
Automatic Frequency Assignment for
Cellular Telephones Using Constraint
Satisfaction Techniques1

Mats Carlsson, Mats Grindal
Swedish Institute of Computer Science (SICS)
PO Box 1263, S-164 28 KISTA, Sweden
{matsc,matsg}@sics.se

Abstract

We study the problem of automatic frequency assignment for cellular tele-
phone systems. The frequency assignment problem is viewed as the problem
to minimize the unsatisfied soft constraints in a constraint satisfaction prob-
lem (CSP) over a finite domain of frequencies involving co-channel, adjacent
channel, and co-site constraints. The soft constraints are automatically de-
rived from signal strength prediction data. The CSP is solved using a gen-
eralized graph coloring algorithm. Graph-theoretical results play a crucial
role in making the problem tractable. Performance results from a real-world
frequency assignment problem are presented.

We develop the generalized graph coloring algorithm by stepwise refine-
ment, starting from DSATUR and augmenting it with local propagation,
constraint lifting, intelligent backtracking, redundancy avoidance, and iter-
ative deepening.

Key Words: frequency assignment, constraints, graph coloring, intelli-
gent backtracking, iterative deepening.

1 Introduction

Since 1968, there has been a lot of interest in automatic frequency assign-
ment for cellular telephones, but few successful implementations have been
reported. Hale’s article [?] contains an excellent overview and bibliography
of the early attempts.

This paper is the result of a study in automatic frequency assignment
initiated by Ericsson Radio Systems AB (ERA). The frequency assignment
problem consists in assigning a number of frequencies to each of a set of
base stations while minimizing the potential interference. The number of
frequencies assigned varies with the required capacities of the base stations.

Currently, the construction of frequency plans for base station sites is
performed manually, a job which is very time consuming. The quality of a

1Proc. Tenth International Conference on Logic Programming, MIT Press, pp. 647–665

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

man-made solution also varies, since there exist no exact algorithms for per-
forming this task. Instead the quality is much dependent on the experience
and skill of the person making the assignment.

The frequency assignment problem is viewed as the problem to minimize
the unsatisfied soft constraints in a constraint satisfaction problem over a
finite domain of frequencies involving three kinds of constraints:

co-channel constraints: some pairs of sites x and y must not use the same
frequency (1 ≤ |c(x)− c(y)|); these constraints are soft;

adjacent channel constraints: some pairs of sites x and y must not use
adjacent frequencies (2 ≤ |c(x)− c(y)|); these constraints are soft;

co-site constraints: a minimal separation m between frequencies f and g
used at the same site is prescribed (m ≤ |f − g|); these constraints are
hard.

To make the problem tractable, the domain is often made up of frequency
groups instead of individual frequencies. For example, a configuration with
12 frequency groups could be defined such that group 0 ≤ i ≤ 11 contains
the frequencies {f |f mod 12 = i}. With this definition, frequency groups 0
and 11 must be considered adjacent, i.e. modulo arithmetic must be used in
the constraints. This will be tacitly assumed in the rest of the paper.

It has been noted by many authors (e.g. [?, ?, ?]) that the frequency
assignment problem amounts to a graph coloring problem if only co-channel
constraints are involved. Graph coloring is perhaps the most famous and
most intensively investigated and applied optimization problem. It is known
to be NP-complete [?], so the existence of a polynomial algorithm for opti-
mally coloring general graphs seems unprobable. However, a vast number of
heuristic algorithms have been suggested over the years.

Zoellner and Beall [?] were among the first to attack the frequency as-
signment problem by reducing it to a generalized graph coloring problem.
Several authors (e.g. [?, ?, ?]) have since followed the same approach. Typ-
ically, the co-channel and adjacent channel constraints were derived from
data about the geographic distribution of base stations and from heuristic
rules. The goal was usually to find an assignment requiring the minimum
number of frequencies.

In this work, we take a somewhat different approach. We derive soft
constraints from predictions about signal strength data computed for each
base station. Each constraint gets associated with a weight, reflecting how
severe the interference would be if that particular constraint is unsatisfied in
the proposed solution. Then we solve the problem of finding an assignment
that minimizes the maximum weight of the unsatisfied constraints. This
assignment is found by solving a series of generalized graph coloring problems
on subgraphs whose constraints have a weight above a threshold value.

During the course of this study, several graph coloring algorithms have
been tried with various success. The algorithm that shows the most promis-
ing behavior is the DSATUR algorithm. It generalizes readily to handling
adjacent channel and co-site constraints.

The paper is organized as follows. First some basic graph theoretical
terminology, definitions, and results are stated. In Section ?? the reduc-
tion from frequency allocation into graph coloring is described. Section ??
presents our framework for automatic frequency assignment. In Sections ??,
?? and ?? the three components of the system, i.e. the compiler, the it-
eration shell and graph coloring algorithms are presented in greater detail.
Section ?? includes an investigation of the graph coloring algorithm that
we chose to focus on i.e. DSATUR, together with some general techniques
that can be used to improve the performance of this type of algorithm. In
Section ?? we present some test results, which are based on a real frequency
assignment problem. Finally, Section ?? concludes this study.

2 Preliminaries

A graph G is an ordered pair consisting of a finite set V (G) of vertices and
a set E(G) of unordered pairs (u, v) of distinct vertices, called edges. Two
vertices u and v are adjacent if (u, v) ∈ E(G). N(v) = {u ∈ V (G)|(v, u) ∈
E(G)} is the neighborhood, deg(v) = |N(v)| the degree of v. If e = (u, v) ∈
E(G) then vertex v is said to be incident to edge e.

G′ is a subgraph of G if V (G′) ⊆ V (G), E(G′) ⊆ E(G).
A clique in G a subgraph Cl of G with (u, v) ∈ E(Cl) for all u, v ∈ V (Cl).

Cl is called maximal if there is no clique Cl′ with V (Cl) ⊂ V (Cl′) and
maximum if no clique Cl′′ exists with |V (Cl′′)| > |V (Cl)|. The clique number
ω(G) denotes the cardinality of a maximum clique in G.

A k-coloring of the graph G is an assignment of an integer color value
1 ≤ c(v) ≤ k to each vertex v ∈ V (G) such that adjacent vertices receive
different color values. satdeg(v) = |{c(u)|u ∈ N(v)}| is the saturation degree
of v.

The chromatic number ξ(G) is the minimum k for which G has a k-
coloring. The determination of ξ(G) for arbitrary G is known to be NP-
complete [?]. However, the following well-known inequality provides a lower
bound on ξ(G):

ξ(G) ≥ ω(G) (1)

Upper bounds on ξ(G) are provided by finding feasible colorings. Mat-
ula’s smallest-last coloring [?] can be used for this purpose:

1. [Initialize.] j ← |V (G)|,H ← G.

2. [Find minimum degree vertex.] Let vj be a vertex of minimum
degree in H.

3. [Delete minimum degree vertex.] H ← H − vj , j ← j − 1.

4. [Terminate.] If j ≥ 1 go to step 2, otherwise terminate.

The sequence v1, . . . , vn thus obtained is a smallest-last ordering for G.
A smallest-last coloring of G and an upper bound on ξ(G) is obtained by

c(vi)
4
= min{m|1 ≤ m 6= c(vj), vj ∈ N(vi), j < i} (2)

δ(G)
4
= max{c(vi)} (3)

ξ(G) ≤ δ(G) (4)

3 The Model

Traditionally, cellular telecommunications systems are described using a
model with hexagons or cells, with one hexagon per transmitter. The hexag-
onal shape was chosen mainly because it is possible to cover an area com-
pletely with equally sized hexagons. The hexagon model is however not
very well suited for performance calculations, since the model does not take
into account the geographical structure of the area covered nor the local
properties of the transmitters. Nevertheless, many authors have developed
frequency assignment methods based on a regular hexagonal cell pattern;
see e.g. [?, ?].

A model that more correctly takes into account the geographical struc-
ture and the local properties of each transmitter is the model used by ERA
for evaluating the performance of a system. The area of the system is cov-
ered with a fine-meshed grid. In each grid point there is information on the
predicted signal strength of each transmitter in the system. The cell of a
transmitter is then defined as the area which contains all the grid points
where that particular transmitter has the strongest signal. One implication
of this definition is that a cell may consist of a number of disjoint parts.

In the grid model, the performance of the system can be measured in a
particular grid point by calculating the difference in signal strength of the
transmitter serving the cell and the combined signal strengths of all other
transmitters using the same or adjacent frequencies.

Using the difference-method described above as a base for automatic
frequency planning would be too costly, in terms of processing power. In a
computation, frequencies would be allocated to transmitters depending on
how much interference is caused in the rest of the system. This means that
the signal quality of all grid points in all cells using a particular frequency
would have to be recalculated as soon as that frequency or an adjacent
frequency is tried in a new cell.

However a simplified version of the difference-method could form a base
for automatic frequency planning. The system is transformed into a graph
〈V,E〉 by associating the vertices V with the transmitters and the edges E
with the constraints. Every vertex is connected by edges to all other vertices,
thus forming a complete graph. The edges are labelled using the information
in the grid system.

There are two labels, l1 > l2, on each edge (u, v), denoting the respec-
tive weights of the co-channel and adjacent channel constraints on u and v.
Edges where l1 = 0 can be dropped. Co-site constraints are considered hard
constraints, and our algorithm never considers solutions that violate them.
Finally, the set of available frequencies or frequency groups corresponds to
the set of colors available.

The weights are calculated using the following definitions:

f(vi, x)
4
= signal strength of transmitter vi in grid point x (5)

g(vi)
4
= {x|∀j 6= i.f(vi, x) ≥ f(vj , x)} (6)

α(vi, vj)
4
= {x|x ∈ g(vi)&f(vi, x)− f(vj , x) < Tcc(x)} (7)

l1(vi, vj)
4
= max(

|α(vi, vj)|
|g(vi)|

,
|α(vj , vi)|
|g(vj)|

) (8)

β(vi, vj)
4
= {x|x ∈ g(vi)&f(vi, x)− f(vj , x) < Tcc(x)− γ} (9)

l2(vi, vj)
4
= max(

|β(vi, vj)|
|g(vi)|

,
|β(vj , vi)|
|g(vj)|

) (10)

where g(vi) defines the cell served by transmitter vi; α(vi, vj) determines the
grid points in the cell served by transmitter vi with co-channel interference
from transmitter vj greater than the threshold value Tcc; γ is the adjacent
frequency attenuation (a constant > 0); and β(vi, vj) determines the grid
points in the cell served by transmitter vi with adjacent channel interference
from transmitter vj greater than the threshold value. Different threshold
values may be chosen for different grid points, thus tolerating less interfer-
ence in grid points corresponding e.g. to highways, than in others, e.g. in
unpopulated areas.

Within this model the interference I(c) in the system modelled as the
graph 〈V,E〉 can be defined as:

I(c)
4
= max({l2(vi, vj)|(vi, vj) ∈ E, |c(vi)− c(vj)| = 1} ∪

{l1(vi, vj)|(vi, vj) ∈ E, c(vi) = c(vj)}) (11)

where modulo arithmetic may be applied in computing |c(vi)− c(vj)|. That
is, given an assignment c of frequencies over the set of transmitters, the
maximum interference of the whole system is defined as the maximum weight
of all unsatisfied co-channel and adjacent channel constraints. Finally, an
assignment c is optimal if it minimizes I(c).

Figure 1: An overview of the system

It follows from this definition that the combined interference on a cell
from several transmitters is approximated by the interference from the
strongest interferer. Whether this approximation causes any problems in
practice remains to be seen.

4 The Framework

The system for automatic frequency assignment consists of three modules.
Figure ?? shows an overview of the system. The first module is a compiler to
make the transformation from the grid representation of the system into the
graph representation. The second module is a shell surrounding the graph
coloring module, which is the third module. The function of the iteration
shell is to supply the coloring module with an appropriate subgraph of the
original graph. The coloring module then determines if the subgraph is
colorable or not. The following sections will describe in more detail each of
the three modules.

The purpose of splitting the system into modules is twofold, most im-
portant being time savings. The output from the compiler does not have
to be regenerated unless the transmitter configuration has changed, and in
that case the grid representation also has to be updated thus producing new
input to the compiler.

The other reason for splitting the system into modules is for testing
different algorithms without having to rewrite the whole system. Both the
iteration shell and the graph coloring module offer great opportunities for
exploring different ideas.

5 The Compiler

The compiler is a 250 line C program. The input to the compiler is a
number of prediction grid files, one for each transmitter in the system, and

one composite grid file, containing information of which transmitter has the
strongest signal for each grid point, i.e. defining the cells according to the
description above. In a prediction grid there is one entry for each grid point.
An entry consists of information to identify the grid point, but also the signal
strength of that transmitter in that grid point.

The compiler calculates the interference between each pair of transmit-
ters according to the formulas (??) and (??) above. For each pair of trans-
mitters with an interference larger than zero an entry is created in the output
file. An entry in the output file consists of the vertex pair and the calculated
weight and type of the label (1 or 2).

6 The Shell

Prolog was chosen as the implementation language for the iteration shell and
graph coloring algorithms.

The objective for the shell is to find the largest colorable subgraph of the
input graph by adding the edges in descending weight order, given a specified
number k of colors. When a computation is started edges with two labels
i.e. l1 and l2 are split into two identical edges, one with each label. Similarly
the neighborhood N(v) of v is split into two sets, N1(v) being the vertices
incident to edges with labels l1, and N2(v) being the vertices incident to
edges with labels l2.

The shell orders the labelled edges in ascending weight order, enumerat-
ing them 1 . . . n. A binary search of the ordered edge list is performed until a
maximal suffix is found, such that the corresponding subgraph is k-colorable.
The interference in the system is defined as the largest weight of a label of
any edge which is not part of the suffix.

Let Gp denote the subgraph of G that contains the edges p+1 . . . n. The
goal of the shell is to find the minimum m such that Gm is k-colorable. The
following iteration is used:

1. [Initialize.] Set l← 0, h← n.

2. [Terminate.] If l = h stop with m = l.

3. [Color subgraph.] Set j ← b(l + h)/2c. Color the graph Gj . If a
k-coloring is found, let h← j. Otherwise, let l← j + 1. Go to step 2.

Several optimizations were added to the iteration shell:

• When a coloring c has been found, it can happen that c is a feasible
coloring for some subgraph G′

j , j
′ < j (trivially recognized by checking

each edge j′ + 1 . . . j). In this case, we set h← j′ before proceeding to
step 2.

• It is sometimes possible to provide a lower bound l for m by detecting a
priori that ξ(Gl′) > k, l′ < l. In [?], such lower bounds are derived, the
most important one being ω(Gl′). Other lower bounds derived from
adjacent channel constraints and their combination with co-channel
constraints can also be derived (Lemmas 7 and 9 of [?]), but have not
yielded any better lower bounds than ω(Gl′) in our experiments.

In step 1, we initialize l to the smallest l′ such that ω(Gl′) ≤ k. Com-
puting ω(Gl′) is itself an NP-complete problem, so this computation is
only done once when the graph is loaded into the iteration shell, and
could in principle be done by the compiler.

• Similarly we can obtain upper bounds h for m by detecting a priori that
ξ(Gh′) ≤ k, h′ > h. This can be done if the smallest-last coloring of
Gh′ is a k-coloring. In the presence of adjacent-channel constraints, we
must use a modified definition of degree while computing the smallest-
last ordering:

deg(v)
4
= |N1(v)|+ 3|N2(v)| (12)

where the factor 3 is motivated by the fact that an adjacent channel
constraint on (u, v) given a = c(u) implies c(v) 6∈ {(a−1) mod k, a, (a+
1) mod k}.
In step 1, we initialize h to the smallest h′ such that δ(Gh′) ≤ k.
Computing δ(Gh′) can be done in O(|V | + |E|) time [?]. This is also
done only once.

7 Graph Coloring Algorithms

The problem of coloring the vertices of a graph in such a way that two
adjacent vertices never have the same color has been of interest for math-
ematicians for nearly 150 years [?]. It is well known that this problem is
NP-complete [?]. This means that the algorithm proposed by Brown in [?]
and improved in [?] and [?] that solves the problem exactly is of little practi-
cal interest since it will be too time consuming. Several heuristic algorithms
have however been proposed over the years, as well as various techniques for
improving those algorithms. The following sections within this section will
give a brief survey of some of those algorithms, and the next section will
study in greater detail one of those algorithms.

One general coloring algorithm is the sequential coloring based on order
O [?, ?]:

• determine an order O : v1 < v2 < · · · < vn of the vertices.

• c(vi)← min{m|1 ≤ m 6= c(vj), vj ∈ N(vi), j < i}

Needless to say, the coloring obtained will depend on the chosen order
O. Matula’s smallest-last coloring is a typical example.

Other sequential colorings construct the order dynamically, while color-
ing the vertices. One such strategy is known as Recursive Largest First RLF
[?]. In RLF, a current color is determined, then the uncolored vertices are
scanned one by one. If it is possible to assign the current color to the vertex,
this is done and that vertex is removed from the set of uncolored vertices.
If, on the other hand, the assignment would violate the rules for coloring,
the vertex has to wait until the next scanning. When all vertices have been
scanned with one color, a new color is chosen to be current color and the still
uncolored vertices are scanned again. This procedure is then repeated until
either all vertices are colored, and hence the coloring succeeded, or there are
no colors left, in which case the coloring failed.

The big advantage of the RLF algorithm is that it is very fast. However,
the quality of the solution is sensitive to the order in which the vertices are
scanned. Sorting the vertices by degree, i.e. the number of edges leading to
a vertex, and starting the scan at the vertex with the highest degree, yields
a solution with a fair quality at a relatively small cost. Other improvements
are possible.

There also exist a number of methods that are not sequential colorings;
see [?] for an overview and bibliography.

8 The DSATUR Family of Algorithms

8.1 Introduction

Yet another sequential coloring based on a dynamic vertex order is known
as DSATUR [?]. The following steps are performed until all vertices have
been colored:

• pick out a vertex vi with maximal saturation degree.

• choose a color for vi among the feasible ones for that vertex.

There are two major reasons why we became interested in using this
algorithm as a base for further development. The first reason is that the
quality of the solution is slightly better than the one for the modified RLF,
and the execution times are shorter. What is more important, however is
that DSATUR in the original version, offers big possibilities for improvement.

The first improvement is choosing a data structure which optimizes the
selection of the vertex with maximal saturation degree. This is accomplished
by keeping an explicit representation of the domain of feasible colors for the
vertex. Whenever a color a is chosen for v, a is deleted from the domains of
all vertices in N1(v), and (a− 1) mod k, a, (a + 1) mod k are deleted from
the domains of all vertices in N2(v).

Finding a vertex with maximal saturation degree is accomplished by
using a priority queue [?], where each entry in the priority queue has direct
pointers to its neighborhood. When there are several vertices with the same
saturation degree, the tie is broken using the smallest-last order.

A further modification that improves the quality of the solution is to
improve the choice of color for the selected vertex. A good idea is to choose
from the domain the color that will reduce the domains of the neighbors the
least. This strategy is known in the literature as the principle of maximum
overlap of denial areas [?].

The following subsections will describe some techniques, independent of
the algorithm, that we also explored in order to improve the performance
of the DSATUR algorithm, namely: local propagation, constraint lifting,
intelligent backtracking, and iterative deepening. Furthermore an important
optimization for graph coloring, redundancy avoidance, was used.

8.2 Local Propagation

Local propagation is a consistency technique [?] to maximize the pruning of
the search space by propagating the domain reductions as far as possible.
The idea of local propagation is that when the domain of a vertex v is
reduced, a check is made to see if there is only one color left in its domain.
If that is the case, v is colored immediately, reducing the domains of its
neighbors. The local propagation continues until no more domains can be
reduced.

Furthermore if N2(v) is non-empty, local propagation is sometimes pos-
sible if up to three colors are left in the domain of a vertex. Consider, for
example, a domain {a, a + 1}. No matter which of the two possibilities is
eventually chosen, it is easy to see that neither a nor a+1 are feasible colors
for vertices in N2(v).

Local propagation will reduce the number of iterations, since more than
one vertex may be colored within the same iteration. More importantly, it
will prune the search space and detect failures earlier. Furthermore fewer
updates of the priority queue are needed.

Local propagation as described here in fact implements arc-consistency,
or more precisely the AC-3 algorithm, which is at the heart of the imple-
mentation of Constraint Logic Programming (CLP) languages over finite
domains [?].

8.3 Constraint Lifting

Constraint lifting is a technique to improve the quality of the solution. The
key idea of the technique is to extract implicit information that exists in the
system and incorporate this information explicitly into the data structures,
by means of reduced domains and/or adding new edges. This added infor-
mation may contribute to making better decisions when choosing a color by

pruning the search space.
In our implementation, as soon as the domain size is less than or equal

to five, all different alternatives are tried one by one by performing local
propagation as described above. If some property holds for all alternatives
tried, this property is added to the system. We infer the following properties:

• domain reduction, if the same element was deleted from some domain
in all alternatives, and

• co-channel (adjacent channel) constraints, if two domains were disjoint
by at least one (two) colors in all solutions and the new constraint was
not subsumed by existing constraints.

The reason for limiting the search for common properties among five
choices or less is pragmatic. The probability of finding a common property
among a number of choices decreases rapidly with the number choices, while
the computation time increases. We found no case where any information
could be gained by applying constraint lifting to a domain with size greater
than five.

To give an example, assume for instance that a vertex v after an iteration
has two remaining colors a and b available. Then before exiting that itera-
tion, a is first assumed to be the color of v and this is propagated through
the system. All changes to the system are remembered and compared to the
changes caused by the propagation of b. In our example assume that both a
and b caused a third color c indirectly to be removed from the domain of a
vertex w. Then c can be permanently removed from the domain of w, since
no matter what color v will get in the future, this will result in doing this
removal.

8.4 Intelligent Backtracking

Intelligent backtracking [?] is a technique to reduce the computation time.
As suggested by the name, intelligent backtracking is an improved variant
of backtracking. When using intelligent backtracking the computation may
backtrack over several choice points, upon a failure, even if there are several
alternatives remaining at the skipped choice points. The decision of how far
to backtrack may be based on various data.

Our approach to making backtracking intelligent is to keep track of all
variables involved in a conflict with remaining alternatives, backtrack to the
point in the computation where the last of those variables was assigned, and
try to make a new assignment to that variable.

In the DSATUR algorithm, conflicts are detected while updating the
domains of adjacent vertices. When the domain of a vertex becomes empty,
there is a conflict. The variables involved in that conflict are primarily all
colored neighbors of that vertex. Changing the color assignment of one of

them may solve the conflict. However, changing the color assignment of
another vertex, further away from the conflict, could also solve the conflict.

In our implementation of intelligent backtracking, each vertex x is as-
sociated with an initially empty constrainer set, i.e. the set of colored ver-
tices with alternatives remaining that directly or indirectly caused a domain
change in x. An indirect domain change is the case when the constrainer
caused a direct domain change of a vertex that was subsequently colored,
causing a direct or indirect domain change of x.

When a conflict is detected, the most recently colored member c of its
constrainer set s is selected as the culprit. The state of the program is
restored to a point immediately before the culprit got its last color, that
color is removed from the domain of the culprit, and all members of s\{c}
are added to the constrainer set of c as in [?]. A new color is selected and
the computation continues searching for a solution.

The search space may still be too large despite the use of intelligent
backtracking. One way of solving this problem is to place a restriction on
the backtracking depth, i.e. how far the computation is allowed to be backed
up when a conflict is detected.

The order in which vertices are colored is maintained by having a counter
incremented at each iteration. This information can also be used for placing
a restriction on the backtracking depth. If the considered vertex got its color
too early, the algorithm terminates with failure. The maximum backtrack-
ing depth is 1 initially, and is increased in successive calls to the shell (see
Section ??).

8.5 Redundancy Avoidance

Another important observation in order to save time while backtracking is
not to explore redundant solutions. This is mentioned in [?] as an important
optimization for graph coloring. When coloring a new vertex, the allow-
able colors are the already used colors and, if yet available, one new color.
Considering other unused colors will only result in redundancy.

Avoiding redundant solutions is accomplished in the program by masking
away all unused colors except one from the domains of the vertices. This
prevents the program from backtracking to more than one forbidden color.

The presence of adjacent channel and co-site constraints makes the above
described technique not directly applicable to our application, since it may
actually cause solutions to be lost. Therefore we use a modified version: The
allowable colors, when coloring a new vertex, are all colors that have been
removed from any domain, plus one more color. We conjecture that this
causes no loss of solutions.

Another well-known redundancy avoidance technique used in graph col-
oring is to find a large clique and deterministically color its vertices before
any other vertices are colored. Unfortunately, this technique can also cause
loss of solutions in the presence of adjacent channel and co-site constraints.

We have experimented with coloring initial cliques generated by adjacent
channel and co-site constraints before coloring other vertices, but this has
generally led to results poorer than using the normal DSATUR heuristic.

8.6 Iterative Deepening

Iterative deepening is a technique where successive calls are made to an
algorithm, increasing the backtracking depth for each call. We have incor-
porated this technique into the DSATUR algorithm resulting in two different
versions: the “naive” and the “sophisticated” version. The latter uses infor-
mation about failed attempts to solve subgraphs.

In the naive version, each call to the iteration shell increases the back-
tracking depth by one. Of course the time consumption increases as the
search space is enlarged, as there are more possibilities for finding a solu-
tion.

However, information about failed attempts to solve subgraphs may be
accumulated and used to avoid doing redundant work. In particular, we can
detect how much the backtracking depth must be increased in order to make
any progress on such failed attempts.

In the sophisticated version, in any call to the iteration shell with back-
tracking depth d, the search for an optimal position in the edge list is re-
stricted to the interval [p′, p) where p is the best position so far and p′ is
the smallest integer such that no subgraphs Gi, i > p′ are known to require
backtracking depths greater than d to succeed.

Ideally, the backtracking depth necessary for solving a given subgraph
Gi should be non-increasing with increasing i. Unfortunately, this is not
always the case, and so the above iterative deepening strategy tends to get
temporarily stuck at positions where a subgraph Gi cannot be solved at
backtracking depth d but some other subgraph Gj , j < i can. Nevertheless,
preliminary results show that using this improvement can give substantial
time savings over the naive version.

9 Test Results

This section contains test results from two real frequency assignment prob-
lems on an actual cellular telephone system.

In the first problem, all cells were assigned one frequency group. In the
second problem, some cells were assigned two frequency groups f, g with
co-site constraints |f − g| = k/2. Data for the two problems:

1. 157 vertices, 2868 co-channel constraints, 465 adjacent channel con-
straints, 0 co-site constraints, and k = 12. For this problem a clique
of size 13 was found at position 1381 in the edge list. A solution at
position 1382 was found and must therefore be optimal.

2. 229 vertices, 6016 co-channel constraints, 934 adjacent channel con-
straints, 72 co-site constraints, and k = 24. For this problem, no
cliques of size greater than 22 were found, and it is not known whether
the best solution found is optimal.

All timings were obtained by running SICStus Prolog compiling to native
code on a SUN 4/60. Three DSATUR variants were used with “naive”
iterative deepening:

plain uses intelligent backtracking and redundancy avoidance;

plain + LP is the plain version augmented with local propagation;

plain + LP + CL is the plain version augmented with local propagation
and constraint lifting.

Figure ?? shows the relation between backtracking depth, time consump-
tion, and quality for the three variants of the algorithm run on the 12 colors
problem. This problem has an optimal solution with interference 0.0566. As
can be expected, “plain + LP + CL” reaches the optimum at the smallest
backtracking depth, followed by “plain + LP” and “plain” (see bottom plot).
Time consumption became excessive at backtracking depths greater than 21
for “plain + LP + CL” (see middle plot).

One interesting observation is that there exist some points where an
increase in the backtracking depth actually leads to a speed up (middle
plot). These points have in common the fact that together with the speed
up, there is also an increase in the quality of the solution. Most likely, some
subgraph was not colorable at the smaller backtracking depth but succeded
at the greater depth, and the subsequently tried subgraphs at the smaller
depths required much more time than did the subsequently tried subgraphs
at the greater depth.

The top plot shows for a given interference the DSATUR variant that
produces a solution with the desired quality in the shortest amount of time.
For this problem, the “plain + LP” variant displays the best performance,
except for very high interferences where “plain” is somewhat faster. The
more powerful “plain + LP + CL” is much too slow to be competitive on
this benchmark.

Figure ?? shows the same relations as figure ?? but for the 24 colors
problem. The best solution found has interference 0.0263, but it is not
known whether this solution is optimal. Again, “plain + LP + CL” reaches
the optimum(?) at the smallest backtracking depth (bottom plot), followed
by “plain + LP” and “plain”, whereas “plain + LP” has the best time-
interference performance, except for finding the optimum(?) where “plain
+ LP + CL” is competitive in the 24 colors case (top plot).

10 Conclusions and Future Work

We studied the problem of automatic frequency assignment for cellular tele-
phones. The frequency assignment problem was viewed as the problem to
minimize the unsatisfied soft constraints in a constraint satisfaction prob-
lem (CSP) over a finite domain of frequencies involving co-channel, adjacent
channel, and co-site constraints. The novel idea used in this work was to au-
tomatically derive the constraints from signal strength predictions. The CSP
was solved using a generalized graph coloring algorithm. Graph-theoretical
results played a crucial role in making the problem tractable. Performance
results from a real-world frequency assignment problem were presented.

Prolog was a rather natural choice of implementation language. Lan-
guage features that proved especially useful for this application include:
automatic backtracking (including that of destructive updates) to support
search argorithms, compilation on the fly of specialized predicates for do-
main calculations, and the interactive, incremental programming environ-
ment that makes Prolog a convenient tool for exploring new algorithms.

The primary goal of this study was to find out if frequency assignment
could be automatized using a graph coloring technique. The two initial
requirements were that the quality of the solution must exceed the quality
of the man-made solution, within a shorter time. Although this study is
far from complete, the results so far indicate that both these goals are well
within reach.

Another conclusion that can be drawn from the results is hardly sur-
prising, namely the more complexity added to an algorithm, the better the
quality of the solution at the cost of longer execution times. However, con-
straint lifting was only competitive in one extreme case, which suggests that
it might be too general for this kind of application. A better candidate might
be more specialized consistency techniques such as path consistency.

In our tests we have only experimented with a single benchmark. This
is not enough to draw firm conclusions from. However this benchmark rep-
resents a real frequency allocation problem for a large city. By using this
input we were able to compare our computer generated solution with the
manually produced solution. The final outcome of this evaluation is yet to
come, but preliminary results show that our solution will outperform the
manual solution actually used.

Topics for future work include refining and parallelizing the algorithm.
Since the program solves a search problem, it should lend itself very well to
OR-parallelism. How to combine our intelligent backtracking scheme with
OR-parallelism is however not obvious, and is an interesting area for further
study.

Another interesting direction is to rewrite the program as a genuine
CLP program over finite domains. Since our program uses a mixture of
graph-theoretical, constraint satisfaction, heuristic, and application specific
algorithms, it should constitute a real challenge in terms of performance,

generality, and flexibility for constraint language implementations.

Acknowledgements

The Mobile Telephone division of ERA instigated and supported in part
this study, introducing us to the world of automatic frequency assignment,
and kindly provided the benchmark data. This work would not have been
possible without their help.

The authors thank Ralph Clarke Haygood and the anonymous referees
for careful reading of the manuscript and suggesting many improvements.

Thanks are also due to our colleagues at SICS, who have provided a
stimulating research environment.

Figure 2: The 12 colors problem. The relation between backtracking
depth, time consumption, and quality for the three variants.

Figure 3: The 24 colors problem. The relation between backtracking
depth, time consumption, and quality for the three variants.

