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3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical
entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables
the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have
been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical
volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction
which can be modeled using Hidden Markov Models (HMM:s) to segment the volume slices. A comparison study has been carried
out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI).
Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time

for its calculations.

1. Introduction

Volume segmentation allocates the voxels in 3D images into
partitions or 3D regions that represent meaningful physical
entities. The goal is to distinguish between different regions
in the 3D volume and cover the extracted contours from the
entire volume. Voxels’ classification into regions is performed
according to a certain region to which the voxels belong, and
some shared, predefined properties. Those voxels comprise
an isolated or segmented Object Of Interest (OOI) from the
input volume.

There are many existing techniques used for medi-
cal image segmentation, including Multiresolution Anal-
ysis (MRA), statistical methods, and thresholding- and
clustering-based techniques. Clustering technique aims to
classify each pixel in an image into the proper cluster, and
then these clusters are mapped to display the segmented
images. A certain clustering criterion can be adopted to
group each pixel into a specific number of clusters depending

on the image histogram [1, 2]. Medical images can also be
segmented using thresholding approaches by partitioning
their intensities. When images contain different structures
with contrasting intensities, thresholding provides a simple
but effective means for obtaining segmentation. Generally,
the thresholds are generated based on visual assessment of
the resulting segmentation [3, 4].

MRA allows the preservation of an image according to
certain levels of resolution. Consequently, wavelets have been
useful in image compression, de-noising, and classification.
Wavelet theory, which is built on solid mathematical foun-
dations uses well-established tools such as quadrature mirror
filtering, subband coding, and pyramidal image processing.
Wavelet analysis enables the exploitation of signal or image
characteristics associated with a particular resolution level,
which may not be detected using other analysis techniques
[5, 6].

Statistical modeling is a set of mathematical equations
which describes the behavior of an object of study in



terms of random variables and the associated probability
distribution. Markov Random Field Model (MRFM) is a
statistical approach which has been utilized within segmen-
tation methodologies to model spatial interactions between
neighbor pixels [1, 3, 7]. These local correlations between
pixels are used as a mechanism for modeling various image
properties. From a medical imaging perspective, this kind of
analysis is useful, as most pixels can be categorized into the
same class as their neighbors [1].

Statistical models using Hidden Markov Models
(HMMs) observe a sequence of emissions with a hidden
sequence of states that the model went through to generate
the emissions [8, 9]. HMM states are not directly visible to
the observer, but the variables influenced by the states are
visible. Each state in HMM has a probability distribution
over the other states which evaluate the state sequence. The
challenge in HMM is to determine the hidden parameters
from the observable parameters to be used in performing
further analysis [8, 9].

This paper focuses on the implementation of effi-
cient and robust medical volume segmentation techniques.
MRA including wavelet and ridgelet transforms have been
deployed for feature extraction, while statistical modeling
using HMM:s has been used for segmentation. The outline
of this paper is as follows. In the following section, the
proposed segmentation system is illustrated and discussed.
In Section 3, the mathematical background of the proposed
segmentation methods is presented with some test images.
Section 4 presents the results and analysis of the proposed
techniques for medical volumes segmentation. Conclu-
sions and implications for future work are discussed in
Section 5.

2. Proposed Segmentation System

In medical applications, the source of the 3D data set is
the acquisition systems such as Positron Emission Tomog-
raphy (PET), Computerized Tomography (CT), or Magnetic
Resonance Imaging (MRI). Such devices are capable of
slicing an object in a physical sectioning. 3D data set from
those devices can be considered as parallel slices stacked to
form a 3D volume. A segmented medical volume into sub-
volumes which are more meaningful and easier to analyze
and understand is the output the proposed system illustrated
in Figure 1.

Hybrid multiresolution statistical approaches and other
segmentation techniques are used to achieve accurate seg-
mented volumes. System input is a 3D phantom or real vol-
ume from scanner acquisition. Acquisition systems produce a
number of 2D slices resulted from the scanned volume of the
body. These slices can be individually segmented using 2D
segmentation methods such as thresholding, clustering, and
HMMs followed by volume reconstruction or directly using
3D segmentation methods such as 3D that thresholding
or 3D discrete wavelet transform (3D-DWT) after volume
reconstruction process.

This paper explains the new application of wavelet
transform directly on the 3D medical volumes from the
acquisition systems using 3D-DWT with Haar wavelet filter.
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HMMs have been also applied on those volumes slice-by-
slice to segment the Region Of Interest (ROI) into a number
of classes based on the grey scale values of the original
volume pixels.

3. Segmentation Methods and Their
Mathematical Backgrounds

The mathematical background of the developed techniques
for 3D medical volume segmentation system is presented in
this section.

3.1. Thresholding. Scalar images can be segmented using
thresholding approaches by partitioning image intensities.
This methodology attempts to determine an intensity value
that can separate the signal into a desired number of classes.
Segmented images can be achieved by clustering all pixels
with intensities larger than the threshold value into one
class, and all others into another. In many applications, the
threshold values selection can be done depending on the
basis of histogram. Multithresholding occurs when more
than one threshold value is determined [10].

The voxels of a certain object are not necessarily con-
nected after thresholding because this technique does not
consider the spatial characteristics of an image, thus causing
it to be sensitive to noise and intensity fluctuations. For
this reason it cannot be easily applied to many medical
imaging modalities. These drawbacks essentially corrupt the
histogram of the image-making partitioning via the selection
of more problematic appropriate thresholds [11].

Hard thresholding technique is a boolean filter [10]
which depends on pixel value and threshold value. As
illustrated in Algorithm 1, it either makes the input zero or
keeps it without any changes [12].

Hard thresholding process is less complex than soft
thresholding (Algorithm 2), where pixels that have values
greater than threshold value do not change [13]; soft
thresholding replaces each pixel which has greater value
than the threshold value by the difference between threshold
value and pixel value [10]. This makes the process more
complicated and increases the processing time for the
algorithm. Figure 2 illustrates a segmented medical brain
slice from an MRI scanner using hard and soft thresholding
techniques. Many other thresholding types are widely used
in different areas including adaptive thresholding.

It can be seen here that applying thresholding techniques
is a very easy process and can be affected easily by surround-
ing noise, but it has been used as a preprocessing step and
postprocessing step with other segmentation techniques. It is
worth mentioning that thresholding can be replaced by the
clustering technique which will be explained in Section 3.2.

3D thresholding method is similar to the 2D approaches
where thresholding process is applied on all pixels in the
volume instead of that in the plane. Algorithm 3 explains the
pseudocode for 3D thresholding.

3.2. Clustering. Clustering technique is the process of clas-
sifying each group of pixels in an image into one class,
each class has the same or similar properties which evaluate
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FIGURE 1: Proposed segmentation system.

(c)

Ficure 2: Thresholding technique for medical image segmentation at threshold value t = 180. (a) Original image, and (b) Hard thresholding,

(¢) Soft thresholding.

if Pixelvalue < Thresholdvalue then
Pixelvalue — 0
end if

ALGorITHM 1: pseudo code for hard thresholding.

a specific part of an image. Each class is highlighted in
the segmented image to illustrate the image as a number
of separated regions, and the ROI may be one of those
regions. Clustering technique is based on multithreshold
values which can be set depending on the image his-
togram. Amira et al. used in [11] K-means method for
segmenting medical volumes; it is the most commonly used
clustering technique. K-means will be used in the fourth

if Pixelvalue < Thresholdvalue then
Pixelvalue — 0
else
Pixelvalue — Pixelvalue — Thresholdvalue
else if

ArLGorIiTHM 2: Pseudo code for soft thresholding.

section of this research paper as a previously available
work to validate the proposed techniques in the comparison
tables.

K-means clustering classifies n voxels into K clusters or
classes (K less than n). This algorithm chooses the number
of clusters (K) then randomly generates K clusters and
determine the cluster centers. The next step is assigning
each point in the volume to the nearest cluster center and
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Original image
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FIGURE 3: Image segmentation using classification technique.

(1) Load 3D data set into V
(2) [xy z] = size(V)
% apply thresholding process for each pixel in the volume
(3) for i=1tox do
(4) for j=1toy do

(5) for k=1toz do

(6) if Pixelvalue < Thresholdvalue then
(7) Pixelvalue — 0

(7) end if

9) end for

(10) end for
(11)  end for

ArgorIiTHM 3: pseudo code for 3D-thresholding.

finally recompute the new cluster centers. The two previous
steps are repeated until the minimum variance criterion
is achieved. This approach is similar to the expectation-
maximization algorithm for Gaussian mixture in which they
both attempt to find the centers of clusters in the volume. Its
main objective is to achieve a minimum intracluster variance
V:

K
sz z(x]'—ﬂi)z, (1)

i=1x,€S;

where K is the number of clusters, S = 1,2,... K, and y; is the
mean of all voxels in cluster i. Figure 3 illustrates an example
of segmenting a real CT slice by classifying the image into 6
different classes.

3.3. Wavelet Transform. In the last decade, wavelet trans-
form has been recognized as a powerful tool in a wide
range of applications, including image/video processing,
numerical analysis, and telecommunication. The advantage
of wavelet over existing transforms such as Discrete Fourier
Transform (DFT) and Discrete Cosine Transform (DCT)
is that wavelet performs a multiresolution analysis of a

signal with localization in both time and frequency [14,
15]. In addition to this, functions with discontinuities and
functions with sharp spikes require fewer wavelet basis
vectors in the wavelet domain than sine-cosine basis vectors
to achieve a comparable approximation. Wavelet operates
by convolving the target function with wavelet kernels to
obtain wavelet coefficients representing the contributions in
the function at different scales and orientations. Wavelet or
multiresolution theory can be used alongside segmentation
approaches, creating new systems which can provide a
segmentation of superior quality to those segmentation
approaches computed exclusively within the spatial domain
[16].

3.3.1. Discrete Wavelet Transform. Discrete wavelet trans-
form (DWT) can be implemented as a set of filter banks,
comprising a high-pass and low-pass filters. In standard
wavelet decomposition, the output from the low-pass filter
can then be decomposed further, with the process continuing
recursively in this manner. According to [17], DWT can be
mathematically expressed by(2)

L-1

a(n)= > 1) -a'(2n - i),

i=0

0<n< Nj,
(2)
L-1
di(n) = Zh(i) AT 2n—1), 0<n< N;.
i=0

The coefficients a/(n) and d/(n) refer to approximation and
detailed components in the signal at decomposition level j,
respectively. The [(i) and h(i) represent the coefficients of
low-pass and high-pass filters, respectively.

DWT decomposes the signal into a set of resolution-
related views. The wavelet decomposition of an image creates
at each scale j a set of coefficient values w;, with an overall
mean of zero. This set of coefficient values w; contains
the same number of voxels as the original 3D volume, and
therefore, this wavelet transform is redundant [18, 19]. A
nondecimated or redundant wavelet transform is useful for
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Standard decomposition
for each row
{do the one-dimensional decomposition}

end
for each column
{do the one-dimensional decomposition}

end
Non-standard decomposition
for each row %% or each column
{do the one-dimensional decomposition for one row}

{do the one-dimensional decomposition for each column}

end

T
N

)

F1GURE 4: Standard and non-standard 2D wavelet transform.

the detection of fine features within the signal. For the case of
images, the one-dimensional DWT can be readily extended
to two-dimensions. In standard two dimensional wavelet
decomposition, the image rows are fully decomposed, with
the output being fully decomposed columnwise. In nonstan-
dard wavelet decomposition, all the rows are decomposed
by one decomposition level followed by one decomposition
level of the columns. Figure 4 illustrates the process of
extending 1D-DWT into 2D-DWT.

3.3.2. Discrete Wavelet Packet Transform. Wavelet Packet
(WP) is a wavelet transform where the signal is passed
through more filters compared to DWT-based approach.
Applying DWT or WP on images generates four coefficients;
three of them are the detail coefficients, and the remaining
one is the average coefficient. It is worth mentioning that
the first level of decomposition is the same for both DWT
and WP, as illustrated in Figure 5. The differences start being
noticed from the second level of decomposition.

The differences between DWT and WP can be seen in
the detail coefficients where the next decomposition of DWT
is applied on the average coefficients from the previous
decomposition (Figure 5(a)). The next decomposition of
WP is applied on all previous decomposition coefficients
(Figure 5(b)). An example of applying DWT and WP on
a phantom slice at different levels of decomposition is
illustrated in Figure 6 where the average quadrants in both
DWT and WP are the same, but the details quadrants
are transformed in WP, unlike in DWT [20]. The number
of quadrants in DWT is increased linearly by 3 as the
decomposition level is increased by 1 (replace the LL-filter
output by its four transforms), as illustrated in

Quadrants No. atlevel K = (Quadrants No. atlevel K — 1)+3.
(3)

Details quadrants from previous decomposition levels of
WP are transformed; the number of quadrants are increased
exponentially by 4 as the level is increased by 1 (replace each
filter output by its 4 transforms), as illustrated in

Quadrants No. atlevel K = (Quadrants No. atlevel K — 1) x4,
(4)

3.3.3. 3D Discrete Wavelet Transform (3D-DWT).
Section 3.3.1 has demonstrated that 2D-DWT is a
generalization of 1ID-DWT applied on all rows and columns
using either standard or non-standard decomposition.
Applying 3D-DWT is not easy; the difference between 2D
images and 3D volumes is the third dimension (depth or
Z-axis). The expected transform after applying 3D-DWT is
illustrated in Figure 7.

The original volume is transformed into 8 octants
(features) in the wavelet domain. Mathematically, 3D-DWT
is the process of applying 1D-DWT on each vector in Z-
axis which has the same X-axis and Y-axis coordinates after
applying 2D-DWT for all comprising frames. Algorithm 4
explains the pseudo code for applying 3D-DWT on 3D data
set, and the filter structure of 3D Haar wavelet transform is
illustrated in Figure 8.

3.4. Ridgelet Transform. Recently, ridgelet transform [21-
23] has been generating a lot of interest due to its superior
performance over wavelets. While wavelets have been very
successful in applications such as denoising and compact
approximations of images containing zero dimensional
(point singularities), they do not isolate the smoothness
along edges that occurs in images [24]. Wavelets are thus
more appropriate for the reconstruction of sharp point-
like singularities than lines or edges. These shortcomings
of wavelets are well addressed by the ridgelet transform,
as they extend the functionality of wavelets to higher
dimensional singularities, and are effective tools to perform
sparse directional analysis [25]. The basic building block of
these transforms is the finite radon transform (FRAT), and
HWT has been used to perform FRIT. Applying FRAT on
image can be presented as a set of projections of the image
taken at different angles to map the image space to projection
space. Its computation is important in image processing and
computer vision for problems such as pattern recognition
and the reconstruction of medical images.

For discrete image data, a projection is computed by
summation of all data points that lie within specified unit-
width strips; those lines are defined in a finite geometry
[26]. It can be obtained by applying 1D Inverse Fast Fourier
Transform (1D-IFFT) on the 2D Fast Fourier Transform
(2D-FFT) restricted to radial lines going through the origin.
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Figure 6: DWT and WP for a phantom slice.
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F1GURE 7: 3D volume in wavelet domain.

FRAT of a real function on the finite grid Zp? is defined
in (5), [16]:

rell] = FRAT(k, 1) = > flij). 5)

\/ﬁ(i,j)eL(k,l)

Here, L(k,1) denotes the set of points that make up a line on
the lattice sz asin (6):

L(k,) = {(i,j)  j = ki + l(modp),i € Z,}, 0<k<p,

L(p.)) = {(L)) 1 j € Z,}.
(6)
To compute the Kth radon projection (i.e., the Kth row in

the array), all pixels of the original image need to be passed
once and use P histogrammers: one for every pixel in the row
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(1) Load 3D data set into V
(2) [xy z] = size(V)
(3) for k=1toz do

(5) endfor
(6) for i=1toxdo
(7) for j=1toy do

pizel in XY plane
(10)  end for
(11)  end for

(4) apply 2D-DWT for each plane in Z-axis

(7) apply 1D-DWT for all wectors corresponding to each

ALGORITHM 4: Pseudo code for 3D-DWT.

1D-DWT
for each column

F1GURE 8: Haar filter architecture for 3D-DWT.

Input
g FRAT —> DW —>  FRIT
image

FiGure 9: FRIT block diagram.

[16]. At the end, all P histogrammed values are divided by K
to get the average values.

Once the wavelet and radon transforms have been
implemented, the ridgelet transform is straightforward. Each
output of the radon projection is simply passed through the
wavelet transform before it reaches the output multiplier.

As shown in Figure 9, ridgelets use FRAT as a basic
building block. FRAT maps a line singularity into point
singularity, and the wavelet transform has used to effectively
handle the point singularity for the radon domain.

Analysing an object with curve singularity implies that
ridgelet coefficient will be not sparse and object with curved
singularities is still curved or linear after the radon transform
where the wavelet transform cannot detect it properly
because it is still not a point singularity [28]. Figure 10 shows
a real chest slice from a CT scanner [29] in ridgelet domain
at different block sizes.

3.5. Statistical Modeling Using Hidden Markov Models. For
block-based segmentation using statistical classification, an
image is divided into blocks, and a feature vector is formed
for each block by grouping statistics of its pixel intensities
[3, 30]. Conventional block-based segmentation algorithms
classify each block separately, assuming the independence of
feature vectors.

Segmentation in MRFM is achieved by maximizing a
posteriori probability of the segmentation depending on
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FiGure 10: Ridgelet transform for real CT image at different block sizes.

X(t+1)

Y(t+1)

FiGUure 11: Markov chain.

a given image data [31]. MRFM is an earlier version of
the HMM, where states in MRFM are directly visible to
the observer, and then the state transition probabilities are
the only parameters [32]. Markov chain is an edge labeled
directed graph (Figure 11), where each node represents a
state, and the edge-label have probabilities of moving the
state to the end of the directed edge [9, 33].

HMMs represent a widespread approach to the modeling
of sequences as they attempt to capture the underlying
structure of a set symbol strings. The use of HMM for
shape recognition has not been widely addressed. Only a few
works have been found to have some similarities with the
proposed approach. In the first, He and Kundu [34] utilized

Si-1,j

Sij-1

F1GURE 12: Pseudo 2D HMM.

HMMs to model shape contours through autoregressive
(AR) coefficients. The use of circular HMM for shape
recognition improving scaling and deformation robustness
is proposed at [35],[36].

HMM is basically a stochastic finite state automaton,
formally defined by the following elements [37]: a set
of states § = Sts..5Sis...»Sj,...,SN; a state transition
probability distribution matrix A = {a;;}1 < i,j < N
representing the probability to go from state S; to Sj; a set
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FIGURE 13: (a) NEMA IEC body phantom (DATA SET 1), (b) 2D slice from DATA SET 1, (c) DATA SET 1 after stacking all slices using [27].

of observation symbols V' = {v;,vs,...,v,...,vm}, where
vk used to be a d-dimensional vector (in the case of discrete
HMM); an observation symbol probability distribution or
emission matrix B = {bj(w),1 < k < M} 1 < j < N,
indicating the probability of emission of symbol v, when
system state is S;; an initial state probability distributions =
{mi} 1 < i < N, representing probabilities of initial states.
For convenience, HMM has been denoted as a triplet A =
{A, B, }, which uniquely determines the model.

When modeling a sequence of observation symbols it is
usual to use a so-called “left to right HMM” [37], which has
only partial state transition matrix, such that a;; = 0,j <
i, j > i+step, where step is a constant usually equal to 1 or 2.

3.5.1. 2D-HMM. The problem with 2D-HMM is the double
dependency of §;; on its two neighbors, S; 1,; and S;; 1, as
illustrated in Figure 12. This does not allow the factorization
of computation as in 1D, where §;; must only depend on
one neighbor at a time. However, this neighbor may be the
horizontal (S; ;1) or the vertical (S;_1,;) [9, 38].

Each slice is a two-dimensional matrix which can be
classified by an optimum set of states with maximum prob-
ability; these states are mapped into classes or segmented
objects. The basic assumption of applying HMM on medical
images is to use the embedded-HMM by defining a set of
Markovian superstates, within each superstate there is a set of
simple Markovian states. The superstate is first chosen using
a first-order Markov state transition probability based on the
previous superstate. A simple Markov chain is then used to
generate observations in this superstate. Thus, superstates
are related to rows (or any equal size blocks), and simple
states are related to columns (or smaller blocks comprised
the superstate).

3.5.2. Defining the Initial States. To generate an observation
sequence using HMM, an initial state must be chosen
according to the initial state distribution; then an observation
sequence should be chosen according to the probability
distribution in the initial state [9]. Many feature selection
techniques have been tested in medical images, and the
best results were achieved using the grey-scale values of the
medical image pixels to generate the probability distribution
matrix. After defining the initial states, transition to a

new state is taking place according to the state transition
probability matrix for the current state and depending on the
sequence of observations.

3.5.3. Training HMM. HMM considers observations sta-
tistically dependent on neighboring observations through
transition probabilities organized in a Markov mesh. Train-
ing HMM for images is achieved by dividing the image
into nonoverlapping, equally sized blocks, from each of
which a feature vector is extracted. Each block and its
feature vector evaluate the observation which has its own
transition probability matrix. Training HMM produces an
estimated state transition probability matrix and estimated
emission probability matrix. After building the observation
sequence, the model parameters are estimated based on the
blocks’ statistics. These classes or states were determined
using Viterbi algorithm, which depends on (1) the sequence
of observations; (2) estimated state transition probability
matrix; (3) emission probability matrix [30, 40]. Finally,
pixels which belong to the same class are grouped together
to evaluate a segmented image.

3.5.4. Testing HMM. The feature vectors for a testing image
are generated to find the set of classes with maximum
posteriori according to the trained HMM. The feature vector
for each block may be changed at every single state. Once the
block state is known, the feature vector will be independent
of the other blocks; any two blocks may be more likely to
be in the same state if they have close intensities [8]. In
other words, testing HMM will generate the state transition
probability matrix and emission probability matrix for a
given comparable data [8, 9].

4. Results and Analysis

The proposed approach has been tested on NEMA IEC
body phantom [41] (DATA SET 1) and real chest images
from a CT scanner [29] (DATA SET 2). DATA SET 1
consists of an elliptical water filled cavity with six spherical
inserts suspended by plastic rods of inner diameters: 10,
13, 17, 22, 28, and 37 mm [41]; this phantom is illustrated
in Figure 13(a). Figure 13(b) is a slice example of the CT
outputs which stacked with all other slices to form the 3D
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TaBLE 1: Wavelet and ridgelet comparisons depending on SNR and processing time.
Domain Wavelet Ridgelet Satial
Level 1 Level 2 Level 3 pP= P=11 P =31
SNR (dB) 10.63 11.14 10.95 10.37 11.43 11.88 7.17
Time (sec) 0.23 0.24 0.50 71.5 2991 10.01 1.18

No overlap, DSC = 0

Partial overlap, 0 < DSC < 1

Complete overlap, DSC = 1

F1GUrE 14: DSC overlapping.

volume which is illustrated in Figure 13(c). DATA SET 2 is
a CT scanner output of the chest area in a human body [29].
This DATA SET includes blood, bones, muscles, tumor and,
other organs in the body.

4.1. Segmentation Performance Metrics. Many techniques can
be used for segmentation, and each technique has a different
segmentation performance and quality. Listed below are
some performance measurement methods that have been
used in this paper to test and compare the segmentation
techniques.

(i) Dice Similarity Coefficients. Dice Similarity Coefficients
(DSCs) are a statistical validation metric used to evaluate
the performance of both the reproducibility of manual
segmentations and the spatial overlap accuracy of automated
probabilistic fractional segmentation. The DSC value is a
simple and useful summary measure of spatial overlap, which
can be applied to studies of reproducibility and accuracy in
image segmentation.

The value of a DSC ranges from 0 indicating no spatial
overlap between two sets of binary segmentation results to 1
indicating complete overlap [42]. As illustrated in Figure 14,
DSC measures the spatial overlap between two samples,
A and B target regions, and is defined as DSC(A,B) =
2(AB)/(A + B) where () is the intersection.

(ii) Euclidean Distance. Euclidean Distance (ED) is the
straight line distance between two points. It can be used with
DATA SET 1 to compare the measured diameters with the
original diameters provided with the phantom description
[41].

(iii) Processing Time. The future work of this paper is to
segment the medical images automatically in real time and
get the results while the patient is waiting. the processing
time of the segmentation methods are different, and the

processing time may be used as a comparison factor for these
methods.

Signal to Noise Ratio (SNR) is also used to differentiate
between wavelet and ridgelet output quality. SNR is used in
image processing as a physical measure of the sensitivity of an
imaging system. Industry standards measure SNR in decibels
(dB) of power, and therefore apply the 20 log rule to the peak
SNR ratio. Industry standards measure and define sensitivity
in terms of the ISO film speed equivalent; image quality is
excellent when SNR is 32dB and if SNR is 20dB then, it
means acceptable image quality.

4.2. Wavelet Versus Ridgelet. Parameters in the wavelet
transform are points (x, y) in the cartesian grid. As illustrated
in the first part of Figure 15, each point performs a pixel
in the image or an entry in a 2D matrix. However, in
ridgelet transform, straight lines evaluate the image in
the frequency domain rather than those points in wavelet
domain. Parameters in ridgelet domain are (f3,60) in a polar
domain (second part of Figure 15) where f is the intercept,
and 6 is the angle [24, 25].

Table 1 illustrates the SNR values of extracted features
from DATA SET 2 in spatial domain, wavelet domain at
different levels of decomposition, and in ridgelet domain at
different block sizes.

It can be seen from Table 1 that small values of SNR
have been obtained for all techniques; this is due to the
noise from the acquisition systems which will be a part of
the medical image itself after the reconstruction of all the
slices. Relatively, better SNR values can be achieved with the
second level of wavelet decomposition and as the block size
(p) is getting bigger with the ridgelet transform where the
transformed image is getting more similar to the original
image.

4.3. 3D DWT. Applying segmentation techniques on 2D
slices requires more time compared to the 3D volumes-
based approaches time. The time required to look for the
best slice that includes the spheres in full diameters is not
required in 3D volume segmentation processes. Segmented
volume for DATA SET 1 using 3D-thresholding is illustrated
in Figure 16(a), 3D-wavelet technique is applied on the same
phantom data (DATA SET 1), and the selected spheres are
detected as illustrated in Figure 16(b). Another example of
applying 3D-DWT on real CT images for DATA SET 2 is
illustrated in Figure 16(c). Table 2 compares the errors in
spheres diameters using 3D segmentation techniques with
existing measurements using 2D segmentation techniques
for slice number 19. ED has been used to measure the spheres
diameters and calculate the error percentages for each
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FIGURE 15: Wavelet and ridgelet parameters.
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F1GURE 16: 3D segmentation techniques.
TaBLE 2: Error percentage of spheres measurement using different segmentation techniques.
Spheres Diameter (mm) 10 13 17 22 28 37
K-means [11] -13.6 -11.5 =5.77 —5.51 -5.1 -5.01
MRFM [11] —-7.41 -8.69 4.28 4.06 3.9 3.89
Clustering [11] 18.6 16 9 7.5 5.5 1.1
Iterative Thresholding [39] 3 3.1 0.6 0.9 1.1 1.8
2D Thresholding -4.8 -8.15 0.06 —0.36 1.07 1.14
2D-DWT Haar Level 1 =29 —2.46 1.35 0.82 0.29 0.05
(Proposed) Level 2 —-10.9 —6.67 3.88 -1.3 —-0.76 —-1.95
Level 3 NA* NA* 5.65 —18.2 2.57 —3.24
Daubechies Level 1 —7.43 —2.69 0.12 2 2.17 1.81
Level 2 -5.2 0.15 —4.24 0.73 0.62 -0.11
3D Thresholding (Proposed) 0.59 0.77 0.17 1.11 2.2 6.08
3D-DWT (Proposed) -2.67 -1.93 —0.74 4.75 3.37 0.77




12 Advances in Artificial Intelligence
TaBLE 3: Performance of using HMMs and MRA for medical image segmentation.

diameters (mm) 10 13 17 22 28 37 Processing time (sec)

HMM (Spatial) 1.5 0.8 0.1 0.8 0.04 1 2007.3

HMM (Wavelet) NA* 11.07 7.82 2.98 1.09 0.27 1321.1

HMM (Ridgelet) NA* NA* NA* NA* NA* 2.41 5757.6

*Diameters could not be detected using this Technique.
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4 Clustering [11] + 3D Thresholding
« Iterative thresholding [43] © 3D DWT
FIGURE 17: Visual comparison for error percentages.
TABLE 4: HMM performance depending on DSC.
Type joint pixels No. of pixels DSC value
Spatial 212521 524288 0.8107
Ridgelet 158905 524288 0.6062

technique sphere diameter error percentages have been
calculated according to the following:

Measured Diameter — Actual Diameter

; X 100%.
Actual Diameter %

(7)

error% =

From Table 2, in the case of K-means clustering, tumor
volumes are underestimated by approximately 5-6% in
most cases, however, for the two smaller spherical inserts,
with diameter of 10mm and 13 mm, respectively, these
underestimations are significantly greater. For the smallest
sphere, more than a 13% volume discrepancy is recorded,
with the K-means algorithm finding it difficult to quantify
the tumor accurately. Sphere 2 similarly is massively underes-
timated (11:5%). Unlike K-means clustering, MRFM tends
to overestimate the volumes of the spherical inserts, with the
exception of Spheres 1 and 2.

Outer diameters have been measured in the case of
3D segmentation, and the inner diameters errors have
been calculated based on the thickness of spheres edges.
All spheres diameters detected using 3D-thresholding and
the errors were over estimated by (0.5-2.5%), they were
increasing while the sphere diameter increasing.

Spheres diameters are reduced to the half with each
decomposition level of wavelet transform. Three decompo-
sition levels of DWT have been applied on NEMA phantom
using two different filters (Haar, Daubechies), and the
measured diameters were doubled at each level to produce
a fair comparison with the other available techniques. It can
be seen that most of the error percentages were decreasing
while the spheres diameter increasing, it is worth mentioning
that there is no upper bound of the spheres diameters to keep
the errors decreasing because the ROI becomes clearer and
easier to be detected and measured properly. But tumors in
real life are usually very small in the early stage cancer, and
the problem is to detect those turnouts as soon as possible.

By applying one decomposition level of 3D-DWT on spa-
tial domain and using the LLL filter output, underestimated
percentages have been achieved for the three small spheres
(10, 13, and 17 mm) and overestimated percentages for the
three big spheres (22, 28, and 37 mm). DWT proved efficient
in detecting the big obstacles where the biggest sphere
(37 mm) was detected with a very small error percentage
(<0.8%).

The two smallest spherical inserts are still underestimated
in all techniques except the 3D-thresholding. The large
volumetric errors encountered using this acquisition exist
as a consequence of the poor slice thickness setting selected
for the scan. The 4.25mm slice thickness causes large
fluctuations in transaxial tumor areas to occur between
image slices. This problematic characteristic occurs most
notably with the smallest spherical inserts, where single voxel
reallocation causes a large deviation in percentage error.
In Figure 16, the percentage error computed between the
actual sphere volume and the volumes obtained using all
methodologies for each of the six tumor inserts is plotted.
It can be seen that all techniques are settled down according
to the error percentages as the sphere diameters increased
(Figure 17).

4.4. HMM Experimental Results. HMMs have been used
for segmentation, which can be applied either in the
spatial or multiresolution domain using wavelet or ridgelet
transforms. The weakness of HMMs is its long processing
time, compared with the other evaluated techniques.

DATA SET 1 has been utilized to perform the exper-
imental study using HMMs and MRA for medical image
segmentation, and the achieved results are illustrated in
Table 3. Figures 18 and 19 illustrate the outputs of applying
HMM on a slice from DATA SET 1 and real brain slice,
respectively.

From Table 3, applying HMMs on NEMA phantom slice
in ridgelet domain failed to segment ROI where most of
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(b)

FIGURE 18: Segmented image using thresholding technique (a) and HMM (b).

(b)

FIGURE 19: Image Segmentation using HMM. Original (a) and HMM (b)

the spheres diameters could not be detected. As well as
the long computational time problem, it is five times more
than the required time for applying HMMs on the slice in
the wavelet domain. Transforming any image into ridgelet
domain changes the comprising pixel specifications as well
as the dimensions of the image. The padding row is added

I | ey

Wi Immmm’ UM
.

(c)
FIGURE 20: Image Segmentation using HMM. Original (a), HMM on ridgelet (b), and HMM on spatial (c).

to each block leading to long computational time for HMM
segmentation. Relatively, the most accurate results have
been achieved with applying HMMs directly on the spatial
domain without any transformation. But in wavelet domain,
applying HMMs requires less time which make it very useful
in real time segmentation systems.
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It can be seen from Figure 18 that different obstacles were
merged such as bones and brain; the same thing happened
in Figure 19 where the liver is merged with the skin. This
merge is due to the number of HMM classes (states) where
HMMs decided that brain and bones in Figure 18 will be in
the same class because just three HMM classes were used.
But each obstacle will be in separate class if the number of
classes increased to the number of all obstacles in the image,
the same explanation for Figure 19. There are some available
techniques that can be used to define the best number of
classes in HMM such as BiC.

HMMs have been also applied on DATA SET 2 as illus-
trated in Figure 20, and the DSC values for the segmented
slices have been measured and illustrated in Table 4 which
evaluates the performance based on a manual segmented
image where better results have been achieved using HMMs
in the spatial domain.

Many techniques have been previously implemented
for medical volumes segmentation; some of them were
illustrated in this paper and compared with the proposed
techniques. Promising results have been achieved using
3D segmentation techniques directly to medical volumes
and the statistical models using HMMs; both techniques
have the same problem which is the computational time.
Many acceleration processing methods have been recently
implemented such as FPGAs, Matlab accelerators, Feature
Reduction (FR) techniques, GPUs and many more. HMM
can be applied with different MRA transforms such as
wavelet, ridgelet, and curvelet to achieve promising results.
It is worth mentioning that based on the experiments
carried out on these specific medical data in this paper,
HMMs can be classified as one of the ideal medical volume
segmentation techniques compared to the other proposed
techniques.

5. Conclusions

Segmentation is very important for medical image process-
ing, to detect tumors and regions of interest for radiotherapy
planning and cancer diagnosis. A novel and sophisticated
segmentation system was developed specifically for 3D data
segmentation. The developed techniques within the system
have been tested on phantom data [41]. The system used
to quantify tumors within the data of predefined volumes,
and these results were compared with those obtained from
2D approaches such as thresholding. Thresholding addressed
many problems in multiresolution analysis including de-
noising and edge detection, but data loss was the main
problem caused. Statistical models using hidden Markov
models have been also investigated for segmentation, which
can be deployed in the spatial domain or multiresolution
domain. The weakness of HMMs is its long computation
time required for the calculation of their models which was
much smaller compared with the other evaluated techniques.

The proposed system was also tested on other data set
for real human chest images from a CT scanner and has
shown promising results. Ongoing research is focusing on
the implementation of other 3D novel feature extraction
techniques for medical images based on 3D-ridgelet and
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3D-curvelet transforms. In order to speed up the proposed
techniques; a graphical processing unit (GPU) will be
deployed with more focus on the implementation of higher
dimensional HMMs for a more accurate and automatic
volume segmentation system.
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