11,923 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions

    Full text link
    In this paper, we propose an incremental algorithm for computing cylindrical algebraic decompositions. The algorithm consists of two parts: computing a complex cylindrical tree and refining this complex tree into a cylindrical tree in real space. The incrementality comes from the first part of the algorithm, where a complex cylindrical tree is constructed by refining a previous complex cylindrical tree with a polynomial constraint. We have implemented our algorithm in Maple. The experimentation shows that the proposed algorithm outperforms existing ones for many examples taken from the literature

    Joint Optical Flow and Temporally Consistent Semantic Segmentation

    Full text link
    The importance and demands of visual scene understanding have been steadily increasing along with the active development of autonomous systems. Consequently, there has been a large amount of research dedicated to semantic segmentation and dense motion estimation. In this paper, we propose a method for jointly estimating optical flow and temporally consistent semantic segmentation, which closely connects these two problem domains and leverages each other. Semantic segmentation provides information on plausible physical motion to its associated pixels, and accurate pixel-level temporal correspondences enhance the accuracy of semantic segmentation in the temporal domain. We demonstrate the benefits of our approach on the KITTI benchmark, where we observe performance gains for flow and segmentation. We achieve state-of-the-art optical flow results, and outperform all published algorithms by a large margin on challenging, but crucial dynamic objects.Comment: 14 pages, Accepted for CVRSUAD workshop at ECCV 201

    Automatic frequency assignment for cellular telephones using constraint satisfaction techniques

    Get PDF
    We study the problem of automatic frequency assignment for cellular telephone systems. The frequency assignment problem is viewed as the problem to minimize the unsatisfied soft constraints in a constraint satisfaction problem (CSP) over a finite domain of frequencies involving co-channel, adjacent channel, and co-site constraints. The soft constraints are automatically derived from signal strength prediction data. The CSP is solved using a generalized graph coloring algorithm. Graph-theoretical results play a crucial role in making the problem tractable. Performance results from a real-world frequency assignment problem are presented. We develop the generalized graph coloring algorithm by stepwise refinement, starting from DSATUR and augmenting it with local propagation, constraint lifting, intelligent backtracking, redundancy avoidance, and iterative deepening

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201
    corecore