5 research outputs found

    Biped locomotion control through a biologically-inspired closed-loop controller

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaCurrently motor disability in industrialized countries due to neural and physical impairments is an increasingly worrying phenomenon and the percentage of patients is expected to be increasing continuously over the coming decades due to a process of ageing the world is undergoing. Additionally, rising retirement ages, higher demand of elderly people for an independent, dignified life and mobility, huge cost in the provision of health care are some other determinants that motivate the restoration of motor function as one of the main goals of rehabilitation. Modern concepts of motor learning favor a task-specific training in which all movements in daily life should be trained/assisted repetitively in a physically correct fashion. Considering the functional activity of the neuronal circuits within the spinal cord, namely the central pattern generator (CPG), as the foundation to human locomotion, motor relearning should be based on intensive training strategies directed to the stimulation and reorganization of such neural pathways through mechanisms addressed by neural plasticity. To this end, neuromodelings are required to simulate the human locomotion control to overcome the current technological challenges such as developing smaller, intelligent and cost-effective devices for home and work rehabilitation scenarios which can enable a continuous therapy/ assistance to guide the impaired limbs in a gentle manner, avoiding abrupt perturbations and providing as little assistance as necessary. Biomimetic models, taking neurological and biomechanical inspiration from biological animals, have been embracing these challenges and developing effective solutions on refining the locomotion models in terms of energy efficiency, simplicity in the structure and robust adaptability to environment changes and unexpected perturbations. Thus, the aim target of this work is to study the applicability of the CPG model for gait rehabilitation, either for assistance and/or therapy purposes. Focus is developed on the locomotion control to increase the knowledge of the underlying principles useful for gait restoration, exploring the brainstem-spinal-biomechanics interaction more fully. This study has great application in the project of autonomous robots and in the rehabilitation technology, not only in the project of prostheses and orthoses, but also in the searching of procedures that help to recuperate motor functions of human beings. Encouraging results were obtained which pave the way towards the simulation of more complex behaviors and principles of human locomotion, consequently contributing for improved automated motor rehabilitation adapted to the rehabilitation emerging needs.Actualmente a debilidade motora em países industrializados devido a deficiências neurais e físicas é um fenómeno crescente de apreensão sendo expectável um contínuo aumento do rácio de pacientes nas próximas décadas devido ao processo de envelhecimento. Inclusivé, o aumento da idade de reforma, a maior procura por parte dos idosos para uma mobilidade e vida autónoma e condigna, o elevado custo nos cuidados de saúde são incentivos para a restauração da função motora como um dos objectivos principais da reabilitação. Conceitos recentes de aprendizagem motora apoiam um treino de tarefas específicas no qual movimentos no quotidiano devem ser treinados/assistidos de forma repetitiva e fisicamente correcta. Considerando a actividade funcional dos circuitos neurais na medula, nomeadamente o gerador de padrão central (CPG), como a base da locomoção, a reaprendizagem motora deve-se basear em estratégias intensivas de treino visando a estimulação e reorganização desses vias neurais através de mecanismos abordados pela plasticidade neural. Assim, são necessários modelos neurais para simular o controlo da locomoção humana de modo a superar desafios tecnológicos actuais tais como o desenvolvimento de dispositivos mais compactos, inteligentes e económicos para os cenários de reabilitação domiciliar e laboral que podem permitir uma terapia/assistência contínua na guia dos membros debilitados de uma forma suave, evitando perturbações abruptas e fornecendo assistência na medida do necessário. Modelos biomiméticos, inspirando-se nos princípios neurológicos e biomecânicos dos animais, têm vindo a abraçar esses desafios e a desenvolver soluções eficazes na refinação de modelos de locomoção em termos da eficiência de energia, da simplicidade na estrutura e da adaptibilidade robusta face a alterações ambientais e perturbações inesperadas. Então, o objectivo principal do trabalho é estudar a aplicabilidade do modelo de CPG para a reabilitação da marcha, para efeitos de assistência e/ou terapia. É desenvolvido um foco no controlo da locomoção para maior entendimento dos princípios subjacentes úteis para a recuperação da marcha, explorando a interacção tronco cerebral-espinal medula-biomecânica de forma mais detalhada. Este estudo tem potencial aplicação no projecto de robôs autónomos e na tecnologia de reabilitação, não só no desenvolvimento de ortóteses e próteses, mas também na procura de procedimentos úteis para a recuperação da função motora. Foram obtidos resultados promissores susceptíveis de abrir caminho à simulação de comportamentos e princípios mais complexos da marcha, contribuindo consequentemente para uma aprimorada reabilitação motora automatizada adaptada às necessidades emergentes

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio
    corecore