6 research outputs found

    Slow Reflection

    Get PDF
    We describe a “slow” version of the hierarchy of uniform reflection principles over Peano Arithmetic (PA). These principles are unprovable in Peano Arithmetic (even when extended by usual reflection principles of lower complexity) and introduce a new provably total function. At the same time the consistency of PA plus slow reflection is provable in PA + Con ( PA ) . We deduce a conjecture of S.-D. Friedman, Rathjen and Weiermann: Transfinite iterations of slow consistency generate a hierarchy of precisely ε 0 stages between PA and PA + Con ( PA ) (where Con ( PA ) refers to the usual consistency statement)

    Type-Two Well-Ordering Principles, Admissible Sets, and Pi^1_1-Comprehension

    Get PDF
    This thesis introduces a well-ordering principle of type two, which we call the Bachmann-Howard principle. The main result states that the Bachmann-Howard principle is equivalent to the existence of admissible sets and thus to Pi^1_1-comprehension. This solves a conjecture of Rathjen and Montalbán. The equivalence is interesting because it relates "concrete" notions from ordinal analysis to "abstract" notions from reverse mathematics and set theory. A type-one well-ordering principle is a map T which transforms each well-order X into another well-order T[X]. If T is particularly uniform then it is called a dilator (due to Girard). Our Bachmann-Howard principle transforms each dilator T into a well-order BH(T). The latter is a certain kind of fixed-point: It comes with an "almost" monotone collapse theta:T[BH(T)]->BH(T) (we cannot expect full monotonicity, since the order-type of T[X] may always exceed the order-type of X). The Bachmann-Howard principle asserts that such a collapsing structure exists. In fact we define three variants of this principle: They are equivalent but differ in the sense in which the order BH(T) is "computed". On a technical level, our investigation involves the following achievements: a detailed discussion of primitive recursive set theory as a basis for set-theoretic reverse mathematics; a formalization of dilators in weak set theories and second-order arithmetic; a functorial version of the constructible hierarchy; an approach to deduction chains (Schütte) and beta-completeness (Girard) in a set-theoretic context; and a beta-consistency proof for Kripke-Platek set theory. Independently of the Bachmann-Howard principle, the thesis contains a series of results connected to slow consistency (introduced by S.-D. Friedman, Rathjen and Weiermann): We present a slow reflection statement and investigate its consistency strength, as well as its computational properties. Exploiting the latter, we show that instances of the Paris-Harrington principle can only have extremely long proofs in certain fragments of arithmetic

    Reflection principles and provability algebras in formal arithmetic

    No full text
    We study reflection principles in fragments of Peano arithmetic and their applications to the questions of comparison and classification of arithmetical theories
    corecore