5 research outputs found

    INFORMATION SOCIETY EVOLUTION AND EFFECTS:Keynote Lecture

    Get PDF

    Actas de las XXXIV Jornadas de Automática

    Get PDF
    Postprint (published version

    Dynamic infrastructure for federated identity management in open environments

    Get PDF
    Centralized identity management solutions were created to deal with user and data security where the user and the systems they accessed were within the same network or domain of control. Nevertheless, the decentralization brought about by the integration of the Internet into every aspect of life is leading to an increasing separation of the user from the systems requiring access. Identity management has been continually evolving in order to adapt to the changing systems, and thus posing new challenges. In this sense, the challenges associated with cross-domain issues have given rise to a new approach of identity management, called Federated Identity Management (FIM), because it removes the largest barriers for achieving a common understanding. Due to the importance of the federation paradigm for online identity management, a lot of work has been done so far resulting in a set of standards and specifications. According to them, under the FIM paradigm a person’s electronic identity stored across multiple distinct domains can be linked, shared and reused. This concept allows interesting use-cases, such as Single Sign-on (SSO), which allows users to authenticate at a single service and gain access to multiple ones without providing additional information. But also provides means for cross-domain user account provisioning, cross-domain entitlement management and cross-domain user attribute exchange. However, for the federated exchange of user information to be possible in a secure way, a trust relationship must exist between the separated domains. The establishment of these trust relationships, if addressed in the federation specifications, is based on complex agreements and configurations that are usually manually set up by an administrator. For this reason, the “internet-like” scale of identity federations is still limited. Hence, there is a need to move from static configurations towards more flexible and dynamic federations in which members can join and leave more frequently and trust decisions can be dynamically computed on the fly. In this thesis, we address this issue. The main goal is contributing to improve the trust layer in FIM in order to achieve dynamic federation. And for this purpose, we propose an architecture that extends current federation systems. The architecture is based on two main pillars, namely a reputation-based trust computation module, and a risk assessment module. In regard to trust, we formalize a model to compute and represent trust as a number, which provides a basis for easy implementation and automation. It captures the features of current FIM systems and introduces new dimensions to add flexibility and richness. The model includes the definition of a trustworthiness metric, detailing the evidences used, and how they are combined to obtain a quantitative value. Basically, authentication information is merged with behavior data, i.e., reputation or history of interactions. In order to include reputation data in the model we contributed with the definition of a generic protocol to exchange reputation information between FIM entities, and its integration with the most widely deployed specification, i.e., Security Assertion Markup Language (SAML). In regard to risk, we define an assessment model that allow entities to calculate how much risk is involved in transacting with another entity according to its configuration, policies, operation rules, cryptographic algorithms, etc. The methodology employed to define the risk model consists of three steps. Firstly, we design a taxonomy to capture the different aspects of a relationship in FIM that may contribute to risk. Secondly, based on the taxonomy and aiming at developing a computational model, we propose a set of metrics as a basis to quantify risk. Finally, we describe how to combine the metrics into a meaningful risk figure by using the Multiattribute Utility Theory (MAUT) methodology, which has been applied and adapted to define the risk aggregation model. Furthermore, an also under the MAUT theory, we propose a fuzzy aggregation system to combine trust and risk into a final value that is the basis for dynamic federation decisions. Formal validation of the above mentioned ideas has been carried out. The risk assessment and decision making are analytically validated ensuring their correct behavior, the reputation protocol included in the trust management proposal is tested through simulations, and the architecture is verified through the development of prototypes. In addition, dissemination activities were performed in projects, journals and conferences. Summarizing, the contributions here constitute a step towards the realization of dynamic federation, based on the flexibilization of the underlying trust frameworks. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Históricamente el diseño de soluciones de gestión de identidad centralizada ha estado orientado a proteger la seguridad de usuarios y datos en entornos en los que tanto los usuarios como los sistemas se encuentran en la misma red o dominio. Sin embargo, la creciente descentralización acaecida al integrar Internet en muchos aspectos de la vida cotidiana está dando lugar a una separación cada vez mayor entre los usuarios y los sistemas a los que acceden. La gestión de identidad ha ido evolucionando para adaptarse a estos cambios, dando lugar a nuevos e interesantes retos. En este sentido, los retos relacionados con el acceso a diferentes dominios han dado lugar a una nueva aproximación en la gestión de identidad conocida como Federación de Identidad o Identidad Federada. Debido a la importancia de este paradigma, se ha llevado a cabo un gran trabajo que se refleja en la definición de varios estándares y especificaciones. De acuerdo con estos documentos, bajo el paradigma de identidad federada, la identidad digital de un usuario almacenada en múltiples dominios diferentes puede ser enlazada, compartida y reutilizada. Este concepto hace posibles interesantes casos de uso, tales como el Single Sign-on (SSO), que permite a un usuario autenticarse una sola vez en un servicio y obtener acceso a múltiples servicios sin necesidad de proporcionar información adicional o repetir el proceso. Pero además, también se proporcionan mecanismos para muchos otros casos, como el intercambio de atributos entre dominios o la creación automática de cuentas a partir de la información proporcionada por otro dominio. No obstante, para que el intercambio de información personal del usuario entre dominios federados se pueda realizar de forma segura, debe existir una relación de confianza entre dichos dominios. Pero el establecimiento de estas relaciones de confianza, a veces ni siquiera recogido en las especificaciones, suele estar basado en acuerdos rígidos que requieren gran trabajo de configuración por parte de un administrador. Por esta razón, la escalabilidad de las federaciones de identidad es todavía limitada. Como puede deducirse, existe una necesidad clara de cambiar los acuerdos estáticos que rigen las federaciones actuales por un modelo más flexible que permita federaciones dinámicas en las que los miembros puedan unirse y marcharse más frecuentemente y las decisiones de confianza sean tomadas dinámicamente on-the-fly. Este es el problema que tratamos en la presente tesis. Nuestro objetivo principal es contribuir a mejorar la capa de confianza en federación de identidad de manera que el establecimiento de relaciones pueda llevarse a cabo de forma dinámica. Para alcanzar este objetivo, proponemos una arquitectura basada en dos pilares fundamentales: un módulo de cómputo de confianza basado en reputación, y un módulo de evaluación de riesgo. Por un lado, formalizamos un modelo para calcular y representar la confianza como un número, lo cual supone una base para una fácil implementación y automatización. El modelo captura las características de los sistemas de gestión de identidad federada actuales e introduce nuevas dimensiones para dotarlos de una mayor flexibilidad y riqueza expresiva. Se lleva a cabo pues una definición de la métrica de confianza, detallando las evidencias utilizadas y el método para combinarlas en un valor cuantitativo. Básicamente, se fusiona la información de autenticación disponible con datos de comportamiento, es decir, con reputación o historia de transacciones. Para la inclusión de datos de reputación en el modelo, contribuimos con la definición de un protocolo genérico que permite el intercambio de esta información entre las entidades de un sistema de gestión de identidad federada, que ha sido además integrado en el estándar más conocido y ampliamente desplegado (Security Assertion Markup Language, SAML). Por otro lado, en lo que se refiere al riesgo, proponemos un modelo que permite a las entidades calcular en cuánto riesgo se incurre al realizar una transacción con otra entidad, teniendo en cuenta su configuración, políticas, reglas de operación, algoritmos criptográficos en uso, etc. La metodología utilizada para definir el modelo de riesgo abarca tres pasos. En primer lugar, diseñamos una taxonomía que captura los distintos aspectos de una relación en el contexto de federación de identidad que puedan afectar al riesgo. En segundo lugar, basándonos en la taxonomía, proponemos un conjunto de métricas que serán la base para cuantificar el riesgo. En tercer y último lugar, describimos cómo combinar las métricas en una cifra final representativa utilizando el método Multiattribute Utility Theory (MAUT), que ha sido adaptado para definir el proceso de agregación de riesgo. Además, y también bajo la metodología MAUT, proponemos un sistema de agregación difuso que combina los valores de riesgo y confianza en un valor final que será el utilizado en la toma de decisiones dinámicas sobre si establecer o no una relación de federación. La validación de todas las ideas mencionadas ha sido llevada a cabo a través del análisis formal, simulaciones, desarrollo e implementación de prototipos y actividades de diseminación. En resumen, las contribuciones en esta tesis constituyen un paso hacia el establecimiento dinámico de federaciones de identidad, basado en la flexibilización de los modelos de confianza subyacentes

    GSI Scientific Report 2012 [GSI Report 2013-1]

    Get PDF

    Planetary Science Informatics and Data Analytics Conference : April 24–26, 2018, St. Louis, Missouri

    Get PDF
    The PSIDA conference provides a forum to discuss approaches, challenges, and applications of informatics and data analytics technologies and capabilities in planetary science.Institutional Support NASA Planetary Data System Geosciences, Lunar and Planetary Institute.Chairs Tom Stein, Washington University, St. Louis, USA, Dan Crichton, Jet Propulsion Laboratory, Pasadena, USA ; Program Committee Alphan Altinok, Jet Propulsion Laboratory, Pasadena, USA … [and 8 others]PARTIAL CONTENTS: ESA Planetary Science Archive Architecture and Data Management--SPICE for ESA Planetary Missions--VESPA: Enlarging the Virtual Observatory to Planetary Science--SeaBIRD: A Flexible and Intuitive Planetary Datamining Infrastructure--Model-Driven Development for PDS4 Software and Services--The Need for a Planetary Spatial Data Clearinghouse--The Relationship Between Planetary Spatial Data Infrastructure and the Planetary Data System--Update on the NASA-USGS Planetary Spatial Data Infrastructure Inter-Agency Agreement--MoonDB - A Data System for Analytical Data of Lunar Samples--Large-Scale Numerical Simulations of Planetary Interiors--Scalable Data Processing with the LROC Processing Pipelines--PACKMAN-Net: A Distributed, Open-Access, and Scalable Network of User-Friendly Space Weather Stations
    corecore