12,543 research outputs found

    Region of interest coding of volumetric medical images

    Get PDF

    Selective Compression of Medical Images via Intelligent Segmentation and 3D-SPIHT Coding

    Get PDF
    ABSTRACT SELECTIVE COMPRESSION OF MEDICAL IMAGES VIA INTELLIGENT SEGMENTATION AND 3D-SPIHT CODING by Bohan Fan The University of Wisconsin-Milwaukee, 2018 Under the Supervision of Professor Zeyun Yu With increasingly high resolutions of 3D volumetric medical images being widely used in clinical patient treatments, efficient image compression techniques have become in great demand due to the cost in storage and time for transmission. While various algorithms are available, the conflicts between high compression rate and the downgraded quality of the images can partially be harmonized by using the region of interest (ROI) coding technique. Instead of compressing the entire image, we can segment the image by critical diagnosis zone (the ROI zone) and background zone, and apply lossless compression or low compression rate to the former and high compression rate to the latter, without losing much clinically important information. In this thesis, we explore a medical image transmitting process that utilizes a deep learning network, called 3D-Unet to segment the region of interest area of volumetric images and 3D-SPIHT algorithm to encode the images for compression, which can be potentially used in medical data sharing scenario. In our experiments, we train a 3D-Unet on a dataset of spine images with their label ground truth, and use the trained model to extract the vertebral bodies of testing data. The segmented vertebral regions are dilated to generate the region of interest, which are subject to the 3D-SPIHT algorithm with low compress ratio while the rest of the image (background) is coded with high compress ratio to achieve an excellent balance of image quality in region of interest and high compression ratio elsewhere

    Progressive Medical Image Compression using a Diagnostic Quality Measure on Regions-of-Interest

    Get PDF
    Dealing with lossy compression of medical images requires particular attention whether for still images, video or volumetric slice-sets. In this work we propose an approach based on a selective allocation of coding resources that is directly related to the diagnostic task. We introduce the concepts of Region of Diagnostic Interest (RODI) and Diagnostic Quality as key links between the radiological activities and responsibilities and the functioning of a selective coding algorithm. The coding engine is a modied version of Shapiro's EZW algorithm and the coded bit-stream is fully progressive. The RODI selectivity corresponds to the choice of a set of subband weighting masks that depends on a small set of parameters handled and validated by the radiologist in a very natural manner. In conclusion, we present some experimental results that give interesting insights in favor of using lossy compression in a controlled fashion by a competent physician

    ROI coding of volumetric medical images with application to visualisation

    Get PDF

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations
    corecore