1,654 research outputs found

    Classbox/J: Controlling the Scope of Change in Java

    Get PDF
    International audienceUnanticipated changes to complex software systems can introduce anomalies such as duplicated code, suboptimal inheritance rela- tionships and a proliferation of run-time downcasts. Refactoring to eliminate these anomalies may not be an option, at least in certain stages of software evolution. Classboxes are modules that restrict the visibility of changes to selected clients only, thereby offering more freedom in the way unanticipated changes may be imple- mented, and thus reducing the need for convoluted design anoma- lies. In this paper we demonstrate how classboxes can be imple- mented in statically-typed languages like Java. We also present an extended case study of Swing, a Java GUI package built on top of AWT, and we document the ensuing anomalies that Swing intro- duces. We show how Classbox/J, a prototype implementation of classboxes for Java, is used to provide a cleaner implementation of Swing using local refinement rather than subclassing

    Design and implementation of a Multi-Agent Planning System

    Full text link
    This work introduces the design and implementation of a Multi-Agent Planning framework, in which a set of agents work jointly in order to devise a course of action to solve a certain planning problem.Torreño Lerma, A. (2011). Design and implementation of a Multi-Agent Planning System. http://hdl.handle.net/10251/15358Archivo delegad

    Structured editing of literate programs

    Get PDF

    Rascal: From Algebraic Specification to Meta-Programming

    Full text link
    Algebraic specification has a long tradition in bridging the gap between specification and programming by making specifications executable. Building on extensive experience in designing, implementing and using specification formalisms that are based on algebraic specification and term rewriting (namely Asf and Asf+Sdf), we are now focusing on using the best concepts from algebraic specification and integrating these into a new programming language: Rascal. This language is easy to learn by non-experts but is also scalable to very large meta-programming applications. We explain the algebraic roots of Rascal and its main application areas: software analysis, software transformation, and design and implementation of domain-specific languages. Some example applications in the domain of Model-Driven Engineering (MDE) are described to illustrate this.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Composite Modeling based on Distributed Graph Transformation and the Eclipse Modeling Framework

    Get PDF
    Model-driven development (MDD) has become a promising trend in software engineering for a number of reasons. Models as the key artifacts help the developers to abstract from irrelevant details, focus on important aspects of the underlying domain, and thus master complexity. As software systems grow, models may grow as well and finally become possibly too large to be developed and maintained in a comprehensible way. In traditional software development, the complexity of software systems is tackled by dividing the system into smaller cohesive parts, so-called components, and let distributed teams work on each concurrently. The question arises how this strategy can be applied to model-driven development. The overall aim of this thesis is to develop a formalized modularization concept to enable the structured and largely independent development of interrelated models in larger teams. To this end, this thesis proposes component models with explicit export and import interfaces where exports declare what is provided while imports declare what it needed. Then, composite model can be connected by connecting their compatible export and import interfaces yielding so-called composite models. Suitable to composite models, a transformation approach is developed which allows to describe changes over the whole composition structure. From the practical point of view, this concept especially targets models based on the Eclipse Modeling Framework (EMF). In the modeling community, EMF has evolved to a very popular framework which provides modeling and code generation facilities for Java applications based on structured data models. Since graphs are a natural way to represent the underlying structure of visual models, the formalization is based on graph transformation. Incorporated concepts according to distribution heavily rely on distributed graph transformation introduced by Taentzer. Typed graphs with inheritance and containment structures are well suited to describe the essentials of EMF models. However, they also induce a number of constraints like acyclic inheritance and containment which have to be taken into account. The category-theoretical foundation in this thesis allows for the precise definition of consistent composite graph transformations satisfying all inheritance and containment conditions. The composite modeling approach is shown to be coherent with the development of tool support for composite EMF models and composite EMF model transformation
    • …
    corecore