348 research outputs found

    Conditional Random Fields as Recurrent Neural Networks

    Full text link
    Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate mean-field approximate inference for the Conditional Random Fields with Gaussian pairwise potentials as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.Comment: This paper is published in IEEE ICCV 201

    Recurrent Level Set Networks for Instance Segmentation

    Get PDF
    Level set (LS)-based segmentation has been widely used in medical imaging domain. It however has some difficulty when dealing with multi-instance objects in the real world. Furthermore, LS’s performance is generally quite sensitive to some initial settings and parameters such as the number of iterations. To address these issues and promote the classic LS methods to a new degree of performance in a trainable deep learning framework, we are presenting a novel approach contextual recurrent level sets (CRLS) for object instance segmentation. In the proposed networks, the curve deformation process is formed as a hidden state evolution procedure in gated recurrent units (GRUs) and updated by minimizing an energy functional composed of fitting forces and contour length

    Deep Learning-Based SOLO Architecture for Re-Identification of Single Persons by Locations

    Get PDF
    Analyzing and judging of captured and retrieved images of the targets from the surveillance video cameras for person re-identification have been a herculean task for computer vision that is worth further research. Hence, re-identification of single persons by locations based on single objects by locations (SOLO) model is proposed in this paper. To achieve the re-identification goal, we based the training of the re-identification model on synchronized stochastic gradient descent (SGD). SOLO is capable of exploiting the contextual cues and segmenting individual persons by their motions. The proposed approach consists of the following steps: (1) reformulating the person instance segmentation as: (a) prediction of category and (b) mask generation tasks for each person instance, (2) dividing the input person image into a uniform grids, i.e., G×G grid cells in such a way that a grid cell can predict the category of the semantic and masks of the person instances provided the center of the person falls into the grid cell and (3) conducting person segmentation. Discriminating features of individual persons are obtained by extraction using convolution neural networks. On person re-identification Market-1501 dataset, SOLO model achieved mAP of 84.1% and 93.8% rank-1 identification rate, higher than what is achieved by other comparative algorithms such as PL-Net, SegHAN, Siamese, GoogLeNet, and M3L (IBN-Net50). On person re-identification CUHK03 dataset, SOLO model achieved mAP of 82.1 % and 90.1% rank-1 identification rate, higher than what is achieved by other comparative algorithms such as PL-Net, SegHAN, Siamese, GoogLeNet, and M3L (IBN-Net50). These results show that SOLO model achieves best results for person re-identification, indicating high effectiveness of the model. The research contributions are: (1) Application of synchronized stochastic gradient descent (SGD) to SOLO training for person re-identification and (2) Single objects by locations using semantic category branch and instance mask branch instead of detect-then-segment method, thereby converting person instance segmentation into a solvable problem of single-shot classification

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    • …
    corecore