i+1T̄ , aI) with a = 0.05. In a second step, we computed
covariance estimation pYk for each pTk using a covariance estimation model pF. Finally,
we compounded the covariances with the 4th order approximation in Barfoot et al.
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[33] to obtain a final covariance estimate pYF. This setup allowed us to assess the
quality of the covariance estimation in context, over trajectories.

4.6 Results

We trained on one trajectory dataset, while testing on one or many others that had
the same type of environment/structure. Testing on separate (but similar) datasets
was done to obtain a fair evaluation, while avoiding overly optimistic result due to
overfitting. This correspondence is detailed in Table 4.2. The weighting matrix Θ

was trained by Stochastic Gradient Descent (SGD) using the loss from Equation 4.9.
The batch size was 4 and the learning rate was 1ˆ 10´5 The learning was stopped
after 100 iterations or until convergence was reached.

4.6.1 Single-Pair Covariance Prediction

First, we validated the quality of our approach, for single pairs of point clouds.
As a quality metric, we used the Kullback-Leibler (KL) divergence from our esti-
mated distribution to the sampled distribution (covariance). This metric measures
the amount of information lost when using the covariance pF(dk) instead of Yk to ex-
press the distribution of ICP results I . Results reported in Table 4.2 are the average
KL divergence over all pairs within a testing group. For comparison, we also com-
puted the average KL divergence from a baseline covariance Ybase = 1

n
ř

k Yk, using
the Yk of the training dataset. We made similar computations with a Censi estimate
YCensi, for the same point cloud pairs. One should keep in mind that the mere pre-
diction of the scale of the ICP covariance has been historically challenging. As hinted
by Figure 4.3, Censi’s covariance estimate have large divergences, since they are or-
ders of magnitude smaller than the sampled covariances. At worst, our approach
makes predictions that have the correct order of magnitude, as seen in Table 4.2.

Trajectory in self-similar environments will have point clouds (and covariances) that
are similar to one another. For these self-similar environment, gains over the base-
line are expected to be modest. In this situation, we observe that our predictor’s
parameters Θ converges to nearly uniform weights after training. Consequently,
CELLO-3D treats training examples nearly equally, and outputs (something close
to) their mean. This phenomenon is clearly visible in Table 4.2, where gains over
the baseline are limited for Wood Autumn and Wood Summer. For the Gazebo envi-
ronments, they also exhibit a certain degree of self-similarity, as measured by the
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Table 4.2 – Loss of the CELLO algorithm in various training scenarios

Dataset Trained on N.
Pairs

Avg. KL Divergence

Baseline Ours Censi

Apartment Hauptgebaude & Stairs 1190 34.1 26.6 9.19ˆ 107

Hauptgebaude Apartment & Stairs 938 34.0 26.7 2.06ˆ 108

Stairs
Apartment &

Hauptgebaude 798 33.7 27.0 7.65ˆ 107

Gazebo Summer Gazebo Winter 826 20.8 19.8 2.55ˆ 106

Gazebo Winter Gazebo Summer 798 20.3 18.9 2.25ˆ 106

Wood Autumn Wood Summer 812 13.2 11.5 4.94ˆ 106

Wood Summer Wood Autumn 966 13.6 11.3 3.52ˆ 107

low KL-divergence of the baseline. Again, gains for our approach are modest there.
However, for the three indoor environments (Apartment, Hauptgebaude, and Stairs),
we can see that they have the highest baseline KL-divergence. This indicates that the
sampled covariance varies largely throughout the trajectory, in comparison to the
average (baseline) one. As expected, it is where our algorithm makes the strongest
gains. These gains for indoor environments are also explained by their structured
nature, well-suited for our descriptors.

4.6.2 Consistency over Trajectories

We evaluated the consistency of the estimated covariances when computing ICP
odometry trajectories in diverse locations. This represents the fundamental situa-
tion where our predictor is used within a state-estimation algorithm. To visualize
the error on the covariance in all dimensions at once, we resort to computing the
Mahalanobis distance DM between pTF and the ground truth l

0T

DM =

b

ξJpY
´1
F ξ, (4.12)

in which ξ = log(0
lT
´1

pTF). The distance DM can be thought of as the number of
standard deviations between a sample and the mean, with a value zero meaning
that pTF was exactly on the ground truth. Table 4.3 shows the average DM of 100 tra-
jectories for every covariance model. It also lists the average Mahalanobis distances
of the translation u against Yuu and rotation ω against Yωω for the trajectories. The
average values of DM indicate that our algorithm is consistent overall. We consider
that an average DM above 3 indicates an optimistic covariance estimate, while an
average below 1.5 indicates a pessimistic estimate. In that sense, the covariance es-
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Table 4.3 – Final odometry error and consistency of CELLO-3D

Length Translation Rotation DM
Trajectory (m) }u} (m) DM }ω} (rad) DM

Apartment 22 0.115 0.274 0.0331 0.160 0.540
Hauptgebaude 24 0.168 0.467 0.00910 0.346 1.15
Stairs 12 0.0664 0.0998 0.0127 0.307 0.592
Gazebo Summer 14 0.0396 0.278 0.0165 0.278 0.491
Gazebo Winter 15 0.0311 2.000 0.0144 2.90 2.50
Wood Autumn 18 0.217 0.205 0.0178 0.394 0.405
Wood Summer 21 0.332 0.208 0.0299 0.533 0.762

timation algorithm is pessimistic for the Stairs or Apartment datasets. However, no
extreme values were found demonstrating a functional solution.

In Figure 4.5, we take a closer look at the behaviour of CELLO-3D over short tra-
jectories, in the Wood Summer (unstructured) and Gazebo Winter (semi-structured)
environments. The figure compares the compounded sampled covariances Yk with
our estimated covariances pF(dk). In there, we sampled 20 ICP odometry trajectories
to compare against the covariance predictions at each step (the grey ellipses). The
green dots represent the final pTF for each trajectory, with the green ellipses being
pYF. This figure shows that our covariance estimates are consistent with the com-
pounded trajectories, within 2 sigma. Note that the CELLO-3D uncertainty estimate
grows more steadily and uniformly than that of the sampled covariances. This indi-
cates that, while our algorithm does not seem to model the input descriptors in very
sharp detail, it is able to extract a consistent knowledge from the training dataset.

4.7 Conclusion

In this work, we presented CELLO-3D, an online covariance estimation algorithm
for ICP that works well in 3D. CELLO-3D uses the covariances of a learning dataset
to predict the covariance of similar point cloud pairs at runtime. It was successfully
validated on individual pairs of point clouds and over trajectories, on challenging
datasets. It provides also a better uncertainty estimate when compared to existing
solutions. Our predicted covariances are neither too optimistic nor too pessimistic,
and represent well sampled particles over trajectories of several meters.

Throughout the course of this work, some challenges became visible with the tran-
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Figure 4.5 – Comparison of covariance estimations for Wood Summer (top) and Gazebo Winter
(bottom). Every frame has 20 ICP odometry trajectories, although some are not visible be-
cause they are overlapping. The ground truth trajectory is shown as a thick black line. The
green dots represent the final poses pTF, while the green ellipses represent pYF. The data is
projected on the ground plane for the sake of visualization.

sition from 2D to 3D. Due to the curse of dimensionality, generating a dataset for
covariance in 3D requires more samples than in 2D. With this larger number of sam-
ples, we noticed that approximating I as a normal distribution is prone to larger
estimation errors in SE(3), as we observe mainly multimodal distributions (see Fig-
ure 4.1 and Figure 4.4). Moreover, the original CELLO framework proposed the
use of weak descriptors to alleviate the difficulties of descriptor design. However,
the quality of the input features is found to be critical to the success of covariance
predictions. Inspired by [28], we intend to meet this challenge using Deep Neural
Networks (DNNs) directly on 3D point clouds.
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Chapter 5

Supplementary experiments

The process of writing the CELLO-3D paper (Chapter 4) involved a careful selec-
tion of the presented experiments. The selection was difficult because of the space
constraints of the conference paper format. This chapter presents two experiments
(their motivation, protocol, results and discussion) that had to be left out of the pa-
per. The first experiment allows us to peek at the behavior of the CELLO-3D training.
The second experiment tests the behavior of our algorithm on a new dataset, which
gives us a better idea of the generalization capabilities of CELLO-3D. Together, these
supplementary experiments give a better portrait of the introduced algorithm, and
give us research directions to improve it in the future.

5.1 Learning introspection

When implementing CELLO for a particular use case, such as what we did in CELLO-
3D, the greatest experimental challenge is the choice of descriptor [28]. It is not pos-
sible to use a large vector of weak features because the model scales poorly with the
size of the descriptor. Consequently, the descriptor design requires some degree of
domain knowledge, and experimentation. One way to approach this is to iteratively
improve on the descriptor as the lidar sensor is used on new environments. For
this iteration to be possible, however, the descriptor designer must have appropriate
feedback on the quality of the descriptor. The training loss is a first tool that can be
used, but a more complete portrait of the performance of the descriptor could prove
useful. In this spirit, we set out to perform introspection on the learning process
and gain more information on its behavior. The knowledge gained here can then
be used to improve the descriptors. Better descriptors will then translate into better
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covariance estimation for the model.

One interesting tool that emerged from this process is the activation matrix. An
example of activation matrix is shown in Figure 5.1. Every row in that matrix corre-
sponds to one training example. Every column corresponds to a validation example,
i.e., a descriptor unknown to the model that was used for covariance prediction. The
“pixels” represent the weight of the training example when predicting the covari-
ance of the unknown descriptor. The weights are computed using the Θ matrix that
was obtained after training, once again using the distance metric posed in Equa-
tion 4.8. The lighter the pixel is, the more activated (influential) the example was
when making a prediction. Identifying which training examples are influential to
the learning process is an approach that is gaining traction in the machine learning
community [34].

We can use this graph to validate our assumptions about the descriptors, and infer
new knowledge about the model. In Figure 5.1, the training dataset and the vali-
dation dataset contain roughly the same trajectory (taken at different times). Both
trajectories were recorded in the Gazebo location of the Challenging dataset. The first
sequence of point clouds was recorded in the summer, the second in the winter.
Consequently, we expect the descriptors of the first point clouds to be similar in
both datasets, i.e., have a good activation. The block-diagonal aspect of Figure 5.1
confirms this. It shows that the model learned to differentiate the environment in
the different parts of the trajectory.

The same phenomenon is observed in the Wood Summer and Wood Autumn datasets.
Figure 5.2 shows that same block diagonal pattern, to a lesser degree. The dark area
at the bottom right indicates that the trajectory recorded in the summer went on
for longer than the trajectory recorded in the winter. Consequently, the model does
not use the last examples of Wood Summer when predicting the covariance of Wood
Autumn.

This type of figure is insightful when we train the model over a larger variety of envi-
ronments. Figure 5.3 shows the activation matrix of a model trained using structured
and unstructured environments. The examples from every location were split in a
training dataset (the first 70 % of examples) and a validation dataset (the remaining
30 %). That way, every location is represented in the validation rows.

A first characteristic of that matrix is its strong block diagonal aspect. It indicates
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Figure 5.1 – An example of activation matrix, when predicting the covariances of Gazebo
Winter using examples from Gazebo Summer.

Figure 5.2 – Activation matrix of Wood Autumn predicted against Wood Summer.
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Figure 5.3 – Activation matrix over many datasets. Although the trained model does not
benefit from begin trained on a large variety of datasets at the same time, generating this
figure can still bring us insight on the performance of the descriptor.
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that examples from validation datasets are similar to training examples from that
same dataset, which suits our intuition. We also notice an affinity between the en-
vironments that come in pair. The examples from Wood Summer, for instance, are
strongly activated by the examples from Wood Autumn, and vice versa. The same is
true, to a lesser extent, for the Gazebo datasets. However, if we compare Figure 5.3 to
Figure 5.2, we notice that we lost the block diagonal aspect inside the dataset. When
presented with a large variety of environments, the model is not able to capture the
same level of detail than when we train it only with data from Wood, for instance.
This leads us to think that the CELLO model is not rich enough to benefit from be-
ing presented with great volumes of data. It does not seem to generalize well from
outdoor to indoor datasets, for instance.

This is a hint that the descriptors d from indoor datasets are different to the ones
from outdoor datasets. Those descriptors live in two different domains. In machine
learning, leveraging datasets that are similar (that come from the same sensor) but
different on average (that represent point clouds from indoor or outdoor locations) is
called domain adaptation. Domain adaptation is a challenging problem, that could
potentially improve the learning results of CELLO-3D. This is left for future work,
however. In the meantime, we circumvent the problem of domain adaptation by
designing our training set and validation set pairings carefully. This is the rationale
that explains the choice of set/validation set pairs in Table 4.2 of the inserted article.

Going back to the activation matrix, we also notice the examples from Hauptgebaude,
which are not related to examples from any other datasets. We explain this by the
exceptionally elongated nature of the covariances of this dataset, because it is a fea-
tureless hallway. In other words, the covariances in Hauptgebaude are so different
from the others that the model made sure the descriptors from Hauptgebaude would
be very distant from the others.

One thing that is more difficult to explain in Figure 5.3 is the strong activation of
the examples from Apartment when making predictions for Plain. It is difficult to
explain because those two environments have very little in common. Apartment is
indoor and structured, whereas Plain is outdoor and unstructured. Furthermore,
Plain has very little vertical features, which makes it prone to underconstrainedness
problems.1 We speculate two explanations for this phenomenon. Firstly, it might be
due to covariances that are similar in both datasets even though their environments

1See Section 2.3 for more on underconstrainedness
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are very different. Secondly, it may be explained by a side effect of the learning
process. It could be that, when optimizing for other factors, the SGD made Plain
very similar to Apartment by accident. In any case, this is a good example of the
insight we can draw from the activation matrices. After noticing that the model is
confused between Apartment and Plain, the descriptor designer may want to add
features that would help distinguish them.

5.2 Kitti dataset

During the elaboration of the article, we ran experiments on various datasets. This
was done in an effort to draw conclusions that were as general as possible. One very
attractive dataset for this purpose was the Kitti Odometry Dataset [35]. It contains
data that is close to what a self-driving car would meet in realistic situations. Conse-
quently, designing an algorithm that performs well on Kitti would mean we can be
hopeful about it being applicable to very concrete situations. With that in mind, we
executed our algorithm on the Kitti dataset, with the hope of including those results
in the article. Unfortunately, the results were not convincing enough to make a clear
case in favour of CELLO-3D. That, combined with the general lack of space, made
it preferable to leave the Kitti experiments out of the article. This section presents
some of the results we obtained on Kitti, and then identifies factors that explain the
disappointing performance of CELLO-3D on it.

The experimental setup here is essentially the same as in Section 4.5. We use the same
protocol, but this time on trajectories 3, 4 and 5 from the Kitti dataset. The trajectories
are used to train covariance estimation models. The results of the machine learning
procedure are shown in Table 5.1, which is analogous to Table 4.2 in the inserted
article. For Kitti, the results are not as convincing as the ones that were included in
the article. Our algorithm, despite being an improvement over baseline, improves
the covariance prediction marginally. We must remember, however, that our results
still represent a significant improvement over closed form methods, as shown by the
very high divergence scores in the rightmost column of the table.

As for the uncertainty estimation over compounded trajectories, the performance of
CELLO-3D is listed in Table 5.2. The Mahalanobis Distance DM (defined in Equa-
tion 4.12) between the final compounded trajectory and the final estimated distri-
bution is larger than it was for the other datasets. The DM values on the rightmost
column are all above 3, which indicates that the simulated trajectories do not belong
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Table 5.1 – Loss of the CELLO-3D algorithm for the Kitti dataset

Dataset Trained on N. Pairs Avg. KL Divergence

Baseline Ours Censi

Kitti 03 Kitti 04 & Kitti 05 800 23.81 21.64 2.24ˆ 107

Kitti 04 Kitti 03 & Kitti 05 270 22.83 21.73 1.98ˆ 107

Kitti 05 Kitti 03 & Kitti 04 2760 23.72 21.35 1.91ˆ 107

Table 5.2 – Final odometry error and consistency of CELLO-3D for the Kitti dataset

Length Translation Rotation DM
Trajectory (m) }ξu} (m) DM }ξω} (rad) DM

Kitti 03 58.8 1.079 1.193 0.004385 0.4915 3.231
Kitti 04 135.8 48.34 6.375 0.4425 5.536 16.58
Kitti 05 92.98 0.7627 0.9279 0.01416 2.569 5.634

to the distribution created by the covariance estimation algorithm. This is especially
true for Kitti 04, which has an exceptionally high DM of 17.

These very high values are explained in Figure 5.4. It plots the simulated robot trajec-
tories and the predicted covariances. For Kitti 04, the trajectories are more surprising
than the predicted covariances. On the one hand, the covariances follow the same
general pattern that we observed in the Challenging dataset. The trajectories, on the
other hand, seem totally divergent. This shows that the odometry itself is to blame
for the high Mahalanobis distances. More precisely, our assumption that ICP always
converge in the attraction region of the ground truth was broken.

These disappointing results warrant a reflection on the experimental risks associated
with the Kitti dataset. In hindsight, we can identify several factors that are poten-
tially troublesome when transferring our algorithm to Kitti. We believe that further
experiments on the Kitti dataset should address those issues to improve covariance
estimation.

A first challenge that arises is the challenge of scale. The trajectories in the Kitti
dataset are much longer than the ones of the Challenging dataset: they span hundreds
of meters. However, we know that we do not have the ability to accurately track
uncertainties over large rigid transformations [12, p. 280]. This is a limitation of our
experimental protocol that becomes more evident with longer trajectories. It can be
overcome by assessing the impact of the compounding error on our results for Kitti,
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and modifying the protocol accordingly. For instance, the protocol could be adjusted
by concentrating our efforts on shorter parts of the trajectories, instead of working
on the whole trajectories.

Another hurdle is, quite simply, the sensor. On the one hand, the Challenging datasets
used a 2D sensor mounted on a panning unit to provide 3D point clouds. Conse-
quently, the assembled scans have a high resolution. The caveat is that the point
clouds take longer to produce, because we have to wait for the pan unit to make a
complete scan of the area before moving the robot. On the other hand, the sensor of
Kitti has a much higher time resolution, at the cost of spatial resolution. The point
clouds produced by it are more sparse, and cover the environment less uniformly.
Trading space resolution for time resolution is very pertinent in an autonomous ve-
hicle scenario, because mobile robots must have quick reaction times. However, it
does make point cloud registration more challenging. The effects of this are visi-
ble on Figure 5.5. The resolution of points is relatively uniform for the Challenging
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Figure 5.5 – Comparison of point clouds from the Challenging and Kitti datasets. Left: Point
cloud from the Apartment trajectory of the Challenging dataset. Right: Point cloud from the
04 trajectory of the Kitti dataset. The scan on the left has a better spatial resolution than the
one on the right. Furthermore, no rings are visible because the sampling is more uniform on
the left.

dataset. On the contrary, the Kitti sensor produces rings of points that are increas-
ingly further apart.

This change in sensor is expected to have effects on point cloud registration. Con-
sequently, it can change the distribution of ICP registrations, and the proportion of
converging registrations. An adaptation to the ICP pipeline may be necessary to
alleviate these changes. The ICP pipeline we set in stone in Section 2.2 might not
be appropriate anymore. The change in registration behavior explains the most sur-
prising results from Table 5.2. Most notably, it explains the results for Kitti 04, which
had an exceptionally high DM of 17.

The change of sensor does not only shows in the ICP registrations themselves, but
also into the learning datasets. Since the point clouds from the Kitti dataset have
different appearances, they may produce different descriptors. The set of d vectors
produced by the Kitti dataset may not be totally related to the set of d produced
by the Challenging point clouds. We identify two reasons for this. First, the global
descriptor has to be adapted to the new realities of the Kitti dataset. Indeed, the
descriptor in the paper uses a grid that spans 25ˆ 25ˆ 10 meters (see Section 4.5.1).
This size is not adapted for self-driving scenarios, because sensor on autonomous
vehicles typically have much larger ranges. Second, the local descriptor we had for
the Challenging dataset uses estimated normals in the point clouds. In Figure 5.5,
we already observed that the Kitti point clouds have rings, and that their sampling
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of the environment is non-uniform. This complicates the estimation of normals for
individual points, because normals are estimated using nearest neighbors. If a point
is isolated (because it lies on a ring, for instance), it is difficult to estimate the normal
of the surface it represents.

Since both the global and local descriptors are affected by the change of sensor, the
descriptor performance could degrade when porting CELLO-3D to the Kitti dataset.
Furthermore, the descriptors d created from Challenging point clouds may be, on
average, different from the ones generated with Kitti. This difference in descriptors,
in effect, changes the domain on which we want pF(¨) to apply. Consequently, we
have here another example where CELLO-3D could benefit from domain adaptation
techniques. The constant need for domain adaptation, however, underlines a more
fundamental problem. It shows that the design of descriptor is a brittle process that
hinders the generalization capabilities of CELLO-3D.
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Conclusion

The main contribution of this work is CELLO-3D, a covariance estimation algorithm
for 3D ICP. This contribution is wholly encompassed in the inserted article. The
latter provides a thorough description and experimental evaluation of CELLO-3D.
It demonstrates that our algorithm can be used indoor or outdoor, within structured
or unstructured environments.

The chapters that surround the article make the contribution clearer. The chapters
before it describe concepts and mathematical tools that are useful to express CELLO-
3D. They explain some of the intuitions that lead to the design of our algorithm. The
supplementary experiments described after the article give us a better portait of the
capabilities of CELLO-3D.

With this work behind us, important challenges remain for CELLO-3D. The most
important challenge is arguably its limited generalization capability. This limited
generalization was underlined by the difficulties of porting the algorithm from one
type of environment to another. Also, the point cloud descriptor needs to be manu-
ally tuned to different sensors, which requires a great expertise. This challenge needs
to be adressed if we are to see a fully satisfactory covariance estimation algorithm
for ICP.

We identify two potential directions for future works that could alleviate this prob-
lem. These two research avenues would achieve this by removing point cloud de-
scriptors from the equation. The first is to steer back towards closed-form or quasi
closed-form approaches. Chapters 2 and 4 show that one issue with current closed-
form solutions is their inability to take point reassociations into account. It seems
worthwhile to try to alleviate this, while still keeping a solution that operates di-
rectly on the pair of point clouds. This would have the advantage of requiring no
training data. One way to do it is to sample the objective function of ICP directly to
estimate the covariance, instead of relying on the closed form expression of the error.
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In other words, estimate the derivative of the error function J(¨) numerically instead
of using a purely closed form solution. The covariance could then be estimated us-
ing this numerical derivative. Although numerical derivatives are not a closed-form
solution per say, we expect their computation to be possible in reasonable time inter-
vals. We would have to keep in mind, however, that numerical derivatives are not
insensitive to the noise cause by point reassociations. Fortunately, there are many
regularization methods that could potentially solve the problem [36]. The same reg-
ularization methods are not trivially amenable to closed-form equations, which is an
advantage for numerical computations. Using numerical derivatives, point reasso-
ciations could explicitly be taken into account, but would not affect the covariance
so much that closed form estimates are exceptionally small [10].

The second possible approach is to go further into a data-driven perspective. The
experiments in Chapter 5 revealed that the design of descriptors for CELLO-3D is
challenging. It is sensitive to a change of sensor and changes in the structure of the
environment. Consequently, it seems pertinent to try and avoid the explicit design
of a descriptor altogether. Liu et al. [28] lays the groundwork for this. Their work
is very similar to CELLO, but they make efforts to avoid the explicit design of a
input feature descriptor. They prefer an implicit representation through the use of
neural networks. As with the original CELLO article, however, this does not mean
that scaling this solution to 3D ICP would be trivial. If anything, our work demon-
strated that increasing the dimensionality of a problem is not trivial. Notably, the
modelling of 3D point clouds using Deep Neural Network (DNN) is the subject of
active discussions within the community [37]–[39]. The correct way to model com-
plex 3D scenes using DNN is still unclear, and applying such a model to covariance
prediction might be challenging. Still, being able to avoid the descriptor design en-
tirely is very promising, because a lot of the issues with CELLO-3D stem from these
descriptors.

In any case, the presence of these two research avenues, one towards closed form
approach, and the other towards an even more data-driven perspective, is telling. It
shows that there still is room for a vivid discussion about covariance estimation for
ICP in the future.
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Appendix A

Training CELLO-3D

The process of training a CELLO-3D model can sometimes be fastidious. The main
challenge in this process is the choice of hyperparameters. It is constrained by many
concurrent factors, and the implementer has to find compromises experimentally.
This appendix describes the two most important hyperparameters in CELLO, the
learning rate γ and the regularization parameter α. We explain the rationale that
must guide the choice of the implementer for these variables.

A.1 Learning rate

The matrix Θ of CELLO is trained using Stochastic Gradient Descent (SGD).1 Con-
sequently, to train it we must configure a learning rate γ. The latter determines the
portion of the gradient that is applied back on Θ at each iteration. Thus, it should lie
somewhere between 0 and 1.

A learning rate γ that is too small will make the training sensitive to local minimas.
If the training algorithm employs a small learning rate, it will tend to stay stuck in
these local minimas. To avoid this situation, the experimenter must detect when
the training stops prematurely. Symptoms of this are a training that needs very few
iterations before converging, or does not seem to improve the loss significantly.

Unfortunately, it is not possible to employ very large values of γ either. If it is too
large, the learning procedure will tend to diverge, because at every iteration it makes
jumps that are too large to land inside a minimum. In a way, the optimization pro-
cedure jumps over its target and lands in another area that is further away. For

1See Equation 4.8 for a definition of Θ.
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CELLO-3D, symptoms of this are a loss that increases significantly at every iteration,
or a loss that goes wildly up and down without a clear trend towards a minimum.

These two contradictory requirements make it difficult to find a good compromise
for the learning rate γ. In the elaboration of the paper, we used values of γ between
1ˆ 10´3 and 1ˆ 10´5 depending on the dataset. Those values were mostly found
using trial and errors. Since the appropriate value changes according to the dataset,
it was computationally prohibitive to run a systematic search every time.

A.2 Regularization

The second hyperparameter of importance is the regularization weight α. This pa-
rameter is not stated explicitly in the CELLO-3D paper, but is described in the origi-
nal CELLO paper [6]. It poses the full training loss F as a weighted sum:

F (Θ|D) = (1´ α)L(Θ|D) + αR(Θ|D). (A.1)

Here, L is the loss on covariance prediction, as defined in Equation 4.9. The regular-
ization term R is defined as

R(Θ|D) =
n

ÿ

i=0

n
ÿ

j=0

log
(

s
(
ρ(di, dj)

))
. (A.2)

As a reminder, s(x) is a scaling function that we set to s(x) = e´x in Section 4.4.1.
Also remember that ρ is our distance metric between descriptors (see Equation 4.8).

The regularization term R is a measure of the spread of the example descriptors:
it detects if the descriptors are very far from one another. The hyperparameter α

encodes the relative importance of L and R. Consequently, it also has to lie between
0 and 1. This relative importance is difficult to establish without experimentation.

A very low regularization is attractive because it lets the SGD focus on optimizing
the covariance. However, this has the consequence of making overfitting easy. There
is nothing that keeps the algorithm from giving very high weights to Θ. This, in
turn, creates very large distances between the training examples (see Equation 4.8).
Indeed, if the values in the Θ matrix are high, multiplying this matrix by a vector will
yield large values. In this situation, a handful of training examples which are very
similar to the input descriptor d are used to predict pF(d). This is a case of overfitting,
because the model is only able to make predictions for examples that are very similar
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to the training data. In the worst case, the weights in Θ are so large that for some
d, there are no pertinent examples to make a covariance from. This scenario is a
degenerate case that provokes a prediction failure, because no examples are similar
enough to the descriptor we want to predict. Experimentally, this degenerate case
translated in numerical instability such as the apparition of NaNs in the predicted
covariances.

Having an α close to 1 is not a solution either. In this case, the loss associated to R
becomes larger than that of L, and the SGD optimizes for the distance between the
examples. Consequently, it effectively ignores the quality of the estimated covari-
ances during optimization. A symptom of this situation is when the training loss
diminishes, but the validation loss (which ignores the regularization) does not. A Θ

with very small weights also indicates a regularization that is too strong. In our ap-
plication, we found that a good compromise between these two situations is a value
of α between 1ˆ 10´8 and 1ˆ 10´4, depending on the dataset. Once again, those
values were mostly found using trial and error, using the experimental intuition of
the operator. The appropriate value changed from one learning run to another be-
cause of the different datasets. This made it difficult to run systematic searches of
appropriate parameter values.

69



Appendix B

Proof of equivalence of the CELLO-3D
learning problem statement

In the inserted paper (Section 4.4.1), we mention that our formulation of the learn-
ing problem is different than that of the original CELLO paper [6]. Esentially, the
dataset D was modified so that its learning examples contain covariances matrices
Y = 1

n
ř

j ξ jξ
J
j instead of error vectors ξ. Where, in the original paper, there was a

large amount of example descriptors d with weak reference error ξ, our own dataset
contains fewer descriptors with stronger examples Y . Our examples are considered
stronger because they stem from many ICP registrations given a pair of point clouds.
This was justified by the limited availability of 3D point cloud datasets with ground
truth.

The formulations are equivalent, but a complete argument was not made in the pa-
per in the interest of space. To prove equivalence, we must reformulate the equations
of the original CELLO paper such that they accept covariance matrices. For covari-
ance prediction, we show that Equation 4.7 is equivalent to a degenerate case in the
original CELLO formulation, where some of the training pairs (di, ξi) have the same
descriptor. We define a partition over the dataset

D = D0 Y ...YDm (B.1)

Di XDj = H @i, j (B.2)
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such that

Dk = t(d0, ξ0), ..., (dl , ξl)u (B.3)

|Dk| = l (B.4)

d0 = d1 = ... = dl (B.5)

for every part Dk.

In the original CELLO, the covariance prediction is posed as follows (ignoring nota-
tional differences):

pF(d) =
1
S

n
ÿ

i=0

s
(
ρ(d, di)

)
ξiξ

J
i (B.6)

with

S =
n

ÿ

i=0

s
(
ρ(d, di)

)
. (B.7)

By expanding the summation and grouping the terms according to the partition, we
get

pF(d) =
1
S

[ ((
s
(
ρ(d, d0)

)
ξ0ξJ0

)
+
(

s
(
ρ(d, d0)

)
ξ1ξJ1

)
+
(

...
))

D0

+

(
...
)

D1

+... +
(

...
)

Dm

]

(B.8)

=
1
S

m
ÿ

k=0

[
s
(
ρ(d, dk)

)
¨

l
ÿ

j=0

ξ jξ
J
j

]
. (B.9)

From Equation 1.19, we have

Yk =
1
l

l
ÿ

j=0

ξ jξ
J
j , (B.10)

where the ξ j are the ICP errors obtained with the point clouds of descriptor dk. Thus,
we can conclude that

pF(d) =
1
S

m
ÿ

k=0

[
s
(
ρ(d, dk)

)
¨ l ¨ Yk

]
(B.11)

=
1
S1

m
ÿ

k=0

s
(
ρ(d, dk)

)
Yk. (B.12)
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Equation B.12 is exactly how CELLO-3D makes its covariance predictions. There, S1

is simply adjusted to compensate for the presence of the l term.

This does not complete the argument of the equivalence, however. We still need
to pose the training loss of CELLO in terms of covariance matrices instead of error
vectors. Using the same partition, we have

L(Θ|D) = ´
1
2

n
ÿ

i=0

(
log |pF(di)|+ ξJi

pF(di)
´1ξi

)
(B.13)

= ´
1
2

((
log |pF(d0)|+ ξJ0

pF(d0)
´1ξ0

)
+
(

log |pF(d0)|+ ξJ1
pF(d0)

´1ξ1
)
+
(
...
))

D0

+

(
...
)

D1

+... +
(

...
)

DM

(B.14)

= ´
1
2

m
ÿ

k=0

(
l ¨ log |pF(dk)|+

l
ÿ

j=0

dJj pF(dk)
´1dj)

)
. (B.15)

Here, we introduce the matrix Dk of error vectors:

Dk =
[
ξ0 ξ1 ... ξl

]
(B.16)

Yk =
1
l

DkDJk . (B.17)

This proves useful to re-express the rightmost summation of Equation B.15 as the
trace of a matrix product in

l
ÿ

j=0

dJj pF(dk)
´1dj = tr(DJk ¨ pF(dk)

´1
¨Dk) (B.18)

= tr(Dk ¨DJk ¨ pF(dk)
´1) (B.19)

= tr(l ¨ Yk ¨ pF(dk)
´1) (B.20)

= l ¨ tr(Yk ¨ pF(dk)
´1) (B.21)

(B.22)

Notice the use of the cyclic permutation on the trace. If we substitute the summation
with this new expression in the loss, we get

L(Θ|D) = ´
1
2

M
ÿ

k=0

(
l ¨ log |pF(dk)|+ l ¨ tr

(
pF(dk)

´1Yk
))

(B.23)

= ´
l
2

M
ÿ

k=0

(
log |pF(dk)|+ tr

(
pF(dk)

´1Yk
))

. (B.24)
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Equation B.24 successfully expresses the loss of the original CELLO with our for-
mulation of what a learning example is. It was used to implement the loss during
training.
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Appendix C

Useful identities

Here, we provide the Taylor series for coefficients that are useful to the exponential
map in Chapter 1. These series should be used for the sake of numerical stability
when the angle θ is close to zero. As a reminder, the symbol O(θn) is shorthand for
the infinite sequence of terms that follows. Since all those terms have a factor θ with
an exponent larger or equal to n, their effect on the overall expression is negligible
when the angle θ « 0.

sin θ

θ
= 1´

θ2

6
+

θ4

120
´

θ6

5040
+O

(
θ8
)

(C.1)

1´ cos θ

θ2 =
1
2
´

θ2

24
+

θ4

720
´

θ6

40320
+O

(
θ8
)

(C.2)

θ ´ sin θ

θ3 =
1
6
´

θ2

120
+

θ4

5040
´

θ6

362880
+O

(
θ8
)

(C.3)
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