
Structured Editing of Literate Programs

Angus John Charles Duggan

M.Phil.

University of Edinburgh

1994

This thesis describes an investigation into the use of syntax-directed editing for

programs developed within the literate programming software methodology.

A review of literate programming literature and a discussion of some of

the problems which have prevented the widespread acceptance of literate pro-

gramming is presented. The way in which syntax-directed editing could be used

to solve these problems and fulfil four basic criteria for literate programming

systems was investigated.

Two implementation studies in creating syntax directed literate program

editors were performed, using the Synthesizer Generator, a system for building

syntax-directed editors. The compromises made in the design and implement-

ation of these editors with the Synthesizer Generator are discussed. A larger-

scale implementation of a literate program editor for the Pascal programming

language was performed, using the techniques developed in the implementa-

tion studies. The implementation of the Pascal editor highlighted a fundamental

problem in the evaluation of the attribute grammar representation of the pro-

gram which was used.

The problem in the implementation of the Pascal editor was investigated,

and it is shown that the problem will necessarily occur when attribute grammars

are used to represent literate programs using the techniques developed. It is also

shown that the problem is solvable using a modified algorithm for evaluating

the attribute grammar, but the running time of this algorithm is unacceptably

high for use in interactive systems.

A method for describing the structure of literate programs is proposed, and

the potential problems of implementing syntax-directed editors based on this

method are examined. A generalisation of this descriptive method is presented

which may be applicable to a wide class of non-linear documents.

II would like to thank Jenny, for patience, comfort, and support while writing this

thesis. It would also like to thank Mandy, for constant optimism and exemplifying

perseverance. Finally, II would like to thank Nick and Chris, for making dull times

interesting.

Part of this work was funded by an industrial scholarship from STC.

I declare that this thesis was composed by myself, and that the work contained

in it is my own, except where explicitly stated in the text.

Table of Contents

Thiblie of Contents

Ust of Figures 	 iv

L Entroduction 	 1

1.1 Overview 	 1

1.2 What is Literate Programming 	 3

1.3 Syntax-directed editing4

1.4 Motivation5

2. Lfteratre Survey 7

2.1 	Literate Programming 7

2. 1.1 	WEB 7

2.1.2 	The Literate Programming Paradigm 9

2.1.3 	Extensions to WEB 10

2.1.4 	WEBs for other languages 12

2.1.5 	Language independent WEBs 15

2.1.6 	Multilingual WEBs 21

2.1.7 	WEBless WEBs 23

2.1.8 	WEB tools 24

2.1.9 	Related work 31

2.1.10 Bibliographies 41

1

TABLE OF CONTENTS

2.2 Syntax-directed Editing41

3. Objective 52

3.1 Introduction 52

3.2 Control, formatting and programming languages 54

3.3 Textual decomposition of programs 55

3.4 Debugging 58

3.5 Publishing Tools 59

3.6 Additional benefits 59

3.7 Summary 61

3.8 Strategy 61

4. Emplementation studies 64

4.1 SSL, the Synthesizer Specification Language 64

4.2 Design issues for literate program editors 66

4.3 Feasibility studies 68

4.3.1 	Program structure as primary structure 68

4.3.2 	Documentation structure as primary structure 73

4.4 Implementation of Synthesizer Generator editors 80

4.5 The literate Pascal editor 82

4.5.1 	Improvements to the literate Pascal editor 90

5. Evaluation 	 92

5.1 The literate program editors92

5.2 Relevant Synthesizer Generator improvements95

5.3 Cyclic attribute dependencies96

5.4 Convergent cyclic attribute dependencies100

6. Representing literate programs 113

6.1 Views of literate programs 113

6.2 Dual-rooted grammars 113

6.3 Structured editing with dual-rooted grammars 120

6.4 Many-rooted grammars 123

11

TABLE OF CONTENTS

7., CondusAons 125

7.1 	Summary 125

7.2 	Future Work 126

7.3 	Conclusions 128

I8iibiograhy 	 129

U'

UJt of Ngures

4-1 Main view of "toy" editor with program structure priority. . . 	69

4-2 Program view of "toy" editor with program structure priority. 	71

4-3 Documentation view of "toy" editor with program structure pri-

ority. 72

4-4 Main view of the "toy" editor with documentation structure pri-

ority. 74

4-5 A type mismatch error occurring after correction of the declara-

tion error in the "toy" editor with documentation structure pri-

ority. 75

4-6 Documentation node errors in the "toy" editor with documenta-

tion structure priority 77

4-7 Program view of "toy" editor with documentation structure pri-

ority.79

4-8 Main view of the literate Pascal editor 83

4-9 Program view of the literate Pascal editor 86

4-10 Attribution errors in the literate Pascal editor 89

5-1 Information flow through program tree with entire program tree

in one documentation node 	98

5-2 Ideal information flow through program tree with one docu-

mented program refinement 	99

iv

LIST OF FIGURES

5-3 Actual information flow through program tree with one docu-

mented program refinement 100

5-4 Documentation tree of a literate program with inherited and

synthesised attribute chains 103

5-5 Attribute dependency graph of the program tree in figure 5-4 103

5-6 Algorithm for evaluating a fixed point of a dependency cycle 105

5-7 Evaluating a path 106

5-8 Finding the cyclic paths through the dependency graph . . . 107

5-9 An SCC with mutual dependencies causing invalid cycles 	. . 110

5-10 SCC with mutual dependencies within refinements 111

6-1 Linked derivation trees of 'toy' program and documentation . 	114

6-2 Simplified program grammar for the toy literate program editor

in chapter 4 . 	. 	115

6-3 Simplified documentation grammar for the toy literate program

editor in chapter 4.......................116

V

Utrodtctoii

This thesis describes an investigation into the uses of syntax-directed editing for

programs developed with the literate programming software methodology.

Chapter 1 describes the structure of the thesis, presents a brief introduction

to literate programming and syntax-directed editing, and explains the

motivation for applying syntax-directed editing to literate programs.

Chapter 2 presents an extensive literature survey of literate programming and

a set of four basic criteria by which a programming system may be judged

literate. A short survey of syntax-directed editing systems is also be presen-

ted.

Chapter 3 discusses in more detail the problems which have prevented the

widespread acceptance of literate programming, and the way in which

syntax-directed editing could be used to solve these problems. The use

of syntax-directed editing in relation to the four basic criteria for literate

programming systems presented in chapter 2 is discussed, and a strategy

for building a syntax-directed literate program editor to demonstrate these

points is shown.

Chapter 4 discusses several implementations of literate program editors which

were developed using a system for building syntax-directed editors. Two

1

CHAPTER 1
	

INTRODUCTION

initial feasibility studies which were performed are described, and con-

clusions about the design and implementation of literate program editors

are drawn from them. The implementation of a literate program editor

for a real programming language is then described, and the problems en-

countered in scaling up the techniques developed in the feasibility studies

are discussed.

Chapter 5 presents an evaluation of the literate programming editor imple-

mented in chapter 4 with reference to the criteria for literate programming

systems given in chapter 3. The problem which prevented the implement-

ation from being viable is examined in more detail, and it is shown that

the problem is due to the representation of the literate programs used in

chapter 4. A solution to the problem is then shown, but an analysis of its

running time reveals that the representation used was inappropriate for

literate programs.

Chapter 6 proposes a modification of the representation used for literate pro-

grams in chapter 4. The potential problems of implementing syntax-

directed editors using this representation are examined, and a general-

isation of this new representation is presented which may be applicable to

other non-linear documents.

Chapter 7 summarises the results achieved, draws some conclusions about the

representation of literate programs in syntax-directed editing and other

programming environments, and highlights the work which remains to be

done to make syntax-directed editing of literate programs viable.

In this thesis, I assert that the attribute grammar model used by many

syntax-directed editors is not sufficient for manipulating literate programs, but

that a modification of it may be sufficient for representing not only literate

programs, but a variety of other non-linear structures too.

2

CHAPTER 1
	

INTRODUCTION

2.2 What 'Gs L'Mauata Pirogtramm'Gng?

The literate programming software methodology was created to address the

problem of keeping up-to-date documentation for programs. Brooks ([191,

p. 121) asserts that software maintenance is typically 40% or more of the

cost of program development. Oman and Cook [851 state that "programmers

spend between 47 and 62% of their time trying to comprehend code". It is

obvious from these assertions that good documentation is needed to be able to

understand and maintain programs.

The term literate programming was coined by Donald Knuth [66] to explain

the nature of the new software methodology—that by considering programs

as works of literature the structure of the program and the accompanying doc-

umentation can be improved. Knuth also admits to some malice in naming the

methodology; after being forced to adopt structured programming because he

did not want to be accused of unstructured programming, Knuth got his own

back by making other people consider whether they are writing illiterate pro-

grams.

The essence of the methodology is contained in the idea that instead of

writing a program with the objective of instructing a computer what to do, we

should write the program with the objective of explaining to human beings what

we want the computer to do. Literate programming can be seen as technical

writing applied to programs, where the programmer states everything twice,

once informally (the documentation), and once formally (the program). Literate

programming allows the programmer to combine the best features of top-down

and bottom-up program design methods. Top-down design imparts a strong

sense of direction to programming, but keeps a lot of details in suspense until

the end. Bottom-up design continually improves the toolkit with which the

program is being built, but postpones the overall program organisation to the

last minute. With literate programming, the program can be created in a "stream

of consciousness" order, which allows sections of the program to be developed

top-down or bottom-up, whichever is most appropriate to the exposition of the

program. The presentation of code which is irrelevant to the module being

3

CHAPTER 1 	 INTRODUCTION

developed can be deferred until a more suitable point, focussing the author's

attention more dearly on the design and exposition of the current module.

Knuth developed a tool, WEB, which integrates the documentation and code

of a program into a single file. WEB provides macro-processing facilities which

facilitate the "stream of consciousness" order of presentation. It was intended to

make it easier for experienced programmers to develop and document programs.

He quotes Anthony Hoare:

"Documentation must be regarded as an integral part of the process
of design and coding. A good programming language will encourage
and assist the programmer to write clear, self-documenting code, and
even perhaps to develop and display a pleasant style of writing."

The best known works using literate programming are Knuth's text format-

ter, TEX [67], and algorithmic font generator METAPONT [68]. These programs,

along with their supporting utility programs, constitute a large body of software

which was the reason for WEB's creation. The success of TEX has been due in

some extent to the ease with which it has been ported to new machines, which

in turn is due to it being written in WEB.

Syntax-directed or structured editing is also a relatively new field, which has

waited for the technology to develop to make it practical. Syntax-directed editors

restrict the possible operations to the structure of the document (usually a

programming language) which is being edited. Motion and editing operations

follow the syntactic Units of the document. Templates are often provided, to

insert new syntactic units or transform syntactic units into different forms.

Documents created with syntax-directed editors have the property that the they

are always syntactically correct, even though they may not be complete.

Syntax-directed editors incorporating knowledge of a programming lan-

guage's semantics can detect and display semantic as well as syntactic errors,

giving immediate feedback to the programmer developing the program. Se-

4

CHAPTER 1
	

INTRODUCTION

mantic knowledge can be used to generate code incrementally while editing,

avoiding lengthy recompilation delays.

The best known syntax-directed editors are the work of Reps and Teitel-

baum. Their Cornell Program Synthesizer [109] was the one of the first practical

examples of a syntax-directed editor. It was based around an incremental attrib-

ute grammar evaluator, which updated only the parts of the program represent-

ation which were changed by an editing operation. The Synthesizer Generator

[97] is a successor to the Program Synthesizer, which allows the creation of

syntax-directed editors from a specification written in the Synthesizer Specific-

ation Language (SSL).

2.4 M©ftt©m

In the introduction to their book about the Synthesizer Generator [97], Reps

and Teitelbaum say:

"Programs exist not in isolation, but in relation to supporting docu-
ments. Whether interleaved with the program or separated from it,
designs and specifications become large and unwieldy; these auxili-
ary languages themselves need language-based tools. By combining
knowledge of both the programming language and the design or
specification language in a single programming tool, it is possible to
furnish programmers with support for creating programs according
to particular methodologies."

There are several particular advantages that a syntax-directed editor for

literate programs might bring compared to traditional programming tools (edit-

ors, preprocessors, and compilers). Chapter 3 will explain these points in more

detail.

o The knowledge required to use a literate program editor will be less than

the equivalent traditional system. In a normal WEB system, the program-

mer must know the programming language, the documentation formatting

language, and the WEB system's language for controlling the interleaving

5

CHAPTER 1
	

INTRODUCTION

of code and documentation. A literate program editor can present the doc-

umentation and code separation visually, removing the need to learn the

control language, and the documentation language can be abstracted to

generic markup operations for which templates can be provided without

removing the possibility of accessing the full power of the formatting lan-

guage if needed. Templates can similarly be provided for the syntax of the

programming language, reminding the programmer of the possibilities

available.

o Syntactic and semantic errors can be interactively checked and displayed in

both the program code and the documentation. In particular, the problems

associated with textual expansion in normal WEB systems are completely

prevented.

o Semantic error checking provides a degree of debugging in the original lit-

erate program format, rather than the post-processed form output by some

WEB tools. Incremental code generation and execution may be provided

to allow completely integrated debugging.

o The benefits of publishing tools such as tables of contents, indices of

identifiers, and module cross references are shown by some of the studies

cited in chapter 2. Such tools maybe provided interactively, with the added

benefit of always being up to date.

The advantages which could be provided by a syntax-directed literate pro-

gram editor can be summarised as reducing the effort required by the program-

mer. Mistakes are caught earlier in the development cycle, and high-quality

information about the structure of the program improves comprehension, redu-

cing bugs and shortening development time.

ru
Uterature Survey

2i1.it WEB

The term "Literate Programming" was introduced in Knuth's seminal paper [66].

This paper provides an introduction to JKnuth's WEB system, and motivates the

specific concerns of literate programming.

Knuth's original WEB system (as used for TEX and META FONT) is a macro

pre-processing system tailored for the Pascal programming language and the

TEX typesetting system [65]. A single source file contains "modules"' which

consist of a documentation part, a definition part, and a code part.

The code part of the module contains a fragment of program, which is

associated with a name. References to this name can be made in other code

parts, indicating that the fragment associated with the name is to be inserted at

that point in the program. The features of WEB macros which make them useful

for explaining programs are:

o More than one association can be made to each name - all of the frag-

tThe choice of the term "modules" is an unfortunate one in retrospect, because WEB

modules are not at all similar to the more common meaning of modules in Computer

Science - that of separately compiled units of a program with a well-defined public

interface and private implementation.

CHAPTER 2
	

LITERATURE SURVEY

rnents associated with the same name are collected together before ex-

pansion. This allows pieces of code which have syntactic constraints on

their positioning in the program to be separated out and explained in

juxtaposition to related pieces of code.

o The names of code parts in the WEB system can be whole sentences,

containing nearly any sequence of characters desired. References to names

can be abbreviated, as long as the abbreviation is unambiguous, for the

convenience of the programmer.

Unnamed code parts are also permitted: these are collected together and used

as the root module of the program, which will be expanded to create the whole

program source code.

The definition part of a module is used for macro definitions which are

expanded in the code parts. These macros are a single line of text, optionally

with one parameter which is substituted in the replacement text. The definition

parts of WEB were included mainly to make up for deficiencies in the Pascal

programming language.

The documentation part of a module is intended as a commentary explain-

ing what the code and definition parts are used for. There is a very rudimentary

document structuring facility provided by "major modules", which are made

more visually prominent.

There are two programs in the WEB system, both of which operate on the

single source file: TANGLE takes the source file and produces a compilable Pascal

program from it, and WEAVE takes the source ifie and produces a typesettable

TEX document from it. The program listing produced by TANGLE is deliberately

obfuscated by removing comments and non-significant whitespace, with the in-

tention of forcing the programmer to use the typeset listing. The HEAVE program

which produces typeset listings of the program incorporates a sophisticated,

but unfortunately not very customisable, pretty-printer for the Pascal code sec-

tions. Knuth's ideas of good program layout do not suit everybody, and may be

one of the reasons why programmers are put off using WEB. Automatic cross-

8

CHAPTER 2 	 LITERATURE SURVEY

referencing and indexing of program modules and identifiers in the program is

also performed by IdEAVE.

WEB does not make any attempt to hide the details of typesetting commands

from the user, and indeed adds another (albeit simple) macro language to

the systems that the user must master to produce elegant programs. A simple

"changefile" facility is provided for merging system-dependent changes into the

program. Changeffles define a list of paragraphs which should be taken out of

the program, with altered versions which should replace them. 2

While Knuth himself did not develop any further literate programming

tools, he foresaw the possibilities for interactive tools such as source-level WEB

debuggers and real-time WEB display tools.

2]12 7he Lkeirate Piroprammhngadnm

Some essential points of the literate programming paradigm which Knuth did

not make explicit in his paper have been highlighted by Van Wyk and Thimbleby.

The main point is called verisimilitude by Van Wyk [121] to indicate that exactly

the same text is used for creating the human-readable documentation for the

program and the compilable program. Thimbleby makes a good job of explaining

the literate programming paradigm in his review of Lindsay's program [123]. He

opines that in order for literate programming to qualify as paradigmatic it should

provide certain features essentially for free; these feature would be expected to

include flexible order of elaboration, cross-referencing, indices, typographical

niceties, and mnemonic names.

Detig and Schrod [101] believe that there should be four characteristics for

a programming system to qualify as literate:

Integration. Integration of documentation and program code in one document

allows the user to see and change both parts at one time. There is no

2The idea is similar to the context di! I found on UNIX systems today.

CHAPTER 2 	 LITERATURE SURVEY

guarantee that this will happen, but there is more chance than if the

documentation and code are separate.

Order of exposftion. Very often a program text is arranged in a different way

than it is developed by the author. Usually this is due to restrictions in

the language syntax. A literate programming system allows the author to

adapt the structure to the needs of other authors or readers instead of

enforcing the needs of compilers.

1iemens. Named program parts with arbitrary names (not only identifiers,

but whole sentences describing pre- and postconditions) supports both

top-down and bottom-up program development.

J?Ublicaion Tools. Literate programming systems should have tools to help the

author in his presentation work. These may include index creation, table

of contents, graphic subsystems, hypertext editors/structures, versioning,

change marks, annotations, etc.

These criteria can be used to evaluate how well the literate programming

systems examined in the rest of this section fulfil their function. Many of the sim-

pler systems designed for programming language independence do not provide

publication tools, which require a knowledge of the target programming lan-

guage. A few systems do not provide flexible order of exposition; in a couple of

cases this does not matter because of the nature of the programming language

used.

2]13 lEx ns©ns to WEB

Extensions to the WEB system to make it more useful in "real-world" situations

have been made by several people. Many of these extensions have been altera-

tions to the change ifie mechanism, to cope with multiple changefiles.

Damerell [32] altered WEB's program pre-processor (Tangle) to increase

the level of error detection. Some difficult errors to trace in both the WEB macro

10

CHAPTER 2 	 LITERATURE SURVEY

language and the Pascal program code are detected. In addition, errors were

reported to a log ifie as well as to the terminal.

Appelt and Horn [5] extended WEB to use multiple changeffles for programs

with multiple system-dependent changes and revision levels. They point out that

this facility is most useful when changes are orthogonal, but they do allow the

possibility of prioritising changes which affect the same part of the original

source file.

Both Guntermann and RUling [48], and Sewell [103] wrote separate pre-

processors to allow the use of multiple changeffles with WEB. They took different

approaches to changefile conflicts: Sewell's approach in his '5EBNERGE program

was similar to Appelt and Horn's, in which one changeffle took precedence over

the others, and a warning of a conflict is issued. Guntermann and Ruling's pro-

gram, TIE, applied each changefile successively, as if the previous changeffles

had been merged with the original program. This approach is more suitable

when changeffles are being used for development of new versions of a program,

where the new code is developed as changeffles without altering the original

program, and then is merged in to create a new release version. Both of these

pre-processors create a new WEB file generated by merging the original program

and changefiles.

l3reitenlohner's PATCH processor [17] takes the same approach to merging

multiple changefiles as TIE, but also has a ifie insertion feature; a control se-

quence is used to indicate that a patch is to be inserted in the generated WEB

file. This feature allows common sections of code to be factored out of programs

which use them, and maintained as one source file. PATCH has three modes of

operation: in merge mode it creates a single WEB file and changefile, suitable

for feeding to WEAVE and TANGLE. In insert mode PATCH produces one WEB file

containing all changes and insertions, and in update mode all changes are ap-

plied to the primary patch, but insertions are not made; this mode is applicable

for creating new release versions once all changes have been fully tested. IBreit-

enlohner found the PATCH code useful enough to include in TANGLE and HEAVE,

eliminating the need for an extra pre-processing step.

11

CHAPTER 2
	

LITERATURE SURVEY

20a04 WESs ff©r ©thar

There have been several adaptations of WEB to other programming languages,

including C, Smailtalk, Modula-2, FORTRAN, Ada, C++, Scheme, and Reduce.

The first adaptation of WEB to another programming language was Harold

Thimbleby's cwth system, created in 1984 [1121. This system was designed

before Knuth's article in The Computer Journal [66] appeared - the author

heard Knuth give a talk about literate programming, and implemented his own

system from the ideas presented in the talk. Thimbleby used Troff as the format-

ter for his system, but also included a cut-down formatter in the system for

quick-and-dirty draft printouts.

Thimbleby's cweb system does not include the more sophisticated pretty-

printing functions of Knuth's WEB, but does allow the programmer to lay the

code out in the way he wants. Some manual intervention is necessary to create

good-looking listings with Thimbleby's system. A simple alignment facility is

provided to insert markers for aligning fields in the code listing, but no parsing

of the program code is performed for pretty-printing. The lack of sophisticated

parsing of the program code means that an index of identifiers could not be

generated automatically.

Cweb detected when changes were made to the actual code in a file (not

including the comments), and re-wrote the output file only when a substant-

ive change was made, allowing make to work more effectively on these files.

Included headers are supported by Thimbleby's cwth.

Thimbleby later reported experiences of using cweb [111], including sub-

jective evidence that students forced to use cweb produced better programs and

reports for assignments than those who did not use it. He states that:

"In the past program listings were submitted for examination as sub-
sidiary material, which was usually extensive, superficially homo-
geneous and disorganised in comparison with the written project
report. The project report would also contain extensive reference
to the program and often laborious internal documentation. Those
students who have used cweb have presented informative programs

12

CHAPTER 2 	 LITERATURE SURVEY

integral to the project report, and the previous tedious internal doc-
umentation is in one place and is easier to mark."

He examined the possibility of including literate programming systems in In-

tegrated Project Support Environments (JIPSEs), and mentions some of the pos-

sibilities for WEB manipulation tools, but did not pursue this line of work any

further.

Three more adaptations of WEB for C were made by Guntermann and

Schrod [49, 1001, Levy [74], and Dong [128]. Levy's version translates WEB's

definition sections into C pre-processor directives, which are then processed as

usual by the compiler. He also introduced an "include file" directive, allowing

CWEB programs to be split up into multiple files. The tangled output of Levy's

version included time directives which are recognised by most C compilers,

allowing compilation errors to be referred directly to the line in the CWEB source

file, rather than the intermediate tangled file. Levy's version of WEB for C

has been developed by himself and Knuth to handle C+ + constructs, and is

becoming the de-facto standard WEB for C.

Dong's CDS literate programming system combines the C programming

language with a language called S]1 for typesetting Chinese and English.

Sewell [102] created a literate programming system for Modula-2, called

MANGLE. The changes from the original Pascal-based WEB were easy enough that

the implementation was done in changefiles. The MANGLE system is used for

examples in his book about literate programming [104].

A specialised application of WEB for Modula-2 was demonstrated by Kredel

[71]. He created a translator to convert routines for a computer algebra system

into Modula-2 routines using WEB, with a view to using Sewell's MWEB if it is

available.

A version of WEB for Ada was created by Wu and Baker [1271. Their

conclusions after using it were that it was a far superior method of produ-

cing documentation, but there were some problems with WEB as implemented.

in particular the extra directives required to produce good-looking code were

awkward, the lack of hierarchical structure in the document frustrated good ex-

13

CHAPTER 2 	 LITERATURE SURVEY

planation of the program, the requirement for code segment names to be used

before defined in WEB was not suitable for writing re-usable components and

that explanatory code which is not part of the program cannot be formatted the

same way as the code. These criticisms are echoed by some other authors, and

may be due to the original WEB being over specialised.

Adaptations of WEB for Ada (again) [87], Scheme [89], Fortran [7,8] and

C+ + [58] have also been done, with varying degrees of success.

Reenskaug and Skaar's adaptation of literate programming to Smailtalk is

interesting, because it integrates the concepts of literate programming to work

within the Smailtalk environment and idiom.

The Smailtalk environment allows integration of code and documentation

as usual, but also allows easy inclusion of diagrams and figures in the document-

ation. An interactive "galley editor" gives a graphical overview of the structure

of the document, with icons representing text, code, figures and pictures. In-

sertions, deletions, and re-arrangements can be performed on the document by

manipulating the icons corresponding to sections, using the common cut and

paste idiom found in many GUIs. The structure of the document can include

nested sub-sections, to any level required.

Facilities are provided to browse the Smalltalk program library, and insert

the code of objects into the editor. The code fragments in the editor can be

compiled interactively, and placed back in the program library if desired. This

does restrict the code fragments allowable in sections to compilable Smalltalk

classes or methods. One of the "paradigmatic" features of literate programming

(see section 2.1.5) is removed by this restriction; the ability to refine the program

by using arbitrary names to represent code which has not been explained yet.

In the Smailtalk context this is not a particular problem, as Smailtalk systems

are usually built out of many small objects which communicate with each other,

each object consisting of only a few lines of code. All of the classes and methods

nested inside a particular section can be compiled at once, if desired. Sections

later in the document can be used to over-ride earlier sections, allowing patches

or variant versions of the program to be included with the original code.

14

	
CHAPTER 2
	

LITERATURE SURVEY

The document formatting capabilities are provided by the Smailtalk sys-

tem's normal methods, and do not need special attention or learning by the

user.

The interpreted interactive nature of the Smailtalk literate programming

system is more attractive than a traditional edit, tangle, and compile cyde,

mainly because the overhead for tangling and compiling code is not necessary.

Incremental tangling (and possibly weaving) of literate programs for traditional

computer languages could be used to improve this situation.

Reenskaug and Skaar's experience of their literate programming system

suggests that a good initial idea about what is wanted and how to do it is neces-

sary. They suggest that literate programming is good for developing programs,

because the assumptions and "soft" decisions built into the program become

visible, but have reservations about its use during the initial experimentation or

final testing of programs, where the specification or details of the program may

be changing rapidly.

	

2.R.5 Luag 	 WlEIB

The dose tying of Knuth's WEB to the Pascal language may have been one reason

for the lack of interest in literate programming; it has been seen, in the context

of Pascal, as good for teaching but not useful for real-world programming. There

have been several systems created which allow any programming language to

be used, but this flexibility comes at a cost: these systems do not pretty-print the

code sections, and more importantly, they do not include the index of identifiers

which is so useful in WEB programs. These features have been described as

paradigmatic by Thimbleby (in his review of Lindsay's ifie difference program

[75]), to indicate that they are part of what makes a literate programming

system literate. Thimbleby suggests a set of features for literate programming

systems which should be essentially effortless for the programmer to use.

Hanson [52] used a simple literate programming system called loom, which

was originally written by Incerpi and Sedgewick for use in Sedgewick's book

Algorithms. Text and program are intermixed, with text before and after program

15

CHAPTER 2 	 LITERATURE SURVEY

fragments. Loom is implemented as a preprocessor which extracts the fragments

of program and text, pushes them through a system of filters, and integrates the

output. Most of the indexing, cross-referencing, and pretty-printing facilities

of WEB are not provided by loom, but it does have filters to create an index

of identifiers. Hanson's example includes replacement code introduced after

profiling which generates conditional code in the output program.

Williams' FunnelWeb [125] (named after a particularly nasty antipodean

spider) is a literate programming tool in the style of Knuth. Instead of two

programs to extract the source code and typeset listing, FunnelWeb provides

one program to perform both functions. lFunnelWeb does not contain knowledge

about the target programming language (in fact output files do not need to be

any computer language - they are treated as free text), so it does not perform

the pretty-printing and indexing of WEB. It does contain knowledge about the

target formatter, but it normally neutralises formatter commands, typesetting

the documentation exactly as it appears to the user. Special control sequences are

provided to provide simple formatting capabilities, which can then be translated

for an appropriate formatter. There is an escape mechanism to allow use of

formatter control sequences if necessary. FunneiWeb forces the user to declare

if a piece of code is being added to another module; this is at odds with most

other literate programming tools, where the typeset listing will indicate if a

module is being extended, but the input syntax is the same for all similarly

named modules.

FunnelWeb includes a scripting language, which can be used for processing

multiple files, writing utilities for FunnelWeb, and regression testing. The Fun-

nelWeb shell was written so that FunnelWeb utilities did not have to be re-written

in the plethora of command languages available on different systems. A suite of

scripts are included with FunnelWeb to perform automated regression testing.

FunnelWeb has an option to provide a similar facility to Thimbleby's cweb

with respect to Makefiles. If the files written out are identical to previous ver-

sions, the previous versions are left unaltered, allowing minimal re-compilations

to be performed easily. Williams is considering modifying FunnelWeb to read

16

CHAPTER 2
	

LITERATURE SURVEY

files containing pretty-printing instructions for the code parts of documents.

An alternative approach to creating literate programming tools is exempli-

fied by noweb [92]. Ramsey built a minimal literate programming system, in

the style of early UNIX programming tools, which supports a syntax very sim-

ilar to WEB. The notangle and noweave tools convert the input syntax into an

intermediate representation which is easy to manipulate using common UNIX

tools. Shell scripts are used to compose the tools which convert the input syntax

to intermediate representation and intermediate representation to final output.

The system as implemented is simple, and does not provide pretty-printing or

automatic identifier indices, but the modular construction makes it easy to in-

sert specialised tools for particular languages where required. The noweb system

is nearly formatter independent, having about 30 lines of AWK which convert

the intermediate format for TEX or LkTEX. noweb supports multiple programs in

each source file, allowing the user to specify which root node will be expanded

by not angle. noweb also provides a tool to convert the source files into a normal

program (like tangling), but with the documentation included as comments, so

that programs written under noweb can be removed from noweb's control easily.

Ramsey's work is also interesting because it includes the only published

case of multiple programmers using a literate programming tool to work on

a single program [93]. A language-based editor (Penelope) intended to help

programmers formally verify Ada programs was created using a system based

on Levy's CWEB. After three years of work, the source document for the editor

was over 33,000 lines long, of which about 13,000 are documentation. Seven

programmers have worked on the project during that period, with up to four

working concurrently. Ramsey likens a literate program that is being extended

and maintained to a car repair manual, rather than the polished novel which

Knuth's finished works resemble.

The literate programming system proved inadequate in some areas; describ-

ing data structures was hampered by lack of support for diagrams or pictures;

tables and figures were difficult to present; the pretty-printer's choice of line

breaks and indentation were disliked. The output of WEAVE required tedious

17

CHAPTER 2 	 LITERATURE SURVEY

changing to include in other TEX documents, and was even more awkward to

include in lATEX documents. The marked difference between the appearance

of the WEB source and the typeset listing was a source of confusion. Auxiliary

tools to extract parts of the WEB program were written, so that small parts of the

source could be printed without the paraphernalia of large indices and tables of

contents.

Ramsey concludes:

"We cannot say to what extent literate programming can replace
standard software development methodology. However, putting a
dear description of design in our source code helped a changing
team of programmers to develop it over a span of three years...

We believe that literate programming helped us substantially.
This belief is based not on measurements but on our subjective com-
parisons of experience on this project to other projects. A program-
mer who has used standard software development systems at an
international computer manufacturing company reports that a key
difference in Penelope was that the documentation was used, pre-
cisely because of its proximity to the source code."

Briggs's NuWeb [18] is based on the ideas of iFunneiWeb and noueb. It allows

the use of many programming languages and creates multiple output files. ITEX

is used as the output formatting language rather than TEX, so that the advantages

of hierarchical section structure and support for pictures, bibliographies and

cross-references can be used. Code is not pretty-printed, and the layout is left

up to the programmer. Indices of ifie names and macro names are provided,

but not identifiers. NuWeb is a single program that creates the formatter and

language files in one pass.

The VAMP system for program refinement [117,119] has been in use and

development since 1982. The documentation and code sections of literate pro-

grams are called stubs and texts in VAMP. Stubs are a set of contiguous lines

starting with a start-stub command, and ending with an end-stub command.

Slot commands may be included in stubs to indicate positions where other stubs

are substituted during code expansion. A feature which is not found in any other

!11

CHAPTER 2 	 LITERATURE SURVEY

literate programming system is that slot commands may contain an indication

of a part of the current stub which is to be omitted if another stub is substituted

for the slot, if this facility is used properly, refinements can be compilable and

executable at all levels of expansion, and temporary declarations may be intro-

duced to make stubs compilable, but replaced at a later stage of development.

The VAMP system was developed on VAX/VMS, using the RUNOFF document

formatter to typeset source listings.

A criticism of VAMP is that it does not insert typographic markers to indic-

ate where slot commands are, or even which stub is which. In a complicated

document with many refinements and omitted slot texts it is thus difficult to

understand the actual structure of the program. VAMP is intended to be more

or less formatter independent, so it is not obvious how slots and stubs could

be marked. VAMP does not provide the pretty-printing or identifier indexing of

WEB, another consequence of the goal of formatter-independence. VAMP does

allow creation of more than one output file from one or more input files; the

output files are not limited to programs, and can include data, tables, etc.

ILiP [116, 118] is a successor to van Ammers' VAMP system for literate

programming. CLiP takes a unique approach to formatter and language inde-

pendence which allows it to be used with almost any language and formatter

or word processor. The refinement modules and references (termed stubs and

slots by van Ammers) are indicated by specially distinguished programming

language comments. The particular form these comments take can be tailored

to the languages used by changing run-time parameters of CLIP. This approach

requires the programmer to use a programming style rather than learn an extra

set of directives to drive the literate programming tool. Also, any formatter or

word processor which the programmer is familiar with can be used to create

the program, reducing the learning overhead for CUP.

Documentation sections of GLiP programs can be formatted using the fa-

duties allowed by the formatter, including pictures, graphs, tables, or whatever

ancillary material is required. The code sections are formatted by including them

in the word processor or formatter's "literal" or "verbatim" mode. The code sec-

19

CHAPTER 2
	

LITERATURE SURVEY

tions of CUP programs are not fully parsed by CUR so no automatic indexing of

identifiers can be performed. Cross-referencing between sections can be done

manually using whatever facilities the formatter or word processor provides.

CLIP can extract multiple output files from one or more input files. Top

level stubs are marked with a directive giving the name of the output file. One

stub is normally required to replace each slot, with the replacement done on a

line-by-line basis. There are several options which can be used to change the

behaviour of the stub/slot replacement mechanism. These are:

m1tip1e This option indicates that multiple stubs may be provided for the slot

in which the option appears. The stubs are concatenated together in the

order in which they are found. This is similar to the behaviour of WEB, but

WEB does not allow the possibility of rejecting multiple definitions for a

refinement.

Readeir Multiple slots may have one leader stub defined, which will be inserted

at the front of the multiple slot only if there are any other stubs provided

for the slot. This facility can be used to insert required keywords in front

of syntactic placeholder slots (such as constant or variable definitions).

quick Short stubs can be defined using the quick option, which terminates the

stub at the first blank line, rather than requiring an end of stub comment.

comment off The comments which delineate stubs and slots are normally ex-

tracted with the code sections. This behaviour is undesirable in some cases,

such as when data files are incorporated into the literate program. The

comment off option prevents the stub and slot comments from being in-

cluded in the output file. This option can be used locally to suppress the

information about the slot in which a stub is inserted.

optional CLIP provides a mechanism in which slots can be omitted completely,

for example for debugging information which is not used in production

versions of the code. If a slot contains the optional declaration, an error

will not be flagged if a corresponding stub does not appear. A separate

20

CHAPTER 2
	

LITERATURE SURVEY

input file can contain debugging stubs which will be included if the file is

specified on CUP's command line.

default The default option is useful for porting and tuning code. If a stub

contains the default option, it will only be used if there is not a normal stub

which matches the same slot. Portable versions of code can be declared

in default stubs, and overridden by optimised versions in machine-specific

input files, or error messages for unimplemented functions can be put in

default stubs, and overridden by proper stubs as they are written. This

facility allows CUP to be used as a design tool, to create the overall plan

of the program and flesh out details later.

More than one of these options can be specified in one stub or slot.

CUP and VAMP were designed as stepwise refinement tools, rather than

specifically literate programming tools, and the facilities of these tools (such as

stub redefinition) are weighted to this end. (CUP stands for Code from Literate

Programs, emphasising its code extraction role.) Whilst CLIP does not provide

the full facilities which might be expected of a literate programming tool, it is

the only completely formatter and language independent literate programming

tool to date.

MuDnua WLEE8

Another approach to adapting WEB to different languages was taken by Ramsey's

Spidery WEB system [90,91]. In this system, the user can build specialised WEBs

for different languages by creating a description of the language and processing

it with the Spider tool. The class of language which Spidery WEB can handle is

restricted to languages which have LR(1) grammars (Spider uses yacc to parse

the scraps), and have similar lexical properties to C or Pascal. The description

file contains a partial grammar of the language, and also defines translations of

the language tokens for pretty printing (e.g., the token ! = could be defined to

pretty-print as), and the token categories (which are used to alter the operator

spacing to emphasise precedence). Spider provides facilities to insert compiler

21

CHAPTER 2 	 LITERATURE SURVEY

directives to keep track of the source code line numbers, if the language supports

them.

Ramsey's Spidery WEB system has been used to build WEB systems for C,

Ada, SSL, AWK, LARCH, and Reduce [47]. A version of WEB for Maple may

soon be available from the authors of the Reduce WEB. The Spidery WEB sys-

tem makes the need for continual adaptations of WEB to yet-another-language

redundant for the most part, but does not add any new ideas to the literate

programming field.

lKrommes's FWEB [72,73] is the archetypal "all but the kitchen-sink" devel-

opment of IKnuth's WEB. Not only does it provide a literate programming tool

for Fortran-77, it also manages to support Fortran-90, C, C+ +, TEX, and has a

powerful enough macro processor to translate Ratfor and some M4 commands,

within the same document. This is the only language-specific system which sup-

ports more than one language concurrently. Just about every aspect of the doc-

umentation and code layout for FEB can be customised, including the colour of

the text! F!5EB input files are still structured very much like]Knuth's WEB —the

code is derived from Levy's version of cwEB, which in turn was derived from

Knuth's WEB. The major modules of WEB which indicated important divisions

between parts of the document have been expanded to include a hierarchy of

possible section types.

The language pretty-printing and identifier indexing information in FJEB

is built into the FYEB code, rather than being read from separate tables. This

would be an obvious extension to many of the WEB systems presented so far;

it is surprising that it has not been implemented yet. FEB supports lATEX as a

document formatter as well as Plain 'rEX; some of the facilities missing from

WEB (such as documentation cross-referencing) can be thus be provided if the

user is proficient in lATEX.

F1EB must count as the most capable example of a literate programming tool

based on WEB. However, the future path for development of F3EB is unclear—

how long new languages and customisations can continue to be added before the

complexity of the program becomes overwhelming is uncertain. It is probably a

CHAPTER 2 	 LITERATURE SURVEY

testament to the power of literate programming to present problems effectively

that F3EB has managed to reach its current state, with only one person driving

the development.

WF_BDess WE3a

Fox [45] created a "WEiBless literate programming" tool for C, called c-web

(pronounced "see no web"). The implementation of c-web is clever; a comment

at the start of the program contains an \ input statement which TEX uses to input

a macro package which implements the special formatted treatment. All c-web

commands are contained within normal C comments. The C compiler ignores

the comments, but TEX reads the macro package and typesets the program

according to the c-web commands. The advantage of the method used by Fox

is that the program is directly compilable using a normal C compiler, and can

be formatted using TEX, with no other pre-processors. However, c-web is in

effect just a C pretty-printer, lacking any of the refinement features which make

literate programming interesting.

The doc style ifie [80] for][?TEX performs a similar task to c-web for ITEX

style files, allowing documentation and code to be intermingled in the same

source file. Again, the refinement steps are not provided, but output to multiple

files from a single source is provided. The latter facility is used to write driver

files and indices which can be run through IITEX or Makelndex as appropriate.

A variation of WEB-less literate programming is the inverse comments used

by some implementations of the lazy functional programming language Haskell

[57]. In Haskell, lines which do not begin with '>' are treated as comments.

This allows Haskell programs to be inserted in other documents and still be

executable. The re-ordering performed by WEB is not necessary in a language

like Haskell, where names can be used before they are dedared and functions

tend to have small bodies which can be explained in one unit, as the program

can be written in just about any order desired anyway. Publication tools such as

pretty-printers and cross-references are not provided by the Haskell compiler,

but could be written as separate tools.

23

CHAPTER 2
	

LITERATURE SURVEY

21 WEB took

Several tools to facilitate literate programming have been created, but nothing

as grandiose as the integrated environment or IPSEs that Knuth and Thimbleby

envisaged.

An interactive interface to WEB for the GNU Emacs customisable text editor

was written by Mark Mod at Texas A & M University [81]. This gives the emacs

editor a limited facility for editing and compiling WEB programs. The opera-

tions provided include movement by modules and major sections, creation and

deletion of modules, and selection of modules from a simple table of contents

and index. The WEB mode is driven by menus, which can be invoked by binding

Emacs commands to keys.

A more sophisticated interactive literate programming system was proposed

by Brown [23-26], and partially implemented. The design of the literate pro-

gramming environment was based around a WEB editor, with a source-level

WEB debugger, a WEB importer, high-level language importer, personal prefer-

ence database, and a control panel to guide the action of the other parts of the

system. The principles guiding the design of the literate programming environ-

ment were that it should bring the advantages of the typeset program listing

to the screen, and that it should automate many of the common tasks involved

in WEB programming or provide utilities which ease significant portions of the

literate programmer's work.

In practice, the former principle means that the automatically-generated

information which is available from the WEB system (such as a complete index,

list of named module, and module cross-reference list) should be available

within the editor. The program should be displayed without WEB commands in

the source interfering with the comprehension of the code. It was not thought

necessary to have exactly the same display on the screen as the typeset listing

provided, but it was noted that this would be best to increase the reading and

comprehension speed to the same levels as the listing.

A prototype of the WEB editor at the heart of the system was built, and

studies of student programmers were performed using this editor. The WEB ed-

24

CHAPTER 2 	 LITERATURE SURVEY

itor included a hypertext-like interface to WEB, where the relationships between

various modules were used to provide instant links from one module to another.

The relationships between modules which were deemed useful were:

Module n uses module m. If a module includes another module, or is

included by another module, a button appears on the screen allowing

instant access to the other module.

Module n and m both appear in the same index entry. Related modules may

not necessarily be direct ancestors of each other. Buttons were displayed

to access other modules which were categorised under the same topic in

the index.

Module n is an addition to module m. Modules which augment other

modules were made instantly accessible from each other.

Modules ii and m both use the same variable. This case was used to allow

cross-referencing between the definitions and uses of variables. There

does not appear to be any reason to restrict this sort of cross-referencing

to variables rather than procedures, functions, and other symbols, but

Brown mentions only variables. This may just be an oversight.

The WEB editor also includes an index display and a graphical representation of

the program, which the user can browse to get an overview of the relationships

between modules.

The students' performance on typical maintenance tasks was evaluated

when using either the WEB editor and a normal listing of the program, or a

normal text editor and a (normal) listing of the program. An experiment was

performed to measure the difference in code comprehension between the meth-

ods mentioned above, using a display-only version of the WEB editor. Tasks were

given to the students which involved identifying the places at which changes

needed to be made to accomplish a goal, and to suggest (in English) what

changes needed to be done. The results were marked on the correctness of the

places which were identified, and the accuracy of the changes suggested, as

25

CHAPTER 2 	 LITERATURE SURVEY

evaluated by an experienced literate programmer who had performed the same

changes on the programs involved. The difference in comprehension between

the methods turned out not to be statistically significant, but there was a cor-

relation between the resources used and their performance. The students who

performed best when given the standard editor and listing tended to use the

listing almost exclusively. The same students, when given the WEB editor and a

listing, tended to use the WEB editor in preference to the listing.

A questionnaire was given to the students in the period after the experiment

had finished, in which they were asked to rate editors and the listing for ease

of use and comprehension of the code. The ratings were similar for the listing

and the WEB editor, but significantly worse for the standard editor. A further

question asked whether the students felt they would do the exercise better with

the WEB editor than the standard editor, if they had to do it again. The WEB

editor was unanimously chosen.

It is not dear from Brown's thesis whether all of the features in the design

plan for the WEB editor were implemented in the prototype editor. Some of the

facilities which were probably omitted were:

Change file editing. The design for the editor included the facility to alter

the literate program, and have the modifications saved as a change file,

rather than as alterations in the original source. This would ease the use

of changeffles significantly, and allow many programmers to work on the

original source simultaneously, without interfering with each other. The

changes could then be integrated into the master copy using a utility like

Guntermann and Ruling's TIE, or Sewell's WEBMERGE.

Graphical representation of data structures.

Data flow diagrams. The plan for the editor included the ability to cre-

ate diagrams showing how and where variables were used. This facility

was intended to include aliases for variables created using WEB's macro

definitions.

26

CHAPTER 2
	

LITERATURE SURVEY

4. Syntax directed features. The editor was intended to incorporate some

syntax-directed features for the code and documentation sections, such as

template insertion. The prototype editor was syntax-directed with respect

the WEB syntax, automatically handling the division into modules, control

texts and indexing. This part was designed so that the user never needed

to enter a WEB command directly, but experienced users could type WEB

commands if desired.

The WEB editor was the only part of the literate programming environment

which was implemented. The design of some of the other parts of the system

was decidedly incomplete, and read like a "shopping list" of nice features, with

little attention to feasibility.

The important part of Brown's work was the evaluation studies that he

performed using his prototype WEB editor. These indicated that the WEB editor

was a useful tool for aiding the comprehension of literate programs, and was

in fact preferred to the program listing, even though the comprehension ratings

were similar. Brown concludes that the full literate programming environment

is worthwhile developing. The WEB editor is the part of the design which is most

radically different from normal programming tools, and the other parts of the

system should be minor improvements on the normal programming tools, if not

particularly novel.

An interactive graphical literate programming tool called HSD (for Hier-

archical Structured Document) was created by Thng [115]. HSD provides facil-

ities similar to WEB, with an interactive graphical interface.

HSD sections can be hierarchically structured as a directed acyclic graph,

rather than WEB's flat section structure (sections can also be included in more

than one other section). HSD sections can contain comments, code, names of

included subsections, and define-box and add-to-box commands, in any combin-

ation and order. The latter two commands are used to defer elaboration of code

until later in the document.

HSD uses a Graphical Document Descriptive Language (GDDL) internally

27

CHAPTER 2 	 LITERATURE SURVEY

to represent the literate program, and generates the code or document by tra-

versing the GDDL in different ways. The document is generated by a simple

pre-order traversal of the GDDL, decorating the output with formatting com-

mands where necessary. The code is generated by a two-pass algorithm which

collects the deferred code together, and then traverses the graph again, output-

ting code with deferred code and refinements inserted at the correct places.

HSD was developed for Macintosh computers, using a commercially avail-

able set of interface tools. Thng does not provide details of the interface to HSD,

except that it uses standard Macintosh text editing facilities.

A perspective on using WEB and other literate programming tools was

presented by Bait Childs at the 1992 TEX User's Group conference [28]. The

literate programming tools created at Texas A & M (mostly under Childs' super-

vision) were reviewed; these include:

o Mark Mod's WEB-mode for GNU Emacs,

o a WEB program module size histogram creator by Mamoun Babiker,

o a WEB statistics gatherer by Mark Gaiter,

o a change ifie analyser,

o a WEB structure viewer by Kevin Borden, and

o a Makefile creator for literate programs by William Needels

The data from the histogram creator is interesting, suggesting that a typical

WEB program has more than 90% of the modules in a program under 25 lines

long, i.e., one screenful of a typical terminal. This data suggests that WEB

programmers break the program into chunks which can be seen all at once.

Childs also presents some data to suggest that van Wyk's characterisation of

literate programmers as creators of their own programming systems is changing,

and that there are many more users than creators now.

The Cnest and Cscope tools described by Cordes and Brown [30,70] can

be used to examine WEB programs. Cnest illustrates the location and nesting

CHAPTER 2 	 LITERATURE SURVEY

level of a current module within the overall scope of the program code. Cscope

displays the program and the modules that constitute it in an easily understood

form.

Brown and Czedjo proposed a hypertext representation for literate pro-

grams which transformed the hypertext linkages into relational database quer -

ies [211. A simple prototype of this system was constructed, to show how the

mapping from hypertext linkage to database query was performed.

Bishop and Gregson's LIPED system [16] is a literate program editor which

is designed to let the programmer work in a format which closely resembles the

final output. It is aimed at minimal hardware systems (i.e. IBM PCs). Five views

of the program are provided; literate program, code, contents, cross-reference,

and header. Documentation structure is confined to major and minor headings,

which are inserted in the table of contents automatically. Linkage functions

between views are provided, allowing the programmer to jump between cor-

responding parts of different views quickly. LIPED uses the first fragment name

encountered as the root fragment. Reserved words are highlighted in the com-

piled code, and the highlighting is suppressed between string quotes, but not

in comments. The table of reserved words can be loaded dynamically, giving a

rudimentary pretty-printing facility. A data structure mapper will be included as

a separate view in later versions.

Smith and Samadzadeh [105,107] describe a tool called WEBmeter for auto-

mating software complexity measurement. This tool takes data for Halstead's

Software Science measures, McCabe's cyclomatic complexity number, and some

measures specific to the WEB environment. Some hand calculations were also

performed on small WEB programs for Yau and Collofello's design stability meas-

urements. A large amount of data was gathered from several literate programs,

but no real conclusions were formed; the work was seen as a pre-experimental

study for forming hypotheses about WEB complexity and stability. They make

some personal observations about the use of WEB, indicating an increase in un-

derstandability noticed for large programs, and an increase in tedium for small

programs.

MIJ

CHAPTER 2
	

LITERATURE SURVEY

VistaTech's HyperWeb [43] was developed to combine hypertext techno-

logy with Knuth's WEB methodology It is one of the few literate programming

tools to be exploited commercially, in the form of the PCFE Workbench product.

HyperWeb is an hypermedia-based software development environment which

supports development and maintenance activities. Software is modelled as a web

of small components that reflects its natural design rather than the constraints

of the programming language. Complex relationships between the various soft-

ware artifacts comprising a system (e.g., requirements, designs, specifications,

code, test scripts, configurations, etc.) are captured and represented explicitly.

Frequently this knowledge exists only in the minds of the individual developers

working on the software, and maintenance programmers spend much of their

time trying to recapture this knowledge. li-lyperWeb tries to capture this know-

ledge so that it will not be lost when people leave a project. The system supports

not just text, but documents of any sort, including diagrams, pictures, and even

voice annotations can be linked into the web.

Annotation, decomposition, and refinement operations provide support for

restructuring and documentation of the software artifacts. Annotations can be

added to software artifacts to capture designer knowledge or to add comments

for on-line code inspections. Decompositions are small conceptual units within

a larger software system. Each decomposition focuses on dearly presenting

its logic and omits irrelevant details. The relationships between these decom-

positions represent the natural structure of the system design. The decompose

operation allows existing software to be broken up into a smaller units during

maintenance, whereas the refinement operation allows decompositions to be

created during new development.

FlyperWeb augments the programming facilities provided by Unix, using the

standard tools rather than replacing them with "better" tools that the program-

mer will not make the effort to learn properly. The tool integration framework

provided by HyperWeb enables an existing set of analysis, design, and develop-

ment tools to be integrated, making it easier for programmers to change their

work habits to use the system.

30

CHAPTER 2
	

LITERATURE SURVEY

The Igor project at Carnegie-Mellon University [40] is a new project to

build a development environment for "hypercode". Hypercode will represent the

program as a complex data structure linking together routines, class definitions,

comments, specifications, diagrams, test code, edit histories, configuration info,

and more. The programmer will be able to view and browse this hypercode at

many levels of detail, and the code definitions can be presented in whatever

order makes the most sense at the time. An extensive library of classes and

functions will also be available, with librarian software to guide users in finding

what they need.

2.n.9 Regated qoth

The journal Communications of the ACM featured literate programming in Jon

Bentley's Programming Pearls column twice in 1986 [14, 15], and then ran an

infrequent column about literate programming from 1987-1990, moderated

by Christopher van Wyk [33, 122]. These columns covered a variety of literate

programming systems and techniques, using example programs written to solve

problems set by the column editor. The programs were reviewed by guest re-

viewers, and these comments on their suitability for their purpose and clarity

of exposition are perhaps more useful than the example programs themselves.

It is only because the programs had aspirations to literacy that they could be

reviewed in this way, and that the reviews did not turn into either marking an

exercise, or a conflict of opinion about the problem's best solution.

The column stopped in 1990 because the moderator was concerned that

the only people who seemed to be writing articles were implementors of literate

programming systems, and that a fair conclusion to draw would be that one

must write one's own system before being able to write literate programs. This

conclusion is an illustration of one of the problems with literate programming;

it may help create better programs, and thus reduce the amount of maintenance

that a program requires, but the initial effort in writing a literate program is

greater than the effort in writing a program using traditional methods. Users are

reluctant to change to a system which requires more effort, even if the long-term

31

CHAPTER 2
	

LITERATURE SURVEY

gains are worthwhile.

The work of Oman and Cook [83,85,86] in program layout and formatting

can be interpreted to provide empirical justification for research into literate

programming. They performed experiments which showed that typographical

re-formatting of code can significantly increase program comprehension. They

call the set of principles which they used to re-format code the "book paradigm",

because they presented their code listings in the format of a book, with all of the

expected features of a book -pagination, table of contents, index, chapters, and

sections. Typographical features were used to distinguish between externally

and locally defined identifiers, procedure calls, and keywords. A key similarity

with the literate programming paradigm is that the same source ifie was used to

create the executable program, and to generate the formatted hardcopy listing.

Their research was founded in studies of programmer's behaviour when

performing common maintenance tasks; Oman and Cook [86] state that:

"All programmer comprehension studies support the existence of:

Mental schemata or plans that guide the programmer's com-
prehension of code. Programmers acquire and modify these
plans through experience; they are an integral part of long-term
memory.

Chunks or meaningful units of information that programmers
use to organise and remember code.

Beacons or highlighted semantic clues that are used to direct the

review and recognition of code. Beacons are used for searching,
chunking, and hypothesis checking.

Multiple strategies and access paths used by programmers when
working with non-trivial programs. Strategies are guided by
a variety of plans and conjectures depending upon individual
differences, application domains, and the implementation of

the code and supporting system.

Their work in typographical re-formatting of code tries to take these factors into

account, to highlight beacons, and assist with multiple access paths by providing

32

CHAPTER 2 	 LITERATURE SURVEY

tables of contents and indices; chunks maybe distinguished by insertion of blank

lines.

The typographical program re-formatting of Oman and Cook incorporates

some of the elements found in literate programming—generation of table of

contents, cross reference tables, and index; division of the program into sec-

tions; use of proportional width fonts, boldface and italics in formatting code to

distinguish different syntactic classes. In some areas they go further, by basing

the program re-formatting performed on program comprehension studies, thus

producing a measurable increase in program comprehensibility.

They conclude that "Good typographical formatting reflects the underlying

structure of the code by providing visual dues and a variety of ways to view

the code, which in turn aids maintenance activities.... Think about writing a

book, not just a program."

lBaecker and Marcus [9] used graphic design principles to make program

source text more readable, understandable, and maintainable. The basic design

principles from which they worked were:

Typographic Vocabulary: distinguish tokens by use of small number of

appropriate typestyles.

Typesetting Parameters: adjust text size, word spacing, headline size and

usage, etc., to enhance readability.

Page Composition: use grids, rules, and white space to bring out program

structure.

Symbols and Diagrammatic Elements: integrate appropriate symbols and

diagrams to clarify essential program structure.

Metatext: augment source code with commentaries and mechanically gen-

erated supplementary text.

They developed a visual compiler called SEE, which processes the source code

into an appropriate form for printing. Their method is similar to literate pro-

33

CHAPTER 2 	 LITERATURE SURVEY

gramming in that exactly the same text is used to create the printed copy of the

code and the compiled executable program. The SEE compiler was built for the

programming language C, and was based around the front end of the Portable

C Compiler, modified to retain comments and preprocessor dedarations in the

syntax tree.

Their use of the typographical vocabulary for program presentation is based

on the function of the token. Reserved words are not emphasised by using

bold face, as most pretty printers (including WEB's) do; such strong visual

effects are better used for distinguishing important classes of tokens (such as

global variables). Varying word spacing and kerning can also be used to visually

emphasise operator precedence. In certain cases, such as the presentation of

structure declarations, the SEE compiler substitutes diagrammatic markers for

the original syntax, making the program structure visually accessible.

No empirical evaluation of Baecker and Marcus's methodology is presented,

but some subjective evidence for its usefulness in the form of comparative ex-

amples with processed and original source code is given. Several ways in which

each of the design principles above can be applied to program presentation are

discussed, and alternate representations of program fragments based on the

same principles are shown.

Arab [6] implemented a program re-formatter for the Pascal language which

also automatically prompted for documentation, using keywords appropriate

to the syntactic units which were being processed. The documentation was

inserted into the program as comments at appropriate places. The re-formatting

style was based on the program comprehensibility studies examined by Arab,

and was customisable within certain limits. The program was intended to make

presenting and documenting programs easier.

Anand [4] started from the same concepts as Knuth, but worked to a differ-

ent conclusion. He argues that the name of every unit or abstraction in a program

should be a functional description of the abstraction. The naming method which

he suggests is applicable to the modules of a literate program. Four criteria are

given for functional descriptions:

34

CHAPTER 2
	

LITERATURE SURVEY

The details of the entity must be predictable from the description.

The description must convey the function of the entity, (what it does) not

its logic (how it does it) or context (where it does it).

The description must be as concise as possible within the previous con-

straints. A length of 6 to 20 characters is seen as acceptable.

Each entity must perform one and only one specific function.

Anand shows how naming by function enhances partitioning of modules and

understandability. In this system, imperative phrases should start with verbs,

pointer names are adjectival phrases. Boolean variables should be named so

that the phrase "How to find if variable" makes sense; similarly pointer variables

should be named by making sense of "How to locate pointer" and constants and

other variables should be named by making sense of "How to find constant".

Functions and procedure declarations use "How to name".

Anand proposes that the identifier naming rules for programming languages

are enhanced to allow non-significant whitespace to improve the functional

descriptions of elements.

Thimbleby presented and discussed some ideas for interactive editing of

literate programs [1111, before any interactive literate programming systems

had been created. His comments are still relevant, in that the lessons which

could be drawn are still being re-learned today. He suggested that WEB control

sequences could be abstracted out by graphic conventions, such as displaying

modules with frames to delineate them. Other possibilities mentioned are to

allow the programmer changes in perspective, so that they can see an unob-

structed view of the program or documentation, with the other part hidden

away. He pointed out that free-text macro processing, as provided by WEB,

clashes with structure editing, because the bodies of macros do not need to be

syntactically well-formed.

Thimbleby suggested that the work of Feiner, Nagy and van Dam [42] on

orientation cues is relevant to such an interactive literate programming editor.

35

CHAPTER 2 	 LITERATURE SURVEY

The editor should support the following:

Annotation. A method so that the user can add notes "in the margins". These

notes should be preferably handwritten, drawn or otherwise distinctive.

IE'o11io A standard display format which includes explicit information capturing

the progress of the user dialogue, such as the current time and an iconic

representation of the last folio.

1Nmethe. A canonical representation of the user's actions, probably shown in

miniatures of folios, over a period of time, ordered left-to-right to show

their sequencing.

]Index Various facilities so that the user can locate folios by abstractions.

Neighbours. The ability to view adjacent folios to the current folio, either by

miniaturisation of all folios or using a "bifocal" method.

Co1ou. As an extra cue, perhaps to indicate the permanence of changes in

perspective or to facilitate cross-referencing index entries.

Another valid point to consider is the amount of typographical control required

of the program's author. Thimbleby contended that:

"There is a valid school of thought (exemplified in the philosophy

of SCRIBE) that author/programmers need not bother or waste

their time with typography. Professional literate programming sys-

tems must provide an 'author' mode without access to typographical

niceties, and without the learning effort (and temptation)."

In this vein, Thimbleby also considered the potential for language and formatter

independent WEBs. He concluded from his own work that tiroff was an inappro-

priate choice of formatter, because of the poor programming interface. He also

made the point that syntax analysis of code simplifies the formatting to be done

by the user, because most of the code can be pretty-printed automatically.

Mitchell [79] tried developing a literate programming methodology based

on data abstraction and a formal specification language. He also tried to provide

36

CHAPTER 2 	 LITERATURE SURVEY

a framework for what the programmer should write and where to write it. He

used the programming language Modula-2 with the specification language OBJ,

and some semi-formal "glue" of his own to tie them together.

The strength of Mitchell's work is not in his approach to literate program-

ming, but in his view of the whole program development process, which leads

to the presentation of the program in literate form.

He clarifies the concepts of design and specification, introducing the notions

of internal and external design. In Mitchell's world, design is a process which

involves choices; specification is the result of a design process. The terms internal

design and external design are used to separate the choice of mechanics for the

program implementation with the choice of higher-level interfaces and functions

of the program.

Mitchell also introduces a model of development space which is interesting

to review in the context of literate programming. His development space has

three orthogonal directions; level of detail or abstraction, level of precision, and

aspect coverage.

"During the development of a program, a programmer can say more
about the program in three ways; by becoming more precise, for
example, by taking something expressed in an informal language
and expressing it in a formal language; by considering more aspects
of the program, for example, by starting to discuss a module not
previously discussed; and by adding detail, for example, by showing
how the operations on an abstract data type become procedures,
thereby introducing the detail of side-effects."

Mitchell formulates a set of requirements for tools to support literate program-

ming, based on the experience of developing the "literate" program presented

in his thesis. He believes that the tools for the support of literate programming

should be based on the principle that things are only defined in one place, and

the same definitions are carried automatically to any other place at which they

are needed. This requirement can be satisfied by the macro expansion facilities

of WEB.

37

CHAPTER 2
	

LITERATURE SURVEY

Mitchell states that the class of tools to support the presentation of pro-

grams can be divided into two sub-classes, which present text and diagrams. He

also believes that there should be tools to present the results of analysing the

program, as well as tools that prepare documents containing commentary and

code. The principle of providing analyses of programs should form the basis of

tools that present diagrams.

Mitchell's last requirement is that tools allow the programmer to make

changes to polish programs as their understanding of the problem and program

grow.

He cites Peter Naur's ideas on programming as theory building, as a model

of what the documentation of a program provides:

"We can regard what the person who writes a program knows that is

not in the documentation of a program as a theory of the program.

Loosely speaking, a theory of a program is all the true statements

about the program; the documentation of a program is a theory

presentation in that it contains enough of the true statements about

the program that all other true statements can be inferred from it.

What the original programmer can do more easily than another pro-

grammer is apply appropriate rules of inference to derive theorems

about the original program and programs related to the original

program."

The problem with Mitchell's approach is that he defeats the purpose of literate

programming in two major ways.

The framework which he uses to specify what should be written where is

too constrictive, and does not allow the order of exposition to be changed

to suit the audience for the program.

No support tools are provided to assist with the integration of document-

ation, specification, and program, or to check the program against the

specification. The programmer must do everything by hand, which results

in a greatly increased work-load.

38

CHAPTER 2 	 LITERATURE SURVEY

Brown and Cordes have argued that the design as well as the implementa-

tion of a program should be documented in the source code [22]. They showed

examples of how the design can be integrated using stepwise refinement, data-

flow diagrams, and the Jackson System of Development. They believe that WEB

permits the actual design to be generated in a programming language, providing

a direct link between design and implementation

Brown and Cordes also compared the literate programming methodology

to the use of program design languages for the design stage of the software

lifecycle [20]. The requirements for program design languages were examined

and contrasted with what literate programming tools can provide, with the

conclusion that literate programming tools provided all of the facilities required,

and had the advantage that the modules can be expanded into a fully working

program.

IParnas [88] also believed that documentation should be the primary func-

tion of programming. He described an ideal design process in which the docu-

mentation, and the consistency and completeness of the documentation, plays

a major role in guiding the design. Who should write which bits of document-

ation was discussed, as well as which bits of documentation should be written

retrospectively, if they'were not written during the actual design process.

One of the objectives of the UQ2 program editor designed by Welsh et. al.

was assistance with creating well-documented code [124]. The authors highlight

the requirement for views of the program as code or comment dominated,

even with the same program and user combination. They believe that the WEB

approach is disadvantageous for three reasons:

Refinement addition tends to encourage global structure over nested block

structure

Rearrangement of program fragments creates an inconsistency between

the user's view of a program and its executable semantic structure

Re-arrangement is not well suited to exploiting hierarchical abstraction

features proposed

39

CHAPTER 2 	 LITERATURE SURVEY

The approach which they took was to add an optional comment pane into each

block window. The percentage of the space used by the comment pane can be

adjusted by the user, to cope with users unfamiliar with the code as well as ex-

perts. Block comments are displayed in this pane, using the normal text-editing

paradigms appropriate to text areas. Re-arrangement of the code into modules

was rejected for the reasons provided, and the granularity of the block com-

ments was not adjustable. Multilingual document editing was realised using a

generalisation of this method of associating text zones with blocks. The docu-

ment is seen as a hierarchy of document contexts each consisting of a sequence

of zones in different languages, including text.

Cordes and Brown's review of the literate programming paradigm [30]

suggests some modifications to bring it up to date. Four additions are proposed;

a multilevel table of contents, a graphical user interface, program debugging

tools and an enhanced index. The authors have implemented prototype versions

of the second and third of these additions, and are working on the other two.

They also believe that restrictions should be made on the structure of the

literate program and on the size of the command set for driving the literate

programming tool. Each module in the program should function as a logical

single entity, within the syntax rules for the language. This assists the reader

in understanding module functionality and tracking the program scope. The

second restriction removes some of the individual customisability of the output

listing, but a template-based documentation generation routine is envisaged

which could tailor the output for particular house styles. These restrictions

would be easily implementable in a structure-based literate programming editor.

A collection of JKnuth's papers on structured programming and literate pro-

gramming has been published recently [69]. While there is very little new ma-

terial in this book, it does bring together Knuth's thoughts on the topic of literate

program, with some of the earlier papers which led to the development of lit-

erate programming, and some examples of what Knuth's literate programming

has achieved.

40

CHAPTER 2
	

LITERATURE SURVEY

O©apc

Two useful bibliographies of literate programming material are by Smith and

Samadzadeh [1061, which contains a reasonably comprehensive list up to the

start of 1991, and Thomas and Oman [113], which contains references which are

more relevant to programming style and programmer comprehension studies.

The Emily system [51] was one of the first syntax-directed editors. It was imple-

mented on an IBM 360 mainframe computer equipped with IBM 2250 display

terminals, and accepted input from a light pen and keyboard. Emily presented

the user with a view of the abstract syntax tree of a language, displayed ac-

cording to a set of concrete syntax rules. The system allowed replacement of

non-terminal symbols of the grammar by instances of their productions, selected

from a list of possible choices. Non-terminals were highlighted on the display to

indicate that they needed to be expanded. Expansions of non-terminal symbols

could be contracted and displayed in abbreviations called holophrasts, which

used the name of the non-terminal symbol and the first few characters of its

expansion as an abbreviation for the hidden fragment. This abbreviation could

be used in commands that referred to the fragment of code. The Emily system

was table-driven; abstract and concrete syntax tables for P1/I, GEDANKEN, a

thesis outlining language and a language for syntax definition were created.

The methods used in Emily re-appear in most of the syntax-directed editors

developed since, especially the use of an abstract syntax tree for the internal

representation of a program, template expansion at non-terminal symbols, and

computing the display representation on demand by concrete syntax rules.

The Cornell Program Synthesizer [109, 110] was a template based syntax-

directed editor for the P1/CS programming language (an instructional subset

of Pill). The program was developed top-down by inserting templates at ap-

propriate placeholders in the parse tree. Textual input could also be made at

placeholders, which caused the text to be parsed and inserted in the parse tree

41

CHAPTER 2 	 LITERATURE SURVEY

if it was correct. Syntactic correctness of the edited program was guaranteed

because the templates were predefined and could not be altered or put in inap-

propriate places, and the parser checked textual phrases for correctness before

accepting them. The cursor could only be moved by structural units, although

phrases could be edited textually and re-parsed as if they had been inserted

at a placeholder. Template to template transformations were provided to allow

mutation of templates into other forms without complicated sequences of cut

and paste operations.

Code was generated for each structural unit as it was accepted by the editor,

so the program was always in a runnable state. The static semantic checking

preformed by the incremental code generator was used to highlight incorrect

phrases until they were corrected. The program could be run at any time, and

the display cursor would follow the flow of control. If an error occurred, the

cursor would stop at the position of the error and an error message would be

displayed. This allowed incomplete programs to be executed, which would stop

when a placeholder was encountered.

Templates were the computational units in the editor; at runtime, they could

be used for single-stepping. The execution rate could be slowed down so that the

flow of control could be seen more dearly, by setting the time unit that each step

should take. A special sort of template called a comment template was provided,

which contained a comment and a sequence of statements. The display of this

template could be collapsed and expanded by pressing a key, hiding all of the

statements under an ellipsis sign. Such collapsed templates were treated as one

unit by the execution system; the operations in them would all be performed in

one time unit if possible. The comment template was provided as an incentive

to use comments, to help comprehension of the program, and simplify the

information viewed when debugging. The Cornell Program Synthesizer led on

to the development of the Cornell Synthesizer Generator.

IPE (incremental programming environment) was part of the Gandalf soft-

ware development environment project at Carnegie-Mellon University [78]. The

user interface to IPE was through a syntax-directed program editor, which was

42

CHAPTER 2 	 LITERATURE SURVEY

augmented by incremental program compilation and execution. The display was

created by unparsing the abstract syntax tree according to an unparsing scheme;

an interesting point is that alternate unparsing schemes were supported, to al-

low viewing the program at different abstraction levels, e.g., lists of modules,

module specifications, and module implementations. Textual manipulation of

the unparsed program representation was not supported. A parser and lexical

analyser were not provided because all of the JIPE tools used the abstract syntax

tree representation of the program; this restricted the programs that IUPE could

handle to programs constructed with IUPE itself.

The GNOME family of editors [46] were created to channel the experience

gained in the Gandaif project into a practical novice programming environment.

Four structure editors with common interfaces were created: they were a family

tree editor, a Karel editor, a Pascal editor, and a FORTRAN editor. The family

tree editor was used to familiarise students with structure editing concepts, such

as walking trees, hierarchical structure, nodes, subtrees, and tree operations.

The Karel editor included complete static semantic checking of the language,

and was linked to a Karel interpreter so that the students could move between

program construction and execution without leaving the editor. The Pascal editor

contained semantic checking for the most common errors that the students

made, but did not contain full semantic checking. A Pascal interpreter was

linked to the editor to allow execution of the programs without leaving the

editor.

The GNOME editors were built using the AloeGen structure editor generator

created by the Gandalf project. The AloeGen generator was a structure editor

which generated an editor from a BNF-like description of abstract syntax of

the target language. Unparsing specifications could be provided to define the

displayed representation of the abstract syntax tree, and action routines could

be specified which were performed whenever the pieces of the syntax tree

with which they were associated were changed. The action routine mechanism

was used to implement static semantic checking and incremental compilation

in some editors. A set of extended commands could also be supplied by the

43

CHAPTER 2
	

LITERATURE SURVEY

implementor, to perform actions outside of the normal editing task. The GNOME

editors have been used to teach programming to an undergraduate population

of about 1500 at Carnegie-Mellon University.

The MENTOR system [35,36] was developed to manipulate structured data

represented as abstract syntax trees. The abstract syntax trees used by MENTOR

were not parse trees, although they could be obtained from by collapsing and

normalising parse trees. Some of the important differences were:

o Lists were represented as one list node, rather than as a binary tree.

o The reserved words of the language grammar appear as node labels rather

than leaves of the tree.

o Non-terminals of the grammar do not generate nodes. The abstract syntax

tree is structured as a sorted algebra, which is defined by a set of sorts, and

a set of operators with sorted operands. Some non-terminals of the gram-

mar correspond to sorts (which are represented as nodes in the abstract

syntax tree), others do not appear at all. For example, an identifier may

occur directly as an expression, the intermediate levels of parsing such

as factors, terms, etc., being collapsed. Every node of the abstract syntax

tree makes a visible mark on the display because of this, so the user can

directly relate the display to the underlying tree structure.

o Parentheses are not part of the structure, but were generated by the un-

parser if the context required them.

The user performed operations on the abstract syntax trees by invoking

procedures written in the MENTOL tree manipulation language. MENTOL had

variables called markers which could be locations in trees, and values which

could be locations or abstract syntax trees. Operations such as tree copying,

sub-tree deletion, tree traversal and rewriting, and pattern matching could be

written in MENTOL. MENTOL itself was defined by an abstract syntax, and

advanced users could use MENTOR to edit and create new MENTOL procedures

.

CHAPTER 2 	 LITERATURE SURVEY

to perform program transformations.

Attributes could be attached to nodes of the abstract syntax tree, to define

comments, program documentation, program assertions, cross-references, etc.

The values of these attributes were abstract syntax trees in their own language,

and could be accessed by MENTOL procedures. Using attributes to attach this

information meant that the editor could be extended to perform different tasks,

such as program verification, with an appropriate set of attributes and MENTOL

procedures. However, these extensions would not interfere with the procedures

for editing the abstract syntax tree. Donzeau-Gouge et. al. [36] compare this

technique to Knuth's WEB, in which a Pascal program and its documentation

are intertwined. MENTOR is not comparable as a literate programming sys-

tem, because the program's abstract syntax tree defines the primary view in

MENTOR, rather than the documentation which was represented by attributes.

The MENTOR created program cannot be re-ordered for presentation as a WEB

program can, failing one of the criterion for literate programming presented in

section 2.1.2.

A structure editor for Pascal was built using MENTOR, primarily to help

create the MENTOR system itself (it was written in Pascal). The syntax of the

Pascal program was guaranteed to be correct by the editor because of the un-

derlying abstract tree representation of the program. Procedures were written

to perform some semantic checking and optimisation of the program, but some

peculiarities of the Pascal language prevented a dean separation of the various

checking stages. Donzeau-Gouge et. al. [35] suggest that "The conclusion we

can draw from this state of affairs is that no really satisfactory programming

environment will exist for ugly languages." MENTOR could read and parse nor-

mal text files, and write them out either as unparsed text files, or as tree files

which could be re-loaded without parsing.

Poe (the Pascal Oriented Editor) [44] took a different approach to syntax-

directed editing than most of the other systems described. Instead of constrain-

ing cursor movement and template expansion to structural units, Poe contained

an interactive parser which used an automatic repair algorithm to ensure that

45

CHAPTER 2 	 LITERATURE SURVEY

the program stayed syntactically correct. The error repair algorithm determined

where to insert tokens to ensure that the textual input remained correct, us-

ing a least cost calculation to choose between alternative expansions. Required

and optional prompts were put in the expansions inserted by the error repair

algorithm to indicate where further expansions could be made. For example, if

the user typed the token "if" at a statement prompt, the required prompt for

an expression, the token "then", and an optional statement and an else-clause

prompt would be inserted. Fully-formed template insertion was not provided,

but the possible expansions for prompts could be requested, with repeated re-

quests cyding through the available expansions for a prompt. An incremental

parser was used to drive the error-repair mechanism; backtracking was sup-

ported in the parser so that deletions did not require the whole program to be

parsed again. In the cases that the error-repair mechanism expanded the prompt

incorrectly, and undo facility could be used to correct its mistakes.

The parse tree generated by the incremental parser was attributed, and an

incrementally-evaluated attribute grammar was used to detect static semantic

errors in the program. These errors were highlighted in the program display

until they were corrected. Poe input and output the program as text, which had

the advantage that other programming tools could operate on the program, but

the disadvantage that there was a relatively large start-up time as the program

was parsed. The textual output was used to transparently invoke the system's

standard compiler when a request was made to execute a complete program.

Unlike other systems including incremental compilation, Poe could only request

execution of complete programs.

Much of Poe was table driven, and a language-based editor generator based

on the features available in Poe was also developed. The Poegen editor generator

automatically created the incremental parser and error-correction tables for Poe

editors from a context-free grammar augmented with attribute evaluation rules.

The UQ2 program editor [124] was created with the intention of produ-

cing programs which were well-formed (in a syntactic and semantic sense),

well-formatted (to improve readability), and well-documented (to make design

0111

CHAPTER 2 	 LITERATURE SURVEY

choices leading to the program apparent). The text input and incremental pars-

ing approach used in Poe was chosen for program input, allowing touch typists

to operate at their normal speed, but less experienced typists to benefit from the

automatic template generation. The incremental parsing method ensured syn-

tactic correctness, and with the use of incremental semantic analysis to detect

and display semantic errors, well-formed programs could be produced.

Well-formatted programs were produced by using incremental adaptive

pretty-printing, which reduced the space taken by trivial occurrences of po-

tentially large constructs to a single line, while allowing large constructs to

adopt the minimum multi-line format consistent with their usage. Blocks could

be suppressed or zoomed in by user commands to give dearer views of code.

A measure of structural distance was used to automatically suppress code to

provide a dear view of the overall structure of the code.

Two comment conventions were supported by the UQ2 editor in order

to assist creation of well-documented programs. Block comments paralleled the

code block nesting, and embedded comments could be used for local clarification

within blocks. The editor presented each block with a comment pane and a

code pane. The comment pane provided a simple text editing and scrolling

interface which could be suppressed by experts who knew the code. A facility

was provided to print the program with in the top-down depth-first order of

blocks, with the block comments typeset by a formatting program such as TEX or

troff. The re-arrangement of the program that WEB performs was not attempted

by the authors, because they felt that it discouraged use of block structure, and

made the programmer's view of the executable semantic structure inconsistent.

The Syned [56] language-based editor was also based around parsing of

text input into an internal attributed abstract syntax tree, but lacked the error-

correcting parser which kept programs edited by Poe syntactically correct. Tex-

tual changes were submitted as transactions which could be translated into

deletions and additions to the internal abstract syntax tree representation.

The PECAN [95] program development system used a syntax-directed ed-

itor similar to the Cornell Program Synthesizer as one view of the program. The

47

CHAPTER 2
	

LITERATURE SURVEY

editor provided template expansion and textual editing and re-parsing of con-

structs, and maintained an internal representation of the program as an abstract

syntax tree. The abstract syntax tree was used to compute the other views of

the program available in PECAN; these included:

TaSchneideirmann view, This was a graphical view a Nassi-Schneidermann

flow chart representing the program. It could be edited, with the changes

being reflected in the abstract syntax tree shown by the syntax-directed

editor.

Declaration view, Declarations could be viewed by pointing at the name of a

variable or type in the program and selecting the declaration view. These

declarations could then be modified to change their names, types, or class,

or even moved to a different scope.

Symbol table view, All of the scopes and symbols in the abstract syntax tree

were incrementally added to the symbol table view. The symbol's class and

type were displayed for each scope. This view was read-only.

Data type view, While the user was editing variables or type definitions, the

data type was displayed in a read-only data type view. Recursive definitions

were only expanded to one level, but the user could choose to expand

further definitions interactively.

Expression view, The expression view displayed a graphical representation of

expression parse trees as expressions were edited.

IPlow view, The incremental compiler used in PECAN built and maintained

graphs describing the flow of control through the abstract syntax tree.

Nodes of the graph represented expression evaluations, conditional branches,

variable allocations, etc.

Execution views, There were three views of program execution in PECAN;

control, program, and data.. The control view displayed the program's

current state, and input and output to and from the program. Debugging

CHAPTER 2 	 LITERATURE SURVEY

breakpoints and single-stepping were supported from the control view.

The program view highlighted the statement currently being executed,

and the data view showed the program stack as the program executed.

PSG, the Programming System Generator [11], incorporated a hybrid editor

which allowed structure-oriented as well as text editing. The PSG editor different

from many of the other syntax-directed editors by not enforcing a top-down

expansion of the program. Unconnected program fragments could be developed

separately, and combined when the programmer desired. In PSG, the syntax and

static semantics of the target language were specified by an attribute grammar,

and a description of the dynamic semantics could be given in denotational

semantics. The attribute grammar was used to perform type inference on the

unconnected program fragments, allowing static semantic checking of program

fragments which had not been placed in context.

The Incremental Programming Support Environment (IIPSEN) [38,39] used

graph grammars to specify the data structures which could be manipulated.

Graph grammars use graph rewriting rules to specify how graphs can be derived

from ancestor graphs. The graphs in IUPSEN were used to describe the structure

of the document or programming language being edited, and attributes of these

graphs represented the contents of the nodes of the graph. In order to achieve

reasonable performance without too much complexity, attributes were provided

which could contain quite complex structures such as whole paragraphs of

text, and specialised editing operations on these attributes were provided. The

graph-rewriting rules were used to drive a template-based editing front end.

The Synthesizer Generator [96-98] is probably the best known syntax-

directed editing system. It is the successor to the Cornell Program Synthesizer.

The Synthesizer Generator is a syntax-directed editor generator, rather than

an editor itself, but editors have been implemented with it for the computer

languages C, FORTRAN, Pascal, and SSL, as well as systems for formal logics,

balanced chemical equations, picture specification languages, lambda calcu-

lus interpreters, outline specifications, and program verification. The editor is

49

CHAPTER 2 	 LITERATURE SURVEY

described in the Synthesizer Specification Language (SSL), which defines the

syntax and semantics of the language in a context free grammar augmented

by attribute equations. A concrete input syntax can be defined, and multiple

unparsing specifications can be provided to create different views of the edited

program. Applicative functions can be defined for use in attribute equations,

and transformations can be defined to restructure the abstract syntax tree. The

attribute equations are evaluated by an incremental attribute evaluator, provid-

ing instant feedback of semantic errors or other attribute-based computations.

Editors generated by the Synthesizer Generator are template-based, but text can

be input at placeholders if a concrete syntax is provided for the corresponding

abstract syntax. Intermediate layers of the parse tree can be made transparent

to the user by providing resting places for the selection at only the desired points

in the abstract syntax tree. Files can be read and written in text, structured, or

attributed structured form.

Most of the syntax-directed editors described already have been template

construction systems; i.e., the program was developed top-down by selecting

expansions from a list of possible templates at each point. The syntax of the

programming language has been enforced either only allowing construction by

template expansion, or by refusing to accept text which cannot be parsed as an

appropriate construct for an insertion.

The Z editor [126] was a text editor that provided support for program

construction. Wood claimed that Z could do 95 % of what could be done in a

program editor without increasing its complexity significantly. Z provided auto-

matic indentation of program constructs, and the indentation could also be used

to select, suppress, and move over program constructs. Z could automatically

balance expressions and move over balanced expressions. Compilation of pro-

grams could be started asynchronously, with any error messages displayed at

the bottom of the screen. The cursor could be automatically moved to the site

of the each error in turn. Z did not perform any form of syntactic or semantic

checking of programs, so immediate feedback of errors was not possible.

While Z had good facilities for communicating with other programs, each

50

CHAPTER 2
	

LITERATURE SURVEY

program which might be run on the source code (compilers, program verifiers,

pretty-printers, etc.) had to parse the program itself, slowing down feedback and

duplicating effort. Neither multiple interlinked views provided by PECAN, nor

the comment panes of UQ2, the incremental compilation of the Cornell Program

Synthesizer, or the error-correcting input of Poe could be performed in Z. While

a programmer is editing a program, there are plenty of pauses which can be used

to do useful work in translating the program; this is what most syntax-directed

editors rely on to provide a tool which provides instant feedback about syntax,

semantics and structure of the program.

jtWi.

51
• •.

(Object ,we

Literate programming systems have been around for some time, but have not

gained widespread acceptance as programming tools. There are several reasons

why this may not have happened:

o More effort is required of the programmer when writing literate programs

than using conventional techniques. For example, with Knuth's WEB, the

syntax of the macro language must be learned, the formatting language

(TEX) must be learned, documentation sections must be created, named,

and referenced properly. Trevorrow's criticism of WEB [114] noted that

the user has the possibility of making errors in three languages at once.

• In the absence of any better tools, a normal text editor must be used to

create WEB programs - this is a potential strength, as well as a weakness,

of WEB - the program source is easily transportable between machines,

and can be edited in an environment which the user is familiar with, at

the expense of extra effort in other areas.

• Programs written with literate programming systems are less portable than

conventional programs, because the literate programming system must be

available to process the program. There have been attempts to create

literate programming systems which enclose the documentation inside

31

CHAPTER 3
	

OBJECTIVE

normal comments, but these systems fail one of the fundamental tests of

literate-ness, in that they do not allow a flexible order of elaboration.

The first two points are what the development of the literate programming

editor in this thesis are targeted at; creating an incentive to develop literate

programs, by reducing the effort required of the programmer. An ideal system

would be one in which it is easier to write literate programs than it is for the

programmer to use conventional tools. A sufficiently flexible system should be

configurable enough to behave similarly to the programmer's favourite editor.

The third point must necessarily stay a hinderance to the acceptance of

literate programming, because any method of indicating the documentation

structure of a program which leaves the program in its original form fails either

the criterion of verisimilitude, and can be subverted by directly editing the pro-

gram, or fails the criterion of flexible elaboration, because the program cannot

be presented in any order desired. The only way in which portability can be

provided is to allow exporting the final program from the literate programming

system to conventional programming systems (as is done by Ramsey's noueb).

Files exported in this way should be treated as read-only, and should not be

modified.

In addition to these reasons for lack of acceptance of literate programming,

there are problems with the implementation of many literate programming

tools:

o The macro-processing mode of operation of WEB-like tools may allow

subtle errors to creep in, because substitutions are textual, and not struc-

tural.

o Debugging literate programs maybe more difficult than conventional pro-

grams, because the parts of the program presented to the compiler were

presented in a totally different order to the programmer. Statements which

are next to each other on the pre-processed output may have come from

completely different sections of the original document, making it difficult

53

CHAPTER 3
	

OBJECTIVE

to relate the sources of errors.

o Many literate programming systems are missing important parts of the

paradigm which makes literate programming effective, such as indexing

and module cross-referencing. These systems require yet more effort from

the programmer to achieve the same results, reducing the incentive to

use literate programming. The productivity improvements possible from

having these tools available while developing the program will not be

realised.

The rest of this chapter will look at these problems in more detail and show

how syntax-directed editing could be used to solve them.

Knuth's WEB system used three languages; the WEB control language, the TEX

formatting language, and the Pascal programming language. A literate program-

mer using WEB should reasonably be expected to know Pascal, but the addition

of 'rEX and WEB control sequences complicates matters somewhat. There are

three escape characters to be borne in mind (@ introduces a WEB command, \

starts a TEX command, and I is used to delimit Pascal text in documentation sec-

tions). The WEB command language contains 27 commands, several of which

make esoteric alterations to the spacing of the Pascal code or control the auto-

matic formatting performed by the weave processor, and a parameterised macro

definition and expansion capability. The TEX formatting language adds even

more complexity, and requires years to master fully - even then it is possible to

find examples to which TEX wizards will say "I didn't know it would/could do

that!".

Syntax-directed editing could be used to simplify this mess. Structural in-

formation such as the contents of documentation and code parts of refinement

sections could be indicated visually, using space and indentation, or even dif-

ferent typefaces and colour to offset the code parts. Documentation could be

54

CHAPTER 3 	 OBJECTIVE

presented as a sequence of paragraphs containing text. The text itself should

have a simple structure; the characters that the programmer types should not

have hidden surprises, like escape characters for formatters or control languages,

but should indicate what will appear in the final document. This is not the same

as WYSIWYG (what you see is what you get) presentation, because there does

not need to be any attempt to present the final appearance of the document on

the screen. There is however a correspondence between the characters typed in

the documentation and the characters appearing in the printed documentation.

Simple markup abstractions for common constructions (such as emphasis,

lists, etc.) could be defined, which would be mapped onto code in the formatting

language when the program is output for formatting. These markup abstractions

could again be indicated visually, and templates for their use provided. More

advanced control of the formatting could be provided by providing structures

which pass the text contained within them through to the formatter.

Visual differentiation can be used to indicate different structural entities,

using colour, different typefaces, and spacing.

I M090101=11%_

There are problems related to the textual decomposition of the program into

modules which is facilitated by WEB and its progeny. In WEB, module references

may be inserted at any point in the program, and a purely textual substitution

is performed before the program code is written out for compilation. Modules

therefore do not necessarily contain syntactically complete or correct fragments

of code. In practice, module references are nearly always inserted at certain

well-defined places (such as statements, expressions, declarations, and case

branches). This is probably because it is simpler to comprehend the function of

a module if the context in which it is used is easily defined and understood.

Textual decomposition of the program into modules can easily introduce

errors which are difficult to detect. For example, consider a WEB fragment which

contains a module reference:

55

CHAPTER 3
	

OBJECTIVE

if test > value then

<Perform operation on value threshold@>

and the definition of the module:

@<Perform operation on value threshold@>=

trite('Error: value is too high')

This fragment of code contains the hidden assumption that the module

"Perform operation on value threshold" contains just one statement. (In Pascal,

the branches of an if. . . then. . . else statement contain a single statement

each, if more than one statement is needed, a compound statement is created

using the begin... end construct.) If a programmer altered the module defin-

ition, without careful consideration of the context in which it was used, the

definition might end up like this:

@<Perform operation on value thresholdQ>

write('Error: value is too high'); errorf lag := true

In this case, only the first statement in this module will be performed

when the condition is true; the other statement will always be performed,

possibly leading to erroneous results. The program is syntactically correct, but

the structure imparted by the division into modules does not actually match the

syntactic structure.

It is easy to reply that the context in which the module is used should

always be considered carefully. While this is in general true, the semantics of

the code in which a module is, used may be altered by the module definition,

and so the context in which this code is used should be carefully considered,

and so on. This interdependency of modules in WEB code points to the need for

extra structure beyond plain textual substitution.

A more complicated example is the case in which the first piece of code

contains an else branch:

if test > value then

CHAPTER 3 	 OBJECTIVE

@<Perform operation on value threshold@>

else begin

@<Normal operation for value@>

end

In this case, a problem arises if the module "Perform operation on value

threshold" is modified to act conditionally:

@<Perform operation on value threshold@>=

if verbose then urite('Error: value is too high')

In this case the module definition is still a single statement, but after textual

substitution the else clause of the code which uses it becomes attached to the

if statement within the module.

Both of the examples provided here are closely bound to the semantics of

the programming language in use (in these cases, Pascal). Any programming

language will have its own share of potential ambiguities; several authors have

said that the full power of literate programming will only be realised when it

is integrated into a programming language designed for the purpose, rather

than retro-fitted to languages designed for other purposes. Unfortunately, this is

unlikely to be a popular option, because of the delays in creating tools, compilers,

and support environments for new languages, and the inertia in getting users

to program in a new language.

Syntax-directed editing could completely prevent problems caused by tex-

tual substitution. In the first example above, a syntax-directed editor would

recognise that the definition of the module must contain a single statement,

and complain when a statement list was used instead. The second example is

likely to be recognised by a syntax-directed editor as a case of the "dangling

else" problem, and appropriate preventive action taken or warning issued. The

price to pay for introducing syntax-directed editing is a slight loss of flexibil-

ity in positioning of module references. None of the literate programs which

were read and reviewed when performing the literature survey in chapter 2

or designing the implementations in chapter 4 had module references which

57

CHAPTER 3 	 OBJECTIVE

crossed syntactic boundaries, so the loss in flexibility is likely to be negligible if

the reference positioning is designed carefully.

In the WEB system, Knuth deliberately obscured the output of the tangle pro-

cessor, to prevent programmers from altering the Pascal code directly. State-

ments were put on the same lines, keywords and identifiers were put in upper-

case, comments were removed, and line breaks were placed in unusual places.

The only concession to debugging was to insert comments indicating where

the starts and ends of modules were. Unfortunately, this output made the use

of source-level debugging tools (which were not common when WEB was cre-

ated) very difficult, because the code that the debugger shows bears very little

resemblance to what the programmer recognises. Even if bugs are discovered

with a debugger, finding the point at which a fix should be made back in the

original WEB source requires more effort from the programmer.

This problem has been tackled by some systems, such as Levy's CEB, by

introducing compiler directives which indicate the file and line in the original

source code that each module comes from. Source-level debuggers can then use

this information to display the original CUEB file, rather than the intermediate

C program. Levy's C!EB uses the C preprocessor's aline directive, which is a

standard feature in implementations of the C language. However, there is no

standard equivalent of aline for many other languages such as Pascal, so this

technique cannot be used in these cases.

A syntax-directed editor which has knowledge of the semantics of the pro-

gramming language could prevent many of the errors which the compiler de-

tects. Syntactic errors would be prevented because the program would always

be syntactically correct, and many semantic errors could be detected and in-

dicated in the editor's display, preventing the erroneous code from being sent

to the compiler in the first place. Logical errors in the program design or im-

plementation are still possible, but incremental code generation and execution

58

CHAPTER 3 	 OBJECTIVE

could be incorporated to allow single-stepping through the literate program to

facilitate catching these errors.

3.3 PubHO SMORZ T©©

Knuth's WEB system automatically generates a table of contents, an index of

the identifiers appearing in the program, and cross references for each module

indicating the module in which it is used and any other modules which augment

the module's definition. Unfortunately, this information is nearly always out of

date, as printed copy of the program tends to be made rarely because of the time

and expense involved, and almost any change to the program will invalidate

this information.

Brown [23] showed that having this auxiliary information available made

navigating around the literate program much easier. A syntax-directed editor

cogniscent of the structure of the documentation could generate these lists

interactively, and either provide separate windows displaying the contents and

index, or display them at the start and end of the edited document. The module

cross-references could be displayed within the modules. It may also be possible

to provide navigation links between sections, so that the programmer could

easily find the next module which augments the current module, the module

which includes the current module, or the next module which uses a selected

identifier. The editor could also automatically number sections, so that moving

or removing sections would keep the section ordering, table of contents, and

module lists up to date.

3.5 A 	 1ftt

The main reasons for implementing a syntax-directed literate program editor

have been explained in the previous sections. There are some more potential

benefits that such an editor could have:

59

CHAPTER 3
	

OBJECTIVE

Cross-referencing. There are implicit and explicit cross-references between

the code of a WEB program and its documentation. Documentation may

describe pre- and post-conditions for code chunks, using variable and

procedure names from the code. It may be possible to link identifiers

appearing in the document with identifiers appearing in the code, so that a

change to the identifier in the code would either change the corresponding

identifiers in the documentation or give a warning that the identifier in

the documentation is not defined.

Awdillairy infbrznaflon. The notion of verisimilitude which literate program-

ming introduced to indicate that the documentation and code came from

the same source ifie breaks down when auxiliary information such as

tables, graphs, and example output are introduced into the documenta-

tion. For instance:

o Command syntax for a program may be specified by a grammar,

which appears as a pretty-printed grammar or railroad diagram in

the documentation, with a corresponding parse table and parsing

procedures in the code. A syntax-directed editor which has know-

ledge of the structure of the grammar could generate the diagrams

automatically. This example would probably be better supported by

invocation of an auxiliary program which generates both code and

documentation from a single file.

o Output of a function or the entire program appears in the docu-

mentation, with the example or test input which generated it. A

syntax-directed editor which supports incremental code generation

or invocation of external programs might be able to automatically

re-generate the documentation when the corresponding code or test

input is changed.

The concept of test interfaces in the example above is used in Reenskaug

and Skaar's SmailTalk literate programming system [941.

Ell

CHAPTER 3
	

OBJECTIVE

3c7 	
rnuj

The problems associated with WEB and similar tools and systems can be sum-

marised thus:

The programmer is required to learn more syntax than is relevant to the

task, i.e., designing, writing, and documenting a program.

The transformation of WEB programs into compilable source code oper-

ates by purely textual substitution; subtle errors may be present in WEB

programs which will not be caught by this process.

Programmers may not be able to debug the same source code that they

wrote, and are left to struggle with the ugly-printed intermediate files.

Navigation information is only contained in the printed copies of the source

code, which quickly become obsolete.

A syntax-directed editor with knowledge of the structure and semantics of

the programming language and the structure of the documentation could help

solve all of these problems.

-

Documentation may be required for a program for several different purposes:

User mani.aL A tutorial to help new users of the program.

Reference manual. For experienced users to find concise information in.

Maintenance commentary. To ease porting to other architectures and func-

tional changes.

Pedagogic commentary. A commentary on interesting algorithms and data

structures to allow them to be re-used in other programs.

61

CHAPTER 3 	 OBJECTIVE

The literate programming paradigm is most appropriate for production of

the latter two forms of documentation, because of their intimate relationship

with the program code. There is still a need for consistency with the former two

types of documentation, but this may be better addressed by other means.

The objective of the next stage of work was to develop a syntax-directed

editor for literate programs based on a sufficiently powerful system that it could

be used to derive and check information about the semantics of the programming

language chosen.

The attribute grammar description of programming languages [63,64] is

a well-known and powerful model for representing programming languages;

the syntax of the programming language is specified by a context-free gram-

mar, and the semantics can be specified by attribute evaluation rules. There are

several syntax-directed editing systems based on attribute grammar evaluation,

including the Cornell Synthesizer Generator [97], PSG [11], and Poe [44]. To

use attribute grammars to represent literate programs, the context free gram-

mar would have to be extended to describe the structure of the entire literate

program with the documentation included.

The initial phase of this work was to examine whether the Cornell Synthes-

izer Generator was a suitable framework on which to base the literate program

editor. The Cornell Synthesizer Generator was chosen as a base on which to

develop the literate programming editor for several reasons:

Availability. At the time when it was chosen, the Synthesizer Generator had a

very reasonable academic-use license, and support was provided for it.

Completeness. The Synthesizer Generator has been used for several complete

program editors before, for different styles of programming language. It

was thought that it would be the most capable tool for implementing a

program editor.

Ease of speciication. The entire editor, including input lexical units, abstract

syntax, attribute equations and display representations are written in the

CHAPTER 3
	

OBJECTIVE

SSL language. This is a functional language with a reasonable set of prim-

itives for data manipulation and flow control.

ExerriiaJ1 linkage. The SSL language allows linking attribute evaluator func-

tions written in C into editor specifications, to provide special capabilities

which could not be written (or could not be written efficiently) otherwise.

The plan for the implementation work was as follows:

Stage L The first step was to create literate programs editor for "toy" pro-

gramming languages investigate how to represent literate programs with

attribute grammars.

Stage 2. An editor for a real programming language would then be developed,

initially to demonstrate how the code and documentation could be presen-

ted so that no knowledge of the control language or structure was neces-

sary.

Stage 3. The editor would then be extended to include knowledge about the

semantics of the programming language, demonstrating how semantic

as well as syntactic errors could be detected and displayed in a literate

program.

Stage 4. Finally, publishing tools such as a table of contents, an index of identi-

fiers, and module cross-references would be added. Some of the additional

benefits made possible by using syntax-directed editing might then be in-

vestigated if time permitted.

63

4.2 SSL 9 the Synthes'Dzev ni

Editors created with the Synthesizer Generator are written in the Synthesizer

Specification Language (SSL). An SSL specification consists of a list of declara-

tions, which describe the abstract syntax, concrete syntax, and operations of the

target language. The core of a specification is the abstract syntax, described by a

set of grammar rules. These grammar rules only contain nonterminal symbols;

entry declarations are used to define how subsets of the concrete syntax map

onto the abstract syntax.

The grammar is also a type-definition mechanism in which the nonterminal

symbols are names for types which denote sets of values. These sets of values are

the set of derivation trees (or terms) derived from a given nonterminal symbol,

and are known as phylum. Each production in the grammar derives terms that

can be treated as records; the alternatives of a production derive different

record variants. Terms are used as abstract representations of objects to be

edited and also as computational values. Each production in the grammar has

a name, known as an operator, that can be used in computational expressions,

in different contexts as a record constructor and as a selector that discriminates

between variants. Productions, nonterminal symbols, and operator names are

defined simultaneously in phylum declarations. A single root declaration specifies

the root nonterminal symbol of the grammar.

Calculations on terms can be specified by attribution rules. Attribute de-

CHAPTER 4 	 IMPLEMENTATION STUDIES

clarations associate attributes with nonterminal symbols and productions, and

equation declarations define the values of these attributes in terms of other

attributes. Expressions for evaluating attributes are written in a strictly func-

tional style; there are no side effects. Function declarations can be used to create

abstractions of common operations. The Synthesizer Generator automatically

updates all of the attributes which are affected after each editing operation.

The editing interface to Synthesizer Generator editors is a set of windows

displaying some of the buffers which have been loaded from files. Each window

displays one view of one buffer; several different windows may display altern-

ative views of the same buffer, in which case all of the windows will be updated

as each editing operation occurs. Each buffer has a selection, which is the sub-

term or sublist of current interest. The selection is highlighted in each window

in which it is visible. Each editing transaction replaces the selected subterm

or sublist of the buffer with another. These replacements may be specified by

transformations declarations, which specify how to restructure an object when

the selection matches a given structural pattern, or by text editing. Entry dedar-

ations specify which portions of the concrete input syntax are recognised with

the current selection, and how the parse tree of a textual input is attributed to

create the corresponding abstract syntax. Each of the terms of the abstract syn-

tax has an unparsing declaration, which defines how the term is displayed on the

screen in each of the views available, and whether it may be selected. Unparsing

declarations can control the level of indentation. 1' breaks, and whether the

subterms and attributes of productions an' 	the display. Different fonts and

font characteristics can be invok' 	..1ie unparsing declarations through style

declarations. There are c" 	.t,ids to traverse the abstract syntax tree, which

may be bound to ' , or key-sequences. Locating devices such as mice may

also be u.wz- " -,, select terms of interest in the buffer. The default key bindings

for - 1 1ithesizer Generator editors are reminiscent of Gnu-Emacs, but may be

changed easily.

65

CHAPTER 4
	

IMPLEMENTATION STUDIES

4.2 Das 'Dgn ksues qofr flitafrats t©

There is a fundamental design decision to be made when creating a literate pro-

gram editor with the Synthesizer Generator, which is the choice of structuring

the editor with the program structure as the primary structure or the document-

ation structure as the primary structure. A literate program can be viewed as

two intertwined structures, one of which defines the program, and one of which

defines the documentation (the documentation actually includes the program

as well). The editors created by the Synthesizer Generator have only one root

to their abstract syntax, so the secondary structure must be incorporated by

interleaving syntax dedarations at the appropriate points and using attribute

evaluations to provide error and type checking.

Using the program structure as the primary structure for an editor has some

advantages:

o The (context-free) syntax of the programming language can be enforced by

the editor. This does not imply that any program created with such an

editor will be correct; there may be logical errors in the program (such as

infinite loops), semantic errors (such as using undeclared variables), or the

program may be incomplete. However, syntax errors will be eliminated.

o Conversion of non-literate programs to the literate programming idiom is

simplified. If a complete concrete input syntax is defined for the language,

existing programs can be read in and then documented. This is not a

very great advantage, because the literate programming paradigm works

best when programs are written from scratch, with the exposition of the

underlying algorithms foremost in the author's thoughts.

There are corresponding disadvantages when using the program structure as

the primary structure:

o Displaying the literate program in a sensible order is difficult. The order

in which documented sections should be displayed is not necessarily the

same as the order in which they appear in the program, and re-arranging

CHAPTER 4
	

IMPLEMENTATION STUDIES

the display order may be difficult. Compressing the display so that pieces

of code which are "abstracted away" in other sections are displayed as

section references may be difficult. These two problems may require that

the normal display mechanism of the generated editor is by-passed, and

that the representation for every node in the abstract syntax tree is defined

as an attribute of that node. (If there were some mechanism to alter the

unparsing mode of the editor conditionally on where the node is in relation

to the current selection, this would not be so.) This would not only be

inefficient, but there may probably also be problems relating the current

selection to the original abstract syntax node.

In addition, sections of documentation which have no corresponding

code section may be difficult to incorporate into the structure.

Using the documentation structure as the primary structure for an editor

has some advantages:

o Displaying the program is simple. Arranging the order of display, and dis-

playing abstracted parts of code is simple, because the literate program's

structure follows the order of explanation.

The corresponding disadvantages when using the documentation structure as

the primary structure are:

o The syntax of the programming language cannot be enforced by the editor.

This is possibly not such a great disadvantage, because the editor cannot

enforce the semantics of the language either. The usual recourse when a

semantic error is detected is to insert a warning message in the display,

and this method can be followed for the cases in which the syntax cannot

be directly enforced. The warning messages can be generated by passing

attributes through the documentation structure which define the syntax

of acceptable code sections.

o The concrete input syntax may be non-context free. Parsing of the program

may be more difficult in some cases, because the left-context may be

67

CHAPTER 4
	

IMPLEMENTATION STUDIES

impossible to determine. This may prevent writing a concrete input syntax

for the entire literate program (Le., documentation and program), but

parsing rules which use the context of the (hidden) abstract syntax may

still be written to allow unambiguous parsing of conflicting rules.

Version 3.3 of the Synthesizer Generator was used for these studies.

'&3

Two feasibility studies were performed to examine whether the Synthesizer

Generator is capable of supporting these structures. The feasibility studies took

an editor for the "toy" language presented in The Synthesizer Generator [97], and

extended it to include documentation nodes using the two primary structures

mentioned above. These feasibility studies were also used as an exercise in

familiarisation with the Synthesizer Generator.

L3i EP©am stirucftuve as pa1mary stvuctuve

The first study used the program structure for the primary structure, and added

documentation elaborations to certain points in the syntax. The documentation

nodes in this editor were permitted at statement and declaration boundaries.

The documentation nodes were displayed in a manner similar to WEB constructs.

Each documentation node specified a section number, documentation string,

and declaration or statement to enclose.

Figure 4-1 shows the display presented by the final version of this editor.

The figure shows the general appearance of Synthesizer Generator based editors.

At the top of the window (inside the window manager frame) is a reverse video

bar, with the name of the buffer which is being edited; if an alternate view is

displayed, the view name is also shown. The main text of the program appears in

a large pane underneath the title bar, in the fonts specified by a style declaration.

In this case, a single variable-width font (Times-Roman) has been used. To the

right and below the main text are scroll icons, which allow the user to pan about

M.

CHAPTER 4
	

IMPLEMENTATION STUDIES

the display. Clicking on the icons at the right hand side allows the user to move

the display up or down a line at a time, half a page at a time, a page at a time,

or directly to the top or bottom of the file. The icons below the main text allow

the display to be moved by small, medium, or large motions left and right.

program 	ample;
ar

@<Declarbcandfriends@>=
2. This is a declaration of an integer variable. There
is an accompanying boolean variable which is declared
later,

abc: integer
3. As stated earlier, this variable is associated with the
abc variable.

abcflag: boolean;
pp: integer;
@< Other local variables@> =

5. All of the other variables are defined in this section.
kk: boolean;
@ <Sub variable list@> =

8. The sole purpose of this section is to show how
lists of declarations or statements can contain
documentation nodes themselves.

sub: integer
egin

@ <Initialise variables@> =
4. initialise abc and friends.

abcflag : = false
6. Initialise other variables..

kk := true;

OI1D©fl 	 dot

Figure 4-1: Main view of "toy" editor with program structure priority.

CHAPTER 4 	 IMPLEMENTATION STUDIES

In editors created using the Synthesizer Generator, the part of the syntax

tree being edited is called the selection. The selection can be moved using the

mouse or cursor keys. Keys can be re-bound to provide different motion func-

tions, but the normal orders of traversal available include widening the selection

to the parent, moving forward or backward to sibling nodes, and pre-order tra-

versal through the tree. Most of these motion functions are available in two

varieties, which do and do not insert placeholders for optional nodes in the

tree. Placeholders are markers which are inserted at points in the syntax tree

where more complex structures can be placed. Optional placeholders are shown

as the selection is moved to places where nodes could be inserted, and removed

as the selection is moved on to another node.

The current selection in figure 4-1 example is an assignment statement; it

is shown as white text on a black background. The pane at the bottom of the

window shows the abstract syntax node at which the selection is positioned, and

a series of transformation names. These transformation names may be selected

to perform the transformation required on the current selection.

This editor went through several major versions as various methods of

implementation in SSL were tried. The Synthesizer Generator documentation

does not provide guidance with implementation methods or efficiency, and there

are many areas in which the documentation does not specify the behaviour of the

system dearly, so several trial implementations had to be discarded or modified

significantly.

The final version of the editor was provided with three views of the program.

These views corresponded to the annotated program, the raw program tree,

and the documentation view. Views are selected by selecting the "Change View"

option of the "Windows" editor menu, and typing the name of the view which is

to be selected into the dialogue panel. A more direct method for selecting views

is desirable.

Figure 4-2 shows the program view of the same program provided by this

editor; the documentation information has been folded away, allowing direct

access and editing of the program tree.

70

CHAPTER 4
	

IMPLEMENTATION STUDIES

example;

abc: integer
abcflag bookean;
pp: integer;
RR: boolean;
sub: integer

abcflag : = false
kk:= true;
pp:= 1;
while (kk = abcflag) do

abc := ((def { NOT DECLARED } + I) + pp);

pp : = (pp + { INT EXPRESSION NEEDED } kk)

ccT

Figure 4-2: Program view of "toy" editor with program structure priority.

The documentation view of the program is shown in figure 4-3. The sections

of the main view have been re-arranged in the order of their section numbers

(with the root section defaulting to number one), and are displayed in a manner

similar to WEB.

This first feasibility study indicated where some of the major problems in

using the Synthesizer Generator to create a literate program editor lie.

The facility to work with the documentation view of the program is essential

for a literate program editor. This provides the essential feedback that indicates

that the user is editing a document for human reading, and not just a program

for machines to translate. Unfortunately, editing the documentation view of the

71

CHAPTER 4
	

IMPLEMENTATION STUDIES

gram ample;

@ < Declare abc and friends@>;
pp: integer;
@ <Other local variables@>

<Initialise variables@>;
while (Id = abcflag) do

@ <Increment abc@>;
pp.= (pp + { INT EXPRESSION NEEDED } kk)

This is a declaration of an integer variable. There
an accompanying boolean variable which is declared

<Dedare abc and friends@> =
abc: integer

• As stated earlier, this variable is associated with the
bc variable.

<Declare abc and friends@> =
abcflag: boolean

4. initialise abc and friends.

@ <Initialise variables@> =
abc:=0

Figure 4-3: Documentation view of "toy" editor with program structure

priority_____________________________________

program in not possible with the program-structure priority editor, because the

visible representation is generated from displayed attributes of the parse tree.

The displayed attributes are generated by a function which sorts sections into

72

CHAPTER 4 	 IMPLEMENTATION STUDIES

the display order, from a list of sections created by a pre-order traversal of the

parse tree. The SSL language operates in a functional manner, generating new

copies of the phyla contained in each section, and in doing so, loses track of the

correspondence between the displayed attribute and the original syntax tree. It

is not possible even to select separate units within the documentation view of

the program; either the whole buffer is selected or nothing.

This trial implementation has some of the flexibility that a complete tool

would require; documented declaration and statement lists can be nested indef-

initely. The price paid for this flexibility is a great increase in the complexity of

the SSL description; e.g. declaration lists increase from one layer deep to four

layers deep of structure. Pattern matches for transformations become extremely

complex and lengthy, and threading attributes through all of the extra layers of

structure becomes very cumbersome.

The editor shows a simple example of how the editor might be extended

to check the static semantics of the program. Figure 4-2 shows two errors in

variable usage which the editor has identified. The error messages appear in all

views of the program, and will automatically disappear when the mistakes are

corrected.

An editor using this idiom could not be described as "literate", because it

lacks features essential to the paradigm i.e., flexible order of presentation.

4.3.2 DocumentaUon stiructuue as prhary trancthu'

The second feasibility study used the documentation for the primary structure

of the editor.

Figure 4-4 shows how this editor was displayed. More attention was paid

to the appearance of this display than the previous example, using the Syn-

thesizer Generator's display styles to differentiate parts of the program and

documentation.

This implementation was extended to demonstrate some of the features

that a full scale literate programming structure editor would require. The docu-

mentation parts were structured as lists of paragraphs, each of which was a list

73

CHAPTER 4
	

IMPLEMENTATION STUDIES

g

1. This is alist of words in the documentation part of this section. The words
will automatically wrap when the width parameter is exceeded. At the moment, the
width parameter is axed at M characters. It would be better to take the width
of proportional width fonts Into account, but the Synthesizer Generator can't do
it properly currently.

The next paragraph begins with an indentation, which Is automatically
• rserted by the system.

The code associated with each section is separated from the text by ablank
me, like so:

Example statement I/St =
while <exp>dsD

iii <exp> .11tan
1,i(WOTDECLR) :=trus

else
ghi(NTDECLARED) := 1

. This section contains the main program; there should be just one of these in
each program. An example of a statement list reference is contained in the body
of the code; the code from the previous section will be included in here.

jnram ErrorTest,
Var

abc: integer,
def:

lbegk

if<exp>then
while <eçp> ds

otioned at stmtUst 	(begin

Figure 4-4: Main view of the "toy" editor with documentation structure
priority.

of words. This is a simple example of the abstraction of text formatting; having

defined paragraphs as word lists, it would be simple to extend them to include

emphasised or highlighted word lists as well.

74

CHAPTER 4
	

IMPLEMENTATION STUDIES

Syntax and some static semantic checking were also been implemented.

F.rror messages were displayed in a bold-italic variant of the font, beside the

structure which they referred to. In figure 4-4, the error message "NOT 1E

CIL&IR1ED" appears after the references to the variable ghi in the first section. If a

declaration of ghi as an integer is added to the program module in section 2, the

error message is automatically updated to reflect the declaration, as shown in

figure 4-5. The second assignment to ghi is now correct, but the first assignment

now contains a type mismatch which is flagged.

cample statement list=
While .cexp> an

gi := na f INCOMPAMLE TYPES IN :=
)

also

.. This section contains the mainproan there should be just one of these in
each program. An example of a statement list reference is contained in the body
of the code; the code from the previous section will be included inhere.

progirant ErrorTest
var

i:ingair

J3

Figure 4-5: A type mismatch error occurring after correction of the de-
claration error in the "toy" editor with documentation struc-

ture priority.

The semantic errors which are detected and reported in this way are:

Multiple declarations. A variable was declared more than once.

Variable not declared. A variable was used but not declared.

75

CHAPTER 4 	 IMPLEMENTATION STUDIES

]Incompattibe types. The types of two expressions which should be the same

(e.g., both sides of an equality test) were different.

Boolean expression needed. An integer expression was used in a context in

which a boolean expression was required.

]Integer expression needed. A boolean expression was used in a context in

which an integer expression was required.

The "toy" language for which this editor was written does not include the

concept of variable scope, so the intricacies of dealing with multiple contexts in

which variables may be valid was not investigated.

In addition to the static semantic checking, some syntax and documenta-

tion structure checking was implemented. The editor was designed so that the

program contained a title (shown at the top of figure 4-4) followed by a list

of sections. Each of these sections could contain a documentation part and an

optional item which was either a root module (containing the top-level "pro-

gram" declaration) or a named code fragment (an expression, a statement, or

a statement list). The names applied to the code fragments could be sentences,

including spaces, punctuation, and any other characters desired. Spaces in the

section names were not treated as significant when comparing them, and they

could be abbreviated by appending"... "to an unambiguous initial portion of

the name. The sections were numbered automatically by the editor, and the

section numbers were updated automatically when sections were inserted or

deleted. It would be quite easy to extend the section numbering scheme to

incorporate symbolic references to particular sections, via an aggregate which

contained the labels and the section number.

Figure 4-6 shows some of the errors which can be detected in the syntax

and documentation structure of the program.

The documentation and syntax errors detected were:

No title. The title of the program had not been defined.

Ambiguous abbreviation. An abbreviation which was not unique was used.

CHAPTER 4
	

IMPLEMENTATION STUDIES

(MUL TIPLE ROTDEPPJkflON5)]pmgmm Errores

var
abc:it&gar

1h
@<Nor defined properly... (EFD)@>
iL

Test to keep the editor happy, don't really need it

@<Fxarople... 109V4TIOik@>

• Note that recursive sections are not yet dealt with, and mutually recursive
ections are not even thought about!

ample expression =
((abc+ 1) <> (def+ @<Sub expression a'WOTiEF1NEQ@>))

This section illustrates multiple definition of a name. The abbreviation New
ame etc. was used earlier, and is re-defined here. This causes both sections to
merged into one.

Vew tiarrie, which is now defined =
TxsZk 	 4a

@<xarnpIe expr... (INCMPLESECT2N)@>;
if

@<Another stat...

Posiftned at ailJa 	baiin

Figure 4-6: Documentation node errors in the "toy" editor with docu-

mentation structure priority.

No section name. A code fragment which required a name was created, but

was not given a name.

Section not defined. A reference was made to a section which has not been

defined.

77

CHAPTER 4 	 IMPLEMENTATION STUDIES

I[noupatibk section. An expression-typed refinement was used in a context

in which a statement or statement list refinement was required, or vice

versa.

Rnappiropriate statement list. A statement list refinement was used in a con-

text in which a statement was required. This case required that statements

had an inherited attribute which indicated if statement lists were valid in

the context.

1iIiltip1e root definitions. More than one section contained a "program" de-

claration.

References to named code fragments could be placed at any point where

an expression, statement, or statement list was required.

An alternative view of the documentation structure editor was provided,

showing the program tree of the literate program. This view is shown in figure

4-7. Code references have been expanded, unless an error which prevented

the expansion occurred. This view had to be implemented by a set of functions

which used the Synthesizer Generator's pattern matching ability to deconstruct

and reconstruct the program's parse tree. The pattern deconstruction and recon-

struction operators had to be provided for every production from the "program"

level down to the lowest level at which code references were allowed, in this

case the expression level. This process is very tedious, and would not scale up

to a large grammar very well.

The semantic errors detected and displayed in the main view of the program

were not displayed in the program view, because the Synthesizer Generator did

not fully attribute the program tree generated by the reconstruction functions.

The program view in this editor could only be used for browsing the pro-

gram, and not for editing it; this was not a particular problem, because it encour-

aged the use of the literate view of the program, which was editable. There was

no cross-referencing between the program view and the documentation view

of the literate program. The facility to see which part of the documentation

structure a piece of the program corresponds to would be useful for debugging

09

CHAPTER 4
	

IMPLEMENTATION STUDIES

EnorTest

abc:
def:

While <eçp> da

&:- tmz
Ohm

i : 1;
ftfl <exp> then

'h]1 8 <exp> &
begin

1?((abc +1) <> (def+ ©<Stjb ex... 	 then
<steztemePzt>

lla
< statement >

and
SRSS
	

Lii
abc := 1;

@<Not det7nedproper4... (NOTEF1D)@> 	 'V.

:

Figure 4-7: Program view of "toy" editor with documentation structure
priority

and walking through programs. The program view does allow the program to

be written out in a compilable form, by selecting the "text" option when saving

the file.

Table 4-1 shows the relative complexities of the original "toy" language

editor, the literate program structure priority editor, and the literate document-

ation structure priority editor, as measured by the number of lines in each

specification. The literate program editors are both significantly more complex

than the original editor. The discrepancy between specifications for the attrib-

ute equations of the literate program editors is mainly due to the code which

constructs the program tree shown by the program view. Minor differences in

79

CHAPTER 4 	 IMPLEMENTATION STUDIES

the documentation structure and completeness of the concrete syntax account

for the differences between the unparsing, abstract syntax, and lexical analysis

parts of the literate program specifications.

ORIGINAL PROGRAM DOCUMENTATION

FUNCTIONS

Attribute equations
Unparsing
Abstract syntax
Lexical analysis and
transformations

TOTAL

FILE EDITOR PRIORITY PRIORITY

p.m.ssl 109 314 572

p.u.ssl 60 130 103

p.x.ssl 68 118 127

p.y.ssl 80 165 111

317 727 913

Table 4-1: Number of lines in each file of the "toy" language specifica-
tions for the original editor, literate program priority editor,

and literate documentation priority editor.

The trial implementations revealed several areas in which extra care is necessary

in designing Synthesizer Generator specifications. The penalties for poor design

in these areas are poor space and/or time efficiency, or extra complexity in

the specification. The feasibility studies brought to light the major points to be

considered when choosing between program and documentation structure as

primary structure.

Some specific points are:

Use of list phylum SSL has a special type of grammar rule called a list phylum.

These have certain advantages, such as built-in constructors to build and

append to lists, automatic insertion of placeholders on some operations,

and automatic transformation between singleton sub-lists and list ele-

ments. List phylum cannot cope with lists which have more than one ele-

CHAPTER 4
	

IMPLEMENTATION STUDIES

ment type, however; these have to be constructed out of lists of elements

of one type, with these elements having alternative sub-types. Unfortu-

nately, this approach loses some of the advantages of using a list phylum

in the first place. Complicated lists can be constructed without using list

phylum, but transformations have to be made available to perform the

operations automatic to the list phylum.

ILIIS11 transformations If list phyla are used, transformations may be defined to

operate on sub-lists or list elements (or even both). If transformations are

defined to operate on sub-lists, they cannot be used on list elements, and

vice-versa. Providing transformations to operate on both sub-lists and list

elements is duplication of effort and increases the size and complexity of

the generated editor.

HierarchicaYflat structuring Optional nodes of the editor's abstract syntax

can be managed either by using SSIs optional dedaration, or a new

parent node can be inserted with and without the optional node. There

are advantages and disadvantages to both methods, with the decision

about which method to use being affected by the optional node's context;

if the optional element affects the display representation of a node, or if

the optional element appears in a non-optional context elsewhere in the

specification, different strategies must be used.

Concrete input requirements The concrete input syntax provides the mechan-

ism for translating between text and attributed structure. If pure text files

are to be read by the editor, the entire concrete input syntax of the editor

must be defined, with the associated problems of context sensitivity. Oth-

erwise, decisions must be made about which parts of the abstract syntax

should have concrete syntax provided. These decisions will greatly affect

the usability of the generated editor, especially for experienced typists and

programmers.

Synthesizer Generator inadequacies Some restrictions in the SSL language

0

CHAPTER 4
	

IMPLEMENTATION STUDIES

increase the complexity of the specification.

There are no global attribute variables in SSL, so references to remote

attributes (even upward remote attributes of the root phylum) which are

used in function declarations need to be passed in as parameters. If the

function is used by other functions, each of the calling functions also needs

to be passed the attributes as parameters.

A particularly annoying restriction in SSL was encountered, which

prevents the selection of attributes of phyla returned by function eval-

uations. This restriction significantly increases the complexity of editor

specifications, because the work-around involves accumulating the attrib-

utes required, and threading the accumulated structure through the entire

syntax tree to the nodes at which it is required. The error message output

when this restriction is encountered ("selection of an attribute of

this sort of symbol not yet permitted") indicates that the creators

of the Synthesizer Generator are aware of the problem, but have not yet

fixed it.

It was anticipated that more limitations of SSL would become evident

when more complicated specifications were attempted.

The results of the second feasibility experiment were encouraging enough to

warrant the development of a literate programming editor for a "real" language.

Pascal was chosen because a fully-featured Pascal editor was provided with

the Synthesizer Generator. Modifying this to incorporate literate programming

was seen as an easier method than writing an editor from scratch. Most of the

interesting problems from the literate programming side are not concerned with

the exact details of syntax, so this course of action seemed very reasonable.

The Pascal editor was modified to include documentation nodes, with the

documentation structure taking precedence over the program structure, as in

the second feasibility study. The section structure was similar to the "toy" lan-

RE

CHAPTER 4
	

IMPLEMENTATION STUDIES

rnsta rits in the main program block =
p1=3.1415926;
	 Ank

e=2.71

?. This subsection and the preceding and following subsections provide
stances othecodcfragmenttypes allowed These are program, statement list
bel declarations, constant declarations, type definitions, variable
.claratlon, procedure declaration, and expression.

diaineter:= radius/ 2;
circumference := pi diameter,
area := pi radius ' radius

The preceding subsection contains a statement list. Single statements
also be used, in the appropriate contexts.

g/e statement =

gale 99

L.4 This section contains the main program block. There is no necessity for

t to appear first.

{<comment'}
pirogrann Test;
ilaball <<&/tfebe/>>;

J3

Fod at fragment—name

Figure 4-8: Main view of the literate Pascal editor

guage documentation priority editor, extended to include nested sub-sections

as well as code fragments. Sub-sections could be nested to any depth. The

documentation structure errors which were detected were similar to the "toy"

RK

CHAPTER 4 	 IMPLEMENTATION STUDIES

editor: missing title and code fragment names, unmatched and ambiguous ab-

breviations, undefined code fragment names, and incompatible code fragments

were checked.

Figure 4-8 shows a screen from the Pascal editor. The conventions of WEB

were abandoned for the display format in this editor, because they introduced

extra "noise" which was irrelevant with respect to using the editor.

The number of places at which code fragment references could appear was

increased in the Pascal editor. References are allowed in label, constant, variable

and procedure declarations, type definitions, statements, and expressions. Ref-

erences to statement lists were essentially the same as references to statements,

except that an attribute was inherited which indicated that the context in which

the reference appeared could support a statement list. The number of levels

at which references can be made has an effect on how literate programs are

expressed with the editor. If too few levels are provided, programmers will not

be able to explain the program at the granularity that they want; on the other

hand too many levels will complicate the editor unnecessarily without any gain

in expressabiitç and may cause confusion about exactly -what part of syntax

a reference abstracts. An interesting point to note is that the representation of

the code fragments may not necessarily be textually correct when rearranged

into the correct order. As an example, consider the case in which a refinement

is made for label declarations. In WEB parlance, the label declaration statement

looks something like this:

label @<Labels in the outer block@>;

begin

We then have the refinement defined elsewhere:

@<Labels in.. .@> 1, 99

If this refinement is later augmented by another definition:

@<Labels in the. . .Q>+ 2, 3

CHAPTER 4 	 IMPLEMENTATION STUDIES

the resulting textual representation of the expanded refinement (1, 99 2, 3) is

syntactically incorrect. To make the representation textually consistent, it would

be necessary to allow either a dangling comma at the end of the refinement, or

a preceding comma on the augmentation. Neither of these options is desirable,

because they reduce the modularity of the code fragments: the refinement and

augmentation cannot be viewed and edited (as lists of labels) separately. This

point is not restricted to labels in Pascal; it will appear wherever lists in which

the elements are separated by delimiters are used, rather than lists in which the

elements are terminated by symbols.

Xn fact, this turns out not to be a problem for the structure editor, because

the augmentation can be done by joining two lists of labels internally. The

resulting internal data structure will have the correct representation when the

display algorithm is applied to it for final output. It is desirable to keep the

displayed representation consistent with the syntax of the language, but this is

one case where doing so would impair comprehension of the program.

A program view of the Pascal editor was provided using the parse tree

deconstruction and reconstruction technique developed for the second feasibil-

ity study. The program view is shown in figure 4-9. The difference in the the

complexity of the Pascal grammar over the toy grammar shown by the increase

in the work required to provide this view; 23 new functions were needed to

perform the parse tree deconstruction and reconstruction.

The Pascal editor was already provided with more sophisticated semantic

checking than the "toy" language editors. Full type checking was provided, as

well as checks for duplicated declarations, parameters, record fields and case

labels, and other miscellaneous errors. Adapting the semantic checking for the

literate Pascal editor revealed some problems with the Synthesizer Generator.

The Pascal language incorporates the concept of static scope to restrict the

visibility of names for variables, constants, types and procedures. Names can

be reused in different contexts, with the most recently dedared value for a

name taking precedence over other values. Declarations can be made before

the body of the program, or before the body of each procedure or function.

85

CHAPTER 4
	

IMPLEMENTATION STUDIES

raitttuTest;

I199;

put
pi=3.141926;

e=2.71;

complex

re: real;

im: real;

test= integer;

radius, diameter, area: real;
circumference, square: real;

cube: complex;

diameter := radius/2;

circumference := pi diameter;

area := pi radius radius;

ff area < square
477

Figure 4-9: Program view of the literate Pascal editor

In the Pascal editor, the declaration structure was modelled using a MAP type,

which associates values with names and is efficient for looking up the value

associated with a name. The MAP was passed through the declaration lists (for

constants, types, variables, and procedures) and augmented at each declaration.

The inheritance structure of these MAPs was used to restrict the scope of names

FIR

CHAPTER 4 	 IMPLEMENTATION STUDIES

to the appropriate parts of the parse tree. The resulting MAPs were referenced

from the body of the program or procedure by upward remote attribute references.

This is a method of referring to the value of an attribute which is guaranteed

to occur in a production which derives the production or phylum in which the

reference occurs, without explicitly writing an inheritance declaration for each

intermediate production. (Upward remote attribute references can actually refer

to a list of productions or phyla in which the attribute occurs, in which case the

value of the attribute in the first such ancestor production or phylum in the

parse tree will be used.)

In the literate Pascal editor the dedaration and reference scheme had to

be changed to accommodate the code and dedaration references. For each ref-

erence, what was desired was to find the section containing the corresponding

declaration fragment, pass the inherited declaration MAP through to this frag-

ment, and extract the augmented dedaration MAP out of the fragment and pass

it out as the dedaration reference's output MAP. This was achieved by associat-

ing an input environment and an output environment with each section name;

the input environment was the declaration MAP inherited by the reference to

the section, and the output MAP was the augmented declaration MAP synthes-

ised by the declarations in the section. Passing the inherited declaration MAP

into the relevant fragment was achieved using an attribution expression, which

forces the attribution of an unattributed term. In the version of the Synthes-

izer Generator used, attribution expressions were not fully implemented, and

a work-around which used an extra production to simulate the full attribution

expression had to be used. These input and output environments were collected

into two MAP attributes which were referenced from the root of the grammar

through upward remote attribute references.

The upward remote attribute references also had to be altered, because

the program or procedure block productions were no longer guaranteed to be

ancestors in the parse tree. The only guaranteed ancestor production was the

section, which conveniently lent itself to using the same MAPs as were needed

to thread the declarations through the section and reference structure.

CHAPTER 4
	

IMPLEMENTATION STUDIES

Unfortunately, these modifications introduce what is known as a type 2

circularity into the grammar. Grammars evaluated by the Synthesizer Gener -

ator's default method must be in the class of ordered grammars, which are

non-circular. A type 2 circularity is a circularity in the approximation of the

productions' transitive dependencies computed by stage 2 of Kasten's algorithm

for orderedness [62], which is used by the Synthesizer Generator.

Kasten's algorithm sometimes reports type 2 circularity for non-circular

grammars. In the case of the literate Pascal editor, the circularity is caused by

the MAPs used to pass the input and output environments from sections to and

from references. Neither of these MAPs may be computed in its entirety before

the other, because each may depend upon values from the other MAP. The input

environment to one section may be the output environment of another section,

which in turn may take its input environment from the output of yet another

section.

There is an experimental kernel in release 3 of the Synthesizer Generator

which uses a method called approximate topological ordering to evaluate the

attributes [551. This method can be extended to evaluate grammars which

are outside the class of ordered grammars. Compile time flags can be used to

select the kernel and extend it to evaluate cyclic trees. Cyclic dependencies

are evaluated by initialising the cycle with the completing term of an attribute

instance on the cycle, and iterating around the cycle until a fixed point is

reached. The implementation does not guarantee that the least fixed point of a

cydic dependency will be found.

The literate Pascal editor with the restructured declarations was compiled

with the approximate topological ordering kernel and cyclic evaluation. It ap-

peared to work when editing new programs, but problems were encountered

with loading examples which had been saved previously. Figure 4-10 shows the

display after loading a previously-saved example.

The displayed string "BOTTOM" is the external representation of the in-

ternal null-value attribute, which should never appear in a fully-attributed tree.

It indicates that a part of the tree has been prepared for attribute evaluation,

EM

CHAPTER 4
	

IMPLEMENTATION STUDIES

<<A sttement//st>>;
?<<Cr/t1ca1test>>0TT0M than

<<S/ngle statement--.-;

L(Test)

<word>

Local type defir/t/ons =
coinplexBOTTOM = meord

reBOTTOM: reaIBOTTOM;
hnBOTTOM: realBOTTOM;

FosNonad at 	Xraf

Figure 4-10: Attribution errors in the literate Pascal editor

but has not been visited by the evaluation algorithm, possibly because it has

already been visited by a previous attribute evaluation.

In order for the literate program editor to be viable, this problem with

circular dependencies must be resolved. .A fully attributed program view would

provide a work around the problem, because the semantic errors would be

available through the program view. Unfortunately, not even this possibility is

available with the Synthesizer Generator, because the program view provided

by the parse tree reconstruction cannot be attributed.

CHAPTER 4 	 IMPLEMENTATION STUDIES

OO]I. Ompyovements to the Regate 1acaO edkw

There are many improvements which could have been made to the literate

Pascal editor, but were not done because of the fundamental problems with the

Synthesizer Generator identified previously. Many of these improvements would

be required before the editor could be contemplated as a useful programming

tool:

o A complete concrete syntax, to allow importing complete Pascal programs

and literate programs from other systems into the editor.

o Improvements to the documentation section structure. These would in-

dude emphasised, emboldened or highlighted words or phrases, auto-

matic cross-referencing between sections, references for a global index,

and maybe some generic structural markup templates for lists.

o Improved transformations for restructuring programs, which would make

moving sections around the documentation hierarchy easy.

o Alternative views to provide input for text formatters to create a typeset

version of the documented program.

o An index view, showing indices of identifiers and marked references, and

a contents view, showing names of fragments or sections.

o An improved interface to the program views, using externally-linked func-

tions to provide a pull-down menu of the views available.

o Methods for launching compilation or formatting processes from within

the editor, after saving the appropriate view.

All of these improvements, with the possible exception of the last item,

are within the capabilities of the Synthesizer Generator. The complexity of the

SSL specification does have to be considered, though. The literate Pascal editor

already requires recompilation of the Synthesizer Generator with larger values

CHAPTER 4
	

IMPLEMENTATION STUDIES

for several parameters, including the maximum number of phyla and the max-

imum number of productions allowed; the lexical analyser parameters also had

to be increased. The increase in complexity of the specification for each of the

improvements proposed may slow the editor's attribute recalculation down to

the extent that it becomes unusable.

91

Eva luat ion

A plan for implementing a literate program editor for a real programming

language was outlined in chapter 3. Chapter 4 described the implementation

of two literate program editors for a toy language, and one for the Pascal

language. The implementation work corresponded to the implementation plan

in the following way:

Stage L (Investigate how to represent literate programs with attribute gram-

mars.) Two editors for a "toy" programming language were implemented,

to test whether specifying the program or documentation structure as the

primary structure was better. The latter method was selected as more

appropriate, because the editable view of the program presented the doc-

umentation and code in the order in which the programmer intends the

maintainer to read it.

Stage 2. (Create an editor for a real programming language.) A literate pro-

gram editor for Pascal was implemented. Documentation and code could

be inserted by selecting the appropriate point in the display and typing.

No special commands were needed to switch between documentation and

code or insert documentation, because the structure of the abstract syntax

tree allowed easy movement to and insertion of sections with the nor -

mal motion commands. Sections were automatically renumbered when

92

CHAPTER 5
	

EVALUATION

new sections were inserted, and the structure of the documentation and

code was made obvious from the screen display. The list of transforma-

tion names at the bottom of the editor window can be used to give cues

about using the editor; transformations to create documented sections or

restructure code and documentation can have names which explain their

purpose.

Stage 3. (Semantic checking of a real programming language.) Static semantic

checking was implemented in the Pascal editor, but problems with the

attribute grammar representation of the literate program prevented it

from working correctly.

Stage 4. (Addition of publishing tools.) Publishing tools such as tables of con-

tents, module cross references and index of identifiers were not implemen-

ted, although these particular examples would not have been particularly

difficult to do, either as extra views of the program or automatically placed

before and after the main program.

Even though the literate program editors created in the implementation

studies were not complete, it is still instructive to compare their facilities to the

characteristics of a literate programming system proposed by Detig and Schrod

(see section 2.1.2).

I[ntegratioaii. In all of the editors the program code and documentation were

contained within one file, fulfilling the requirement for verisimilitude. In

the program-structure priority feasibility study, the presentation of the

program tended to obscure the documentation to the extent that the im-

mediate feedback between the formal statement of the algorithm (the

program) and the informal statement of the algorithm (the document-

ation) was lost. This particular editor also allowed changes to be made

within the program view, ignoring the documentation completely.

The provision of a program view in the literate program editors to-

gether with the facility to write this view out as a text file allowed direct

93

CHAPTER 5 	 EVALUATION

compilation of the output of the editor.

Order of exposkion. All of the editors created allowed the literate programs

to be presented in a natural order of exposition. There were some re-

strictions on the program-structure priority toy language editor which

could have been overcome by some redesign of the specification (i.e., the

main program fragment always appeared in the first section, and sections

without program fragments were not permitted), but this editor also had

the overriding flaw that the program could not be developed using the doc-

umentation view provided. The other editors allowed the development of

the program in the most natural order for its exposition.

IRthiriiements. All of the editors created allowed arbitrary names for the pro-

gram fragments in refinements. The documentation structure priority ed-

itors allowed abbreviation of fragment names when using or adding to a

refinement, but this was not necessary in the program structure priority

editor, because the name was used only once, and the re-arrangement for

documentation display propagated the name to all of the points where it

was required.

In all of the editors, there were syntactic restrictions on where re-

finements could be positioned. These restrictions did not prove to be a

problem, because enough places to expand refinements were provided.

The restrictions ensured that the program remained syntactically correct

within each program fragment, and removed the possibility for text macro

expansion problems.

Publication tooJis. The editors created were noticeably lacking in this charac-

teristic of literate programming systems. The reason for this is that other

problems diverted the effort put into the editors. The features mentioned

by Thimbleby (cross-references, indices and table of contents) would ac-

tually be the easiest to add to editors created by the Synthesizer Gener-

ator; the unparsing specification would need to be updated with displayed

attributes providing this information, which can be collected through syn-

94

CHAPTER 5 	 EVALUATION

thesised attributes of the documentation and program trees.

The editors created were used to examine the added benefits that can be

gained from syntax-directed editing; the syntax of the program can be checked

automatically, semantic errors can be detected, and inappropriate use of the

refinement mechanisms can be caught easily, without requiring a separate com-

pilation step.

The resolution of the problems identified with the literate Pascal editor

in chapter 4 is fundamental to the success of the literate program editor. In

order to be valuable enough to provide an incentive to use it, the literate Pascal

editor has to provide more than just a text-based editing facility; the extra

capabilities of a structure editor should be exploited to the full. The next section

will examine improvements to the Synthesizer Generator which might have

affected the outcome of the implementation studies. The rest of the chapter

will examine the problem of circularity in the attribute grammar description of

literate programs.

The implementation work was performed using version 3.3 of the Synthesizer

Generator. Since then, there have been three releases of the Synthesizer Gener -

ator, versions 3.4, 3.5 and 4.0, each of which have enhanced its capabilities.

Release 3.4 of the Synthesizer Generator permitted the use of alternative

scanners and parser generators, instead of lex and yacc. Yacc has fixed table sizes,

which cannot be altered without modifying the source code and recompiling,

whereas le.x reads a ifie giving alternative table sizes. Different analysers and

parser generators which dynamically alter table sizes can be used (such as flex

and bison). These improvements are important if the extensions to the literate

Pascal editor suggested in chapter 4 are developed, simplifying the compilation

of the editor specification.

Release 3.4 also included two unsupported packages which facilitate im-

plementation of some of the improvements suggested for the literate Pascal

95

CHAPTER 5 	 EVALUATION

editor. These were a package which permits the use of Athena widget control

panels with the X1 interface to the editor, and an interprocess communication

package to allow communication with other tools.

The work-around for the problem of displaying semantic information in

the literate Pascal editor by providing an attributed program view can be im-

plemented in release 3.5 of the Synthesizer Generator. This release provides

higher-order attribute grammars, in which parts of the abstract syntax tree can

be attributed. If these parts (known as nonterminal attributes) appear in the

display of a buffer, the nonterminal attribute will be attributed and the unpars-

ing specification can use its attributes. Nonterminal attributes are read-only, so

a program view provided using this method will still not be editable, but it can

be browsed using the normal editor movement commands.

Release 4.0 of the Synthesizer Generator is mainly a user-interface change,

to make the interface compatible with the XWindow system conventions. Better

support is provided for creating menus and dialogue boxes to control the editor.

Unfortunately, release 4.0 lacks the Approximate Topological Ordering attribute

evaluation kernel which was used to compile the literate Pascal editor. This

kernel was removed from the software to meet the release deadline, and may

be included in future releases.

The later releases of the Synthesizer Generator still do not solve the prob-

lems encountered in the implementation of the literate Pascal editor. The nonter-

minal attributes introduced in release 3.5 make a work-around possible, at the

expense of losing immediate feedback. The major problem with the literate

Pascal implementation is that the attribute dependencies are cydic. The second-

ary problem is that the implementation of cyclic attribute dependencies in the

Approximate Topological Ordering kernel does not work.

The problem of cyclic attribute dependencies occurred in the implementation

of the literate Pascal editor when semantic information was passed through the

CHAPTER 5 	 EVALUATION

literate program in the natural order for the program, rather than the natural

order for the documentation. In general, any attribute which depends upon the

syntax tree of the program rather than the documentation will produce a cyclic

dependency.

To see why this is so, we must consider how information is propagated

around an attribute grammar. Attributes may either be inherited, which means

that their values are derived from information held in their parent nodes, or

synthesised, which means that their values are generated from information

held in their children or the production in which the attribute appears itself.

Information can only flow up and down the tree; attributes cannot depend on

sibling production's attribute values, or on more remote relations' attribute val-

ues. Thus, in order to guarantee that an arbitrary node in the tree will have

access to information generated from another arbitrary node, the information

has to be passed up to their closest common ancestor by synthesising attrib-

utes, and back down again through inherited attributes. The closest common

ancestor that can be guaranteed for two arbitrary nodes of the tree is the root

of the grammar, since the nodes may be derived from separate parts of the root

production. The problem then becomes one of mapping another tree structure

(the program structure) onto the nodes of the grammar (the documentation

structure), without producing cycles in the root node's attribute dependencies.

In the simplest case, one node of the documentation tree contains the

entire program tree. In this case, all of the information which depends upon the

program tree can be passed within the program tree itself, without reference to

the documentation tree which encloses it. This situation is illustrated in figure 5-

1. The thick arrow indicates the nodes of the documentation tree through which

the information relating to the program has to pass. (The exact details of the

program in this example do not matter; the example is showing the overall

structure of the literate program.)

Each time a refinement is introduced into the program tree, a piece of the

program node is removed, and inserted under a different node of the docu-

mentation tree. Information which depends upon the program structure needs

97

CHAPTER 5
	

EVALUATION

Root
of

Grammar

dozk doe-
i0 	dcrñ. d=
thtth docwtba do-
tr doattha
Doad do

4otfo catba doe-

toj. dodoa

£etion 2
DoacE2 dcurn. of-

- d 	dc-
J 	 dota.
Dodo d 	dma-

p1 - 2.141S926
e- 2.710;

qW

:

bn r,1;

'or
raditm dlrorotor. torn: maL
dztoouforrnor. oqu010 renk
tube: campl=

rndbu/ 2;
thf'oenrn :- p1 • dbeur

radi teen:- p1 • ruben •
If teen n equnee then

9r
end. I Tent)

Figure 5-1: Information flow through program tree with entire program
tree in one documentation node.

to be passed through attributes up to the root of the grammar from the point at

which the refinement is used, back down to the node which contains the piece

of the program tree, through the piece of program tree, up to the root of the

grammar again, and back down to the point at which the refinement was used

again, from where it can be passed through the rest of the program tree. The

desired information flow through the program tree is illustrated in figure 5-2,

and the actual information flow through the documentation nodes is illustrated

in figure 5-3. The program fragment under the node labelled "Section 2" has

a line with a grey background, indicating the refinement reference where the

refinement which now appears under the node labelled "Section 1" was extrac-

ted from. The solid arrows indicate the flow of information through the code

fragments, and the dashed arrows indicate the flow of information from the

start of the refinement reference to the start of the refinement code, and from

the end of the refinement code to the end of the refinement reference. Two

attributes are introduced at the root of the grammar, one to pass the refinement

CHAPTER 5]EVALUATION

its incoming information through to it, and the other to pass the refinement's

outgoing information back to where it was used.

Root

of
Grammar

Section 2
dat- 	 Dmim doa 	dooc

oococioo deoo. d00000to-
tloo d000nIo d0000todoo.
D.-.. f.00.doo-

coottfoo doocr000tfoa

Egg— Test
.cSthtomoot yeflnomcota,- I pi - 11415926;

:- odtos/ 2; e - 3.710;
p1 dbmct t,Pc

- $ • radio, • codho; 000pli - 000rd
rsquaocd
goto99;

rerool
50:1001;

rodhu. dMurotor, 1000: real;
real; ch~ kxeare. oqoace

-. brocoropbea;
bI ooro=co

V
99:

Figure 5-2: Meal information flow through program tree with one doc-

umented program refinement.

This method of passing information is repeated for each refinement which is

introduced. In order to avoid cyclic attribute dependencies we need to make sure

that we have enough attributes at the root of the grammar to pass information

through for all possible derivation trees. This can be trivially proven to be

impossible. The number of attributes in the grammar must be finite, so the

number of attributes at the root of the grammar must also be finite. Since

there are no restrictions on the number of refinements which can be used, if

we create one extra refinement when all of the attributes available for passing

information to refinements are already used there will not be enough attributes

to pass information for the new program tree.

This result implies that information which is passed through the program

tree will necessarily need to share attributes at the root of the grammar. This can

be done by using an array or list-valued attribute which accumulates information

61

CHAPTER 5
	

EVALUATION

Root
of

Grammar

00 0
0 0

00 	0 i
0 0 0 o0 /

00

Section 1

0
0

oo99; a
0

Section 2
Drz 	doom doom

dco.

0000

0 	0000

0

I 	0
000cjc = = 0

pom Tt
a 	a b1 b99;

0 	a pi —3I415926
o 	o —t710:

o o
a 	a

a Vt,
.dkm dM0. tt,t:

0 thc,uk,tnt,. ,qutt 	oI;
a

Vt bStt,c%Vt±.

99:

I

if

 ca

I'S 	0
di,r:—rds/2 I 	a
dzrfo 	 • dt1

Figure 5-3: Actual information flow through program tree with one doc-
umented program refinement.

from the various nodes which share it. Since these attributes are shared, there

is no longer an explicit ordering of the portions of the attribute dependency

graph which share these attributes. Some portions of the graph may require

information from these attributes which other portions of the graph generate,

and therefore there is a cyclic dependency on the shared attributes.

The fact that the attribute dependencies of a particular grammar may be cyclic

does not necessarily mean that they cannot be evaluated; it merely means that

they cannot be evaluated by a single pass over the attribute dependency graph. if

we can guarantee that the values of the attributes on a cycle converge to a fixed

point, we can evaluate the attributes. If we cannot guarantee convergence, then

we run the risk of getting stuck in an endless loop if the attributes are evaluated.

In the case of a literate program editor, where a program tree is mapped onto

100

CHAPTER 5 	 EVALUATION

the documentation structure grammar in an arbitrary order, the cyclic attribute

dependencies are due to the arbitrary mapping of program tree nodes onto

documentation tree nodes. Neither the program tree nor the documentation

tree are themselves cyclic. The refinement process does not introduce cycles

into the program tree, because refinements may not be used within themselves.

Both Farrow [41] and Jones [60] have shown how to construct fixed-point

finding evaluators for circular attribute grammars. The conditions under which

Jones's method work are slightly more restrictive than Farrow's: all circularly

defined attributes must have semantic functions that are monotone and yield

values from a domain forming a lattice of finite height. Jones's method involves

finding the strongly connected components (SCCs) of the attribute dependency

graph, and evaluating the fixed points of each strongly connected compon-

ent in an order defined by a topological sort of the SCC graph. This ensures

that each fixed point computation is performed only once. Jones presents a

naive algorithm for evaluating the fixed points of each SCC which performs

O(k Ek I h,.) attribute evaluations in the worst case, where k is the number

of attributes in the SCC and hX. is the height of the attribute instance x 1 in

the domain satisfying the fixed point equation (see [601). Jones also presents

a more efficient algorithm for evaluating the SCCs which performs h)

attribute evaluations in the worst case.

Farrow's method requires that the semantic functions on the attributes

are monotone, yield values from domains forming complete partial orderings,

and satisfy the ascending chain condition. Jones suggests that this difference in

conditions is slight, because any partially ordered set can be embedded in a

complete lattice.

In the case of the literate program editor, the attributes in the cycle are

a set of shared MAPs which associate names of refinements with data passed

into or out of these refinements, and a set of attributes within each refinement

which contain information such as symbol tables, labels in scope, or types of

expressions. Semantic functions on the MAP attributes are of two types; they

either copy the value of the attribute through to the next node in the cycle

101

CHAPTER 5]EVALUATION

(these are known as copy rules in attribute grammar literature), or they add a

new name and associated information to a MAP. These semantic functions are

monotonic, since a lattice can be constructed with its height bounded by the

number of elements in a MAP (the domain of the function), and the functions

never return a MAP with less elements than their argument MAP. However,

since the height of the lattice is bounded by the number of elements in the MAP,

and the MAP contains a finite, but unbounded number of elements, the lattice

representing the domain of functions operating on MAPs is not of finite height.

Thus Jones's method (and by implication, Farrow's method) for constructing

fixed-point attribute evaluators will not necessarily work for the literate program

editor. Failing to meet the conditions for Jones's algorithm does not mean that

it will not work for the literate program editor; it does mean that the algorithm

is not guaranteed to find a fixed point.

The attribute dependency graph in the literate program editor does have

some special structural properties which can be used to prove that a fixed point

exists, and to give a bound on the number of attribute evaluations which will be

performed. Figure 5-4 illustrates how attributes are used to pass information

through the program tree. The solid arrows indicate the flow of data up the tree

via synthesised attributes; these are the input data to refinements, or the output

data from refinements. The dashed arrows indicate the flow of data down to the

leaves via inherited attributes; in the actual implementation, some of the copy

rules are implicitly inserted by upward remote attribute references. The grey

areas in the node labelled "S3" indicate where refinements were introduced.

The corresponding attribute dependency cycle is shown in figure 5-5; this is

a strongly connected component of the whole attribute dependency graph. The

dashed box encloses the shared MAP attributes. The dashed arrows show where

the detail of the internal attribute structure of program nodes have been omitted

for clarity; there will not be any cycles within the program node attributes, as

they are constructed in the usual way. The dependency graph for the literate

program editor is constructed in such a way that the attributes which pass data

through the program will have a set of shared MAP attributes, and several cydes

102

CHAPTER 5
	

EVALUATION

root iflPUtef

I thpu thh inpu _

Ezogm Test 99.

—Slatment rciit '- I
I

,, 	j.
bI,

A 	I
I

pi - 3.1415926;
e - 2.710;

I- p1 •
p1 • 	• idfus;

typ,

ttthtn
99 I

L1vtr

Figure 5-4: Documentation tree of a literate program, showing inher -

ited and synthesised attribute chains. Italicised attributes

are implicit remote attribute references.

of attributes that inherit values from the shared MAPs and synthesise new values

which are inserted into the shared MAPs. The set of shared MAPs will contain

two MAPs at the root of the tree, one for the information inherited by the

refinements and one for the information synthesised by the refinements. There

is one attribute cycle for each refinement in the program. Figure 5-5 shows two

cycles around the dependency graph, for the Si fragment and the 52 fragment.

input 	main 	 root.input

I Main I

program;

P_g 	 output output

I 	S1 	 S2
fragment' 	fragment'

Figure 5-5: Attribute dependency graph of the program tree in figure 5-
4, showing alternative cycles around the graph.

input

103

CHAPTER 5 	 EVALUATION

Note that the input,f and OUtPUtref attributes are aggregates which are

indexed by the refinement names used in the different cycles around the de-

pendency graph; thus evaluating a particular attribute cycle does not destroy

the information generated by evaluating other cycles. The only inputs to the

dependency cyde will be from the main program node, and the only outputs

from the cycle will be to the main program node; this information can be used

to decide where to start the attribute evaluation.

The properties of the attribute dependency graph which ensure that an

evaluation will reach a fixed point are:

Each cycle can only depend on the values generated by cycles whose

corresponding refinements appear before the cycle's corresponding re-

finement in a traversal of the program tree. This property follows from

the way in which the dependency graph was constructed; a dependency

between cycles indicates that an attribute which is passed through the

program tree was used at two points in the program, separated by the

refinements associated with the cycles.

No cycle on the graph alters the values generated by another cycle (this

follows from the restriction of refinements to have different names).

No cycle depends on the value generated by itself (this follows from the

restriction on refinements that they cannot appear in their own expan-

sion).

Properties 1 and 3 indicate that the dependencies between cycles can be

ordered. Properties 1 and 2 indicate that the value generated by a cycle will not

change once the values on which it depends have been completely evaluated.

Since the number of refinements in the program must be finite (or else the

program would be infinite), there are a finite number of cycles corresponding

to the refinements, and so a finite number of evaluations of these cydes will

reach a point where all of the cycles have been completely evaluated.

Figure 5-6 shows an algorithm that will evaluate the fixed point of the

104

CHAPTER 5 	 EVALUATION

dependency cycle. Since the cycles in the dependency graph SCC correspond

to program refinements and the input to the SCC is from the main program

node, the input attribute will be in the shared MAP attributes, and thus is an

obvious candidate for the initial attribute. The root node of the literate program

derivation tree will also contain shared attributes, so these attributes could also

be considered for the initial attribute. All of the cycles in the dependency graph

will pass through this shared initial attribute. The algorithm finds all of the cyclic

paths through the SCC, and evaluates them in turn until the value of the initial

attribute is consistent. Since the initial attribute is shared by all of the cydic

paths through the SCC, and contains information generated by all of them, it

will only be consistent when all of the attributes in the cyclic paths (and hence

the SCC) are consistent.

{ The set ag is the set of all attribute instances in the SCC g }

initialise each attribute instance x E ag to

select an initial attribute i from the shared MAP attributes;

initialise set of cyclic paths Pc through g to 0;

]F][NDJPATHS(i, nil) { i.e., put all cyclic paths from i through g into p

repeat
i0 f-i;

P
while p is not empty do

select an remove a path q from p;
PAThLEVALUATE(q);

od

until i =

Figure 5-6: Algorithm for evaluating the fixed point of a strongly con-
nected component of the dependency graph of the literate

program editor.

The fixed-point computation will terminate because of the properties of

105

CHAPTER 5 	 EVALUATION

the graph shown above. Each time all of the cyclic paths through the graph are

evaluated (this will be referred to as afull evaluation), at least one cycle will have

its dependencies satisfied, and will generate a correct value. The first refinement

in the program does not depend on any other; after the first full evaluation the

value generated by the cyde corresponding to it will be correct. The cycle

corresponding to the second refinement in the program depends upon the value

generated by the first refinement; after the second full evaluation it will also

be correct. Since there are a finite number of refinements in the program, and

the values generated by the cycles do not change once their dependencies are

satisfied, there will be a finite number of full evaluations before the attributes

reach a steady state, i.e., a fixed point.

The evaluation of the attributes on a path through the dependency graph

is shown in figure 5-7.

PATH-EVALUATE(p) { p is a path }:

while p is not nil do

split p into head h and tail t;

evaluate h;

P -t;
od

end

Figure 5-7: Evaluating a path through an SCC of the dependency graph.

An algorithm for finding the cyclic paths through the dependency graph is

shown in figure 5-8. The way in which the dependency graph is built guarantees

that the every cyde on the graph will pass through the initial shared attribute i.

This algorithm will terminate because every node in the scc is part of a cyclic

path (from the definition of an SCC), and following the successors of the node

will lead back to the initial attribute.

The fixed-point evaluating algorithm evaluates each cyclic path from the

initial attribute to its predecessor, on which the initial attribute depends. It is

106

CHAPTER 5
	

EVALUATION

FJNDYATHS(x, p) { x is an attribute, p is a partial path }:

p <—p.x {append xtop I;
for each successor y of x in the 5CC g do

if y is the initial attribute i then

insert p into Pc { p is a cyclic path };

else
FINDJPATHS(y, p);

fi
od

end

Figure 5-8: Finding the cyclic paths through an 5CC of the dependency graph

quite possible that in one full evaluation more than one cycle can reach their

final values; if a cyclic path b depends on the value generated by another cydic

path a which has had its dependencies satisfied by the previous full evaluation,

and a is chosen for evaluation before b, the values of the shared attributes will

satisfy the dependencies of b when it evaluated. In the best case, all of the cyclic

paths will be chosen for evaluation in exactly the order in which they depend

upon each other, and only one full evaluation will be needed. In the worst case,

the cyclic paths will be chosen in reverse dependency order, and only one cycle

will generate its final value in each full evaluation. One full evaluation will be

needed for each cycle in the dependency graph.

Since the number of cycles in the dependency graph corresponds to the

number of refinements in the literate program, the best case running time of the

algorithm is 0(n) attribute evaluations, where n is the number of refinements.

The worst case running time is 0(n 2) attribute evaluations.

This compares quite favourably to the complexities of Jones's algorithms

when applied to the literate program dependency graphs. The conditions that

guarantee termination of the algorithms are similar. All of the cycles of the

dependency graph will be evaluated on each pass of the algorithms, so the

value generated by at least one cyde will reach a stable value after each pass.

107

CHAPTER 5]EVALUATION

Jones's naive algorithm only uses values generated by the previous pass

over the attributes, so the value generated by at most one cycle will reach its

final value in each iteration. The naive algorithm will always take the same time

as the worst-case bound for the algorithm presented above, i.e., 0(n 2) attribute

evaluations.

Jones's efficient algorithm does not fare any better: each iteration performs

a depth-first search of the dependency graph, marking nodes so that it can

detect and prevent looping. On each pass, the value generated by at least one

cycle will reach a stable point, but the value generated by only one of the cycles

will be propagated through to the shared MAP attributes because of the node

marking. The attributes which have been altered on the other cycles will be put

into the set of attributes from which the evaluation may be started in the next

pass. Since all nodes of the dependency cycle are reachable from any other, it

does not really matter where the algorithm restarts from. The pruning test in

this algorithm which prevents further evaluation does not help much, because of

the MAP-valued attributes. If the value generated by any cycle is altered, it is put

into a MAP with its corresponding refinement name. All of the MAP attributes

on the cycle (i.e., all of the shared attributes and some others) will be deemed

to have changed, even though the value generated by a particular cycle may not

have changed. The node marking which was intended to make this algorithm

more efficient actually hinders it for the literate program graphs, because at the

value generated by only one cycle will be propagated in each pass. The efficient

algorithm will thus take the same time as the naive algorithm, 0(n 2) attribute

evaluations.

There in an optimisation which can be applied to the algorithm presented

above. Once the value generated by each cyclic path has reached its stable value,

the path can be removed from the set of cyclic paths. From the termination

conditions, at least one cyclic path will be removed from the set of cyclic paths

in each full evaluation, improving the worst case running time to O(i)

attribute evaluations. Unfortunately it is difficult to test if the value generated

by a particular cycle has changed, for the same reasons the pruning test in Jones's

CHAPTER 5 	 EVALUATION

efficient algorithm does not work: the internal structure of some attributes must

be exposed to do so.

Implementing this algorithm in a literate programming editor poses some

problems. It is impossible (because of uncomputabiity) to check the constraints

on the semantic functions that guarantee termination. It has also been shown

that testing for noncircularity of an attribute grammar is intractable [59]. Most

attribute grammars that arise in practice are members of restricted classes of at-

tribute grammars for which noncircularity is guaranteed, e.g., ordered attribute

grammars [62]. In order to check that the attribute grammar can be evalu-

ated by the literate program editor, it may be necessary for the programmer to

provide hints about how to treat various attributes. The shared MAP attributes

could be marked by the implementor, and removed from the circularity test.

Any other circularities detected could then be announced as errors.

The algorithm presented above operates on the strongly connected com-

ponents of the attribute dependency graph. Algorithms for finding the strongly

connected components (SCCs) of a graph are well known [108]. The SCCs of

an attribute dependency graph can be altered radically by a single modification

to the abstract syntax tree. Jones showed how SCCs could be identified on de-

mand, with an overhead linear in the cost of computing the fixed points of the

SCCs. The structure of the dependency graphs in the literate program editor are

such that cycles will only occur when shared MAP attributes are used to pass

information through the program tree. If these attribute were marked by the

system implementor, as was suggested before, and cydes are not permitted in

the rest of the dependency graph, the SCCs can be computed statically. A static

evaluation algorithm can be used for evaluating the attributes which are not

part of the SCCs, and the algorithm presented can be used to find fixed points

of the SCs.

There is a condition on the use of the algorithm presented in figure 5-6 that

has not been mentioned yet, because it is satisfied by the dependency graphs

generated by the literate program editor. This is that each strongly connected

component should contain only one set of shared attributes which directly de-

109

CHAPTER 5 	 EVALUATION

pend upon each other. Restated, all of the cyclic paths in the SCC must pass

through at least one shared attribute. This condition could be broken if two sep-

arate attributes were passed through the program tree using their own shared

attributes, and each attribute was dependent upon a previous value of the other

attribute. Figure 5-9 shows a simplified view of an SCC of the dependency

graph that would arise in this case. In the literate program editor, the condition

is satisfied by constructing an aggregate phylum containing all of the attrib-

ute values which are passed through the program structure, and using a single

shared MAP to pass this aggregate through the program. At the start of each

refinement the values are separated out into their own attributes, and at the

end of the refinement the attribute values are collected back into the aggregate.

Figure 5-10 shows a simplified view of the dependency graph SCC generated

by this method. If a single aggregate is passed through the program tree, there

may be multiple paths through each cycle of the SCC, so the algorithm has to

evaluate all of these paths in each full evaluation. This gives a running time

of O((n + x) 2) attribute evaluations for the algorithm, where n is the num-

ber of refinements in the program and x is the number of attributes collected

into the aggregate. The corresponding complexity for x attributes evaluated in

independent SCCs is O(xn 2) attribute evaluations.

inputa 	 rnpUtb

OutPut a 	 OUtPUt b

Figure 5-9: Simplified SCC of a dependency graph with mutual depend-
encies between two attribute chains failing conditions for
algorithm 5-6

110

CHAPTER 5 	 EVALUATION

input

output

Figure 5-10: Simplified SCC of a dependency graph of aggregated attrib-

utes with mutual dependencies within refinements passing

conditions for algorithm 5-6

The observation that the attribute dependency graphs created by the liter-

ate program editor can contain multiple cycles is a clue to the behaviour of the

Synthesizer Generator when presented with the literate Pascal editor. The Syn-

thesizer Generator uses an incremental attribute evaluation algorithm which is

invoked whenever a change to the edited tree is committed. The algorithm uses

a change propagation mechanism to limit the attributes which are considered for

re-evaluation to those which are affected by the change. The change propaga-

tion mechanism sets the attributes which may be affected by the change to the

internal null value, and then evaluates the attributes affected by the change. The

cyclic tree evaluator provided by the approximate topological ordering kernel

picks an attribute instance on a cyde, sets its value to the completing term for

the attribute, and iterates around the cycle until a fixed point is reached. The

appearance of the "BOTTOM" representation of the internal null value in the

display is probably because the fixed point evaluation algorithm is either not

handling multiple cycles correctly, or is pruning the attribute dependency graph

incorrectly. Only part of the attribute dependency graph is evaluated, but the

whole graph is initialised.

The algorithm provided here is quite specific to the attribute dependency

graphs generated by the literate program editor; it is not likely to be applicable

111

CHAPTER 5 	 EVALUATION

to graphs which are not generated in a similar way. The technique of finding

evaluating cyclic paths through the dependency graph may be applicable to

other cyclic attribute grammar evaluation methods, especially where attributes

can take list or array values.

Proving that the literate program's attribute dependencies are convergent

within a given number of attribute evaluations shows that a literate program

editor could be implemented using attribute grammars, but there are perform-

ance implications which also have to be considered. In an interactive system,

the delay introduced by the worst-case O(xn 2) or O((n + x)2) evaluation of

the fixed points of the attribute dependencies are likely to yield unacceptable

response times. Two of the programs surveyed illustrate the potentially large

number of attribute evaluations; an average sized program such as the Cweave

processor has 210 sections, most of which contain refinements, and at the top

end of the range a version of the TEX program contained 1377 sections.

What is required is a better model for representing literate programs, which

can be used to build editors with all of the power available in attribute-grammar

based systems, but without the cost of cyclic attribute evaluation.

112

r!I
rDD

Literate programs are complex structures; they can be used to present a pro-

gram to a human reader in a comprehensible way, and to derive a program

for a compiler to read. These dual views of the literate program as a piece of

documentation and as a program should be used to define the way in which a

literate program is represented and accessed. The previous two chapters have

highlighted the problems inherent in subsuming either of the program or docu-

mentation structures into the other. A method of representing literate programs

will be proposed in this chapter which gives equal importance to the program

and documentation structure. Some possible ways of using the representation in

the context of literate programming editors will be examined, and finally some

of the applications of a generalised form of the representation will be briefly

mentioned.

Both the documentation and the program code in a literate program have hier-

archical structures, and can be represented using derivation trees of their re-

spective grammars. Attributes can be used to ascribe meaning to these derivation

trees, and the semantic information derived in this way can be passed around

and used in these hierarchies.

113

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

Instead of prioritising one hierarchy over the other, the structures should

be merged so that they have equal priority. If we represent both the program

and documentation as derivation trees of their respective grammars, there are

portions of each derivation tree which correspond to each other, such as the code

for a particular refinement which is described in a documented section. Figure 6-

1 shows how derivation trees of the documentation grammar given in figure 6-3

and the program grammar given in figure 6-2 correspond. These portions are

not identical - the documentation grammar allows refinement references in

code fragments, but the program grammar does not; the expanded refinement

should be derived instead. If the program grammar is augmented to associate

names with sub-trees (as was done in the trial implementation in section 4.3. 1)

the sub-trees could be merged, and used in both contexts. A single grammar

might then be used to describe the entire literate program, documentation and

code, in which the derivation trees of certain productions are merged with

derivation trees of related productions.

program
	 Program

	

YSection—______________ I Section— 	I 	.-1

"

DeclanDeclaration-4 Statement— Title list 	 list 	[ldefltifle1 	 list 	 list

	

 / Section I 	 Declaration I 	I I Statement

tation

Name 	 Program

Declaration 	ldentifie Declaration

	

Reference t-I Decl aration1 	Statement- rj I list

	

Declaration I 	I Statement

Figure 6-1: Derivation trees of literate program documentation and pro-
gram showing corresponding subtrees.

114

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

Program -

Identifier Declaration-list Statement-list 0

Declaration-list -

Declaration Declaration-list I
0

Declaration -4

Identifier Type 0

Statement-list -4

Statement Statement-list I
0

Statement -
Identifier := Expression I
if Expression then Statement else Statement I
wThii]le Expression do Statement I
begin Statement-list end I
0

Figure 6-2: Simplified program grammar for the toy literate program
editor in chapter 4.

Merging the derivation trees in this way creates an acyclic graph, rather

than a tree. Each of the derivation trees of the program and documentation

can still be attributed, and attributes can depend on attributes of the other

derivation tree, so long as no circularities are present in the combined attrib-

ute dependency graph. Note that the attribute dependencies no longer need to

be circular in order to pass information around the program and documenta-

tion trees, because the program or documentation are not being represented

as attributes of each other. Attributes will be associated with a particular de-

rivation tree (either program or documentation) if necessary, and may only be

synthesised or inherited within that tree. The values of the attributes can be

used in the other tree, so long as the constraints on cyclic dependencies are

met - evaluation strategies which rely on non-circular grammars can therefore

115

CHAPTER 6
	

REPRESENTING LITERATE PROGRAMS

Literate-program -
Title Section-list 0

Section-list -
Section Section-list I
0

Section --3

Documentation Fragment I
Documentation 0

Fragment -
Program I
Name Declaration-list I
Name Statement-list 0

Program -3

as Program in figure 6-2 0

Declaration-list -
as Declaration-list in figure 6-2 0

Declaration -
as Declaration in figure 6-2 I
Declaration-reference 0

Statement-list -
as Statement-list in figure 6-2 0

Statement -3

as Statement in figure 6-2 I
Statement-reference 0

Figure 6-3: Simplified documentation grammar for the toy literate pro-
gram editor in chapter 4.

be used to evaluate the attributes.

This merged derivation tree representation for the literate program has

some advantages; the syntax of the documentation and the program are both

guaranteed to be correct; attribute equations can be written in a natural manner;

the semantics of the language can be checked through these attribute equations.

What has just been described is a particular case of an attributed graph.

116

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

Attributed graphs have been described before with attributed graph grammars

[61] and attributed graph specifications [2,3]. Graph grammars use graph re-

writing rules to specify the derivation of a structure graph from an initial vertex.

Attributed graph grammars attach attributes to vertices of the graph, which can

be kept consistent by incremental evaluation of the attribute dependencies. For

a large subset of the possible attributed graph grammars a characteristic graph

can be pre-computed which describes the order in which the attribution rules of

a vertex should be evaluated. Characteristic graphs can be combined during the

construction of the structure graph to allow efficient evaluation of the complete

attribute dependency graph.

The merged derivation trees described above for literate programs do not

map onto graph grammars well. The refinement process can be modelled as

inserting a reference into a sub-graph of the structure graph which corresponds

to program code and inserting a code sub-graph (the refinement) into a sub-

graph of the structure graph which corresponds to a documentation section.

A single production which substitutes a sub-graph of the structure graph for

another sub-graph cannot be used to model this process, because there are two

unrelated points at which insertions are made.

The attributed graph specifications of Alpern et. al. [3] can be used to

describe any directed acyclic graph, including graphs which are not derivable

by graph grammars. Attributes are associated with edges of the graph rather than

vertices, but the attribute equations are associated with vertices of the graph.

Attribute equations operate directly on the values of the attributes in edges

which connect vertices together. Attributed graph specifications do not provide

a way of deriving structure graphs, but a way of describing and evaluating

attributes of an existing structure graph.

A description which models the derivation of the whole literate program

including refinements is required. The refinement process is inherently context-

sensitive; it requires modifications to more than one part of the derivation graph

at once, and requires the values of terminals in the documentation and program

grammars to be similar; in this respect it is similar to most programming lan-

117

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

guages, which cannot be completely described by the context-free grammars

used to represent their syntax. Bearing this in mind, we can describe the lit-

erate program using a context-free grammar with two start symbols, and an

appropriate set of semantic functions to check the correctness of the derived

strings.

DEFINITION 1 A context-free grammar can be denoted G = (N, T, P, S), where N

and T are disjoint finite sets of non-terminals and terminals respectively. P is a set

of productions of the form L -4 a, where L is a non-terminal and a is a string of

symbols from (N .i T). S is a non-terminal called the start symbol.

The language defined by this grammar is the set of strings of symbols derived

by substituting the right-hand side of a production for instances of the left-hand

side of the production until the symbols are all terminals, starting with the start

symbol.

DEFINITION 2 A context-free attribute grammar is a context-free grammar with

a finite set of attributes A(X), X E (N u T) associated with the symbols of the

grammar. A(X) is partitioned into two disjoint sets, the synthesised attributes

As (X) and the inherited attributes A 1 (X). Each attribute a in A(X) has a (possibly

infinite) set of values V, from which one will be selected by semantic rules for each

appearance of X in a derivation tree. The values of the synthesised attributes A (X)

are generated by functions of the values of VA (X) and attributes of symbols which

appear in the derived strings a of productions X -4 a. The values of inherited

attributes A, (X) are generated by functions of the values VA(x) and attributes of

the symbol L where X appears in the string a in the production L - a. There are

no inherited attributes of the start symbol (i.e., A, (S) is empty), and there are no

synthesised attributes of terminal symbols (A s (t) is empty, where t E T).

Introducing an extra start symbol into the grammar requires changes to

the formal description of the grammar. The start symbol S now becomes a pair

of start symbols S c N, and the language of the grammar changes from being

a set of strings to being a set of pairs of strings, one string derived from each

118

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

start symbol. The description of an attribute grammar becomes more complex,

because we have two start symbols. Two sets of attributes are required, one set

related to each start symbol. Non-terminals which can be derived from either

start symbol have a combined set of attributes from both sets.

Not all pairs of strings in the language of the new grammar are valid

statements of literate programs. For each substring in the derivation of the doc-

umentation grammar which was derived from a production shared with the

program grammar, there must be an identical substring in the derivation of

the program grammar. These substrings in the derivation of the documentation

grammar may wholly enclose other substrings in the same string, but may not

overlap each other's boundaries. This requirement represents the refinements

that can be substituted in various places in the program. The derivation trees

for the program and documentation can be merged at these points. The deriv-

ation trees will not always be merged when the same substring is derived in

both the program and documentation grammars; a substring derived from a

production common to both grammars may be repeated in the program gram-

mar derived string but not the documentation derived string. In addition, the

entire string derived from the program grammar has to appear as a substring of

the documentation grammar, so that the documented program can be linearised

for output. Extra information is therefore needed to cross-reference the pieces

of each string which correspond to each other. The semantic functions which

use attributes associated with the different start symbols are restricted to these

common substrings, where both attribute sets will be defined. More formally:

DEFINITION 3 An attributed dual-rooted document grammar can be denoted G =

(N, T, P, S, A). N and T are disjoint finite sets of non-terminals and terminals

respectively. P is a set of productions of the form L - a, where L is a non-terminal

and a is a string of symbols from (N u T). S is a pair of non-terminals (S r, Sd)

called the start symbols; the derivation strings D and Dd of the start symbols

are strings of terminal symbols formed by repeated application of productions

to non-terminal symbols appearing in the incomplete derivations of S, and Sd.

A(X), X E (N u T) is a finite set of attributes associated with the symbols of the

119

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

grammar, partitioned into three disjoint sets, the synthesised attributes A (X), the

inherited attributes A (X) derived from S,, and the inherited attributes AD C)

derived from Sd. Each attribute a in A(X) has a set of values V,,, one of which

will be selected for each appearance of X in a derivation tree. The values of the

synthesised attributes A (X) are generated by functions of the values of VA(x) and

attributes of symbols which appear in the derived strings a of productions X - a.

The values of the inherited attributes A (X) and AD (X) are generated by functions

of the values VA(x) or VA (X) and attributes of the symbol L where X appears in

the string a in the production L - a and L is derivable from S, or Sd respectively.

The predicate function F is true if the derivation string D appears as a substring

of the derivation string Dd, and every substring of Dd generated by a production

L .- a where L is derivable from S,, has a unique corresponding substring in D.

The set of valid literate programs is the set of pairs of derivation strings D and

Dd for which the function F is true. Inherited attributes in the set A (X) where X

appears in the right hand side of a production L - a and L is only derivable from

Sd are set to the values of the attributes of the corresponding derivation of S.

The productions P include productions of both of the grammars deriving

strings from S, and Sd, so if a symbol's parent non-terminal was derivable from

both S, and Sd, the symbol is also derivable from S, and Sd.

Note that this definition could have been given using an alternative formal-

ism such as graph grammars, but the constraints on valid literate programs are

easier to specify as predicates on strings.

11111 	111 	1111111111 	11111115 	111

The new representation proposed in the previous section should make it easier

to manipulate literate programs. We have to consider how a structure editor

which uses this representation will appear to the user, and how it will maintain

the constraints on matching subtrees.

Since there are two roots and two derivation trees in the representation, the

editor should either present two windows, one with each tree, or allow switching

120

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

between the trees shown in the current window. Different view specifications

can be used to compress refinement references in the displayed documentation

tree, and remove refinement names from the program tree.

A difficult point with the derivation trees for literate programs is that the

derivation of the top-level program must appear within the derivation tree of the

documentation. There are two possible solutions to this problem; we can either

require a derivation for the program to be present in the documentation at all

times, or develop the derivations separately and allow the program derivation

to be inserted into the documentation tree when the user desires.

With the first approach, placeholders have to be inserted into the initial de-

rivation tree of the documentation for all of the ancestor nodes of the program

subtree. There may be an infinite number of possible derivation trees which

derive the program subtree, so it is assumed that the shortest derivation would

be used. These ancestor nodes have to be provided at some point during de-

velopment of the program anyway, so providing a template for the derivation

does not detract from the expression of the literate program. There is a problem

with requiring the program subtree to be present: the program subtree cannot

be deleted, even temporarily. This means that the common cut and paste idiom

for editing cannot be used to move the program subtree around, unless it is

implemented as an indivisible editing operation.

With the second method, cutting and pasting the program derivation into

the appropriate place in the documentation could be performed, or a method of

linking the program view to the documentation view could be created (such as

saving the position and extent of structural selections, and linking the derivation

tree with the position of the current selection).

The problem of how to place the program subtree within the documentation

subtree is a case of the more general problem of how to link nodes in the program

and documentation, and ensure that their attributes remain consistent. The

solution to this problem will define how the literate program editor can be used

to develop programs. If the attributes of both derivation trees and the merged

subtrees are required to be consistent at all times, the fragments of program

121

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

derived from documentation nodes must be linked into the program tree at all

times (thus complying with the constraints on valid derivations in the previous

section). This constraint might be implementable by using a transformation

on the documentation node enclosing the program subtree, which substitutes

a portion of the program subtree with a refinement and adds a new section

containing the linked refinement. Unfortunately, this would require an extension

to the sort of transformations possible in the Synthesizer Generator, because the

place at which the refinement is required may be arbitrarily deep in the program

derivation tree. A more serious objection to this method of implementation is

that it forces the user into top-down design of the program. This denies one

of the fundamental tenets of literate programming, that the program can be

developed and expressed in the order most suitable to the programmer.

The alternative is to allow the derivations to be developed separately, but

to attribute program fragments when they are linked into the program tree. If

program fragments which are not part of the program tree are attributed, there

may be problems with missing inherited attributes from the program tree. The

requirement for turning the attribution on or off in these cases is that the subtree

should be derived from a production (via either derivation tree) which provides

all of the inherited attributes required. Similarly, if a subtree synthesises attrib-

utes which are used by its parent in one or more derivations, but the subtree has

attribution turned off, the attribution of the parent should be turned off. Thm-

ing off attribution can be made a bit more selective by examining the attribute

dependency graphs, and not evaluating any attribute dependency chains which

have missing attributes in them. Upward remote attribute references can only

be computed for attributes if they are associated with a particular derivation

tree, and hence a particular root node.

The actual implementation of an editor based on the new representation

can take two approaches; the derivation trees for both of the grammars can

be stored as trees, with updates to linked nodes copied to the other tree, or

the derivation trees can be merged into an acyclic graph. The latter approach

is probably simpler, because updates to attributes during attribute evaluation

122

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

do not need to be copied between the trees. The implementation of a parsing

phase for input files raises some points; two input syntaxes for the program

and documentation grammars need to be parsed in parallel, and the linkages

between them created. To simplify the parsing phase, a new root node can be

introduced which has a single production deriving the two original root nodes.

Linking of the derivation trees can then be done by a semantic function that

traverses the documentation tree searching for program fragments and their

corresponding program tree derivation. The correspondence is defined by the

names of the refinements used, rather than the structure of the subtrees, so

that subtrees in the program derivation which are coincidentally the same as

documented program fragments do not get linked to the program fragments.

The Synthesizer Generator has a type of phylum called a PTR which allows

references to SSL values. Unfortunately, this mechanism cannot be used to

implement an editor with dual derivation trees because PTRS to other phyla may

not appear in productions. Even with the higher-order attributes introduced in

Synthesizer Generator release 3.5, the references would still not be editable.

-

The previous sections have shown how representing a literate program as inter-

linked derivation trees of a grammar with two start symbols could be used to

provide a more natural editing interface than can currently be constructed us-

ing editors created by the Synthesizer Generator. There are two generalisations

to this model that could be made, which expand its potential application. The

number of start symbols could be increased beyond two, and more than one

derivation could be made from each start symbol.

Allowing than two start symbols in the grammar would allow other views

of a document to be represented naturally; for instance, a specification for the

program might be interleaved with the program and documentation, using a spe-

cification language such as OBJ or Z. More than one derivation from each start

symbol would allow multiple programs per document, documentation in more

123

CHAPTER 6 	 REPRESENTING LITERATE PROGRAMS

than one language, and multiple versions of the documentation (for example,

full program documentation and a short paper on an interesting algorithm could

be combined, or a revision history could be maintained as separate documents).

The formal description of the grammar with multiple start symbols is similar

to the description of the grammar with two start symbols:

DEFINITION 4 An attributed many-rooted document grammar can be denoted G =

(N, T, P. S. A). N, T and P have the same meanings as in a dual-rooted document

grammar. S is a set of start symbols such that S ç N. A is a set of attributes divided

into the disjoint partitions for the synthesised attributes A (X) and the inherited

attribute partitions A (X), x E S. The language of the grammar is a set of strings,

of which a subset of valid strings will be determined by a predicate function F.

The predicate function will depend upon the languages represented by each start

symbol in S.

The particular semantic restriction present in the literate program gram-

mars examined (that the root of the program tree must appear in the docu-

mentation tree) does not need to hold for all grammars. There in now a set

of attributes associated with each start symbol. Non-terminals which can be

derived from more than one start symbol have combined sets of attributes from

all of the attribute sets associated with the start symbols.

Extending the formal description to allow multiple derivation trees from

each start symbol can be done by specifying an actual set of start symbols Sa ,

whose members are taken from a possible set of start symbols S, Si,, c N.

Members of S, may appear more than once in S a . This extension would have

be implemented by allowing separate development of the derivation trees, and

attribution of the nodes as and when the sub-trees are linked into positions

which provide their required inherited attributes. The facility to introduce new

derivation trees of a particular start symbol is required, as the author of a

document may not anticipate all of the possible versions of the final document

which might be created.

124

Conclusions

71 summavy

This thesis has examined how the literate programming methodology can be

facilitated by structured editing tools.

o In chapter 1 the literate programming concept for documenting programs

was introduced, and how it differs from program pretty-printing was

presented. A brief introduction to syntax-directed editing was given.

o The development of literate programming systems from Knuth's WEB to

the current day was traced in chapter 2. A set of criterion by which a

programming system can be judged literate were presented. Many of the

systems examined were lacking in one or more of these criterion. Some

of the related work in program comprehension was also highlighted. An

overview of some syntax-directed editing systems was presented.

o In chapter 3 some of the problems with current literate programming

systems were raised, and an overview of how syntax-directed editing might

help solve these problems and assist literate programming was presented.

o Chapter 4 described the design and implementation of two small literate

programming editors for a 'toy' programming language using the Syn-

thesizer Generator. The compromises which were made in mapping the

program structure onto the documentation structure and vice versa were

125

CHAPTER 7
	

CONCLUSIONS

shown. A larger-scale implementation of a literate Pascal editor was de-

scribed, which showed problems with the automatic detection of semantic

errors.

o The causes of the problems in detecting semantic errors in the literate Pas-

cal editor were examined in chapter S. It was shown that cyclic attribute

dependencies are a consequence of the mapping the program structure

onto the documentation structure or vice versa. The dependencies gener-

ated for the literate program editors were shown to be convergent, and

it was shown how they could be evaluated, but the performance of the

evaluation method was shown to be unacceptable for interactive editing.

o In chapter 6 a representation for literate programs was proposed, using

grammars with multiple start symbols and shared derivation sub-trees.

This representation avoided the circular attribute dependencies which

caused problems with the implementations in chapter 4, and thus would

be better for interactive editors. Some issues in using this representation

to implement literate program editors were raised. A generalisation of

the representation to allow many start symbols and derivation trees was

briefly presented.

There are several parts of the work presented in this thesis which may be worth

developing further.

The technique of finding cyclic paths through a dependency graph used in

chapter 5 may be applicable to other circular attribute evaluation algorithms,

especially where attributes can take list or array values. Further work on decid-

ing when this method may be useful and applying it to general circular attribute

evaluation algorithms is required.

The definitions of dual-rooted and many-rooted grammars described in

chapter 6 need careful scrutiny. Algorithms for ordering the attribute evaluations

in these grammars need to be presented. It is obvious that there are no circular

72

126

CHAPTER 7 	 CONCLUSIONS

attribute dependencies introduced by the representation itself (the program and

documentation attribute dependencies follow the program and documentation

derivation trees, which are both sub-trees of the merged derivation graph).

Algorithms for ordering attribute evaluations in these grammars may be based

upon the Reps's incremental attribute evaluator [96], as the basic tree structure

is still present in most of the attribute dependencies. An alternative approach

to evaluating the attribute dependencies would be to demonstrate a method to

transform the derivation trees into attributed graph specifications.

If an editor is to be built using these grammars, a more general method

of specifying the valid derivations of the grammar may also be necessary. This

would make it possible to build an editor-generating system which does not have

special knowledge about the particular structure of literate programs built with

it. The method of specifying valid derivations might be to predicate acceptance

of user changes on attribute evaluation; if an alteration causes a predicate

attribute to evaluate to the false value, the alteration is not permitted and

the attributes are restored to their original values. This would provide a general

mechanism for enforcing context-sensitive syntax or static semantic correctness.

This mechanism would probably not be used for all semantic checking, because

it would make writing and changing programs awkward if all declarations and

types had to be correct all of the time.

An editor based on these methods would provide a testbed to check their

validity, but there is a piece of implementation work which could be performed

without such an editor. This is to extend the editor in chapter 4 to include

publication tools, such as a table of contents, index of identifiers, module cross-

reference and WEB program importer. This could be used to study the human

interaction aspects of using the literate program editor. Brown [23] showed

some subjective evidence that a literate program browser improved program

comprehension when performing typical maintenance tasks. The literate pro-

gram editor, albeit without full interactive semantic checking, could be used to

examine whether better programs are developed using a literate program editor,

and whether the refinement placements and views chosen are useful.

127

CHAPTER 7
	

CONCLUSIONS

7033 C©thflcnMm

Both literate programming and syntax-directed editing can improve a program-

mer's working environment. Literate programming allows the combination of

design methods to suit the program and programmer, and makes documenta-

tion of design decisions an integral part of the program. The benefits of literate

programming are mainly seen at the program maintenance stage, when the

increase in comprehensibility over conventional programs has an effect. Syntax

directed editing gives the programmer guidance in the process of implementing

the program. Restructuring operations are easier, and syntactic and semantic

errors can be noted and avoided, reducing the number of edit-compile cydes to

create the working program.

The combination of syntax-directed editing and literate programming could

provide editors which can assist in creating the documentation and code of

programs.

The attribute grammar representation of programs used in editors created

by the Synthesizer Generator is a natural and powerful way of representing con-

ventional programs, but it does not cope with literate programs in an acceptable

way. In order to retain the power of attribute grammars when editing literate

programs, we need to extend the attribute grammar to represent both the doc-

umentation and program structures explicitly. This can be done by introducing

extra start symbols into the grammar and merging the derivations of the start

symbols into an acyclic graph.

The generalisation of the attribute grammar to include multiple start sym-

bols and multiple derivations per start symbol has many possible applications

in representing non-linear documents.

There is more fundamental work to be done to realise easy creation of

fully structure-based literate programming editors. The method of describing

the structure of literate programs presented in this thesis may make automatic

generation of literate program and web-structured information easier.

128

bogaphy

Paul W. Abrahams. "Typographical Extensions for Programming Lan-

guages: Breaking out of the ASCII Straitjacket". ACM SIGPLAN Notices,

Vol. 28, No. 2, PP. 61-68, February 1993.

Bowen Alpern, Alan Cane, Barry Rosen, Peter Sweeney, and Kenneth

Zadeck. Incremental evaluation of attributed graphs. Technical Report

CS-87-29, Department of Computer Science, Brown University, December

1987.

Bowen Alpern, Alan Cane, Barry Rosen, Peter Sweeney, and Kenneth Za-

deck. "Graph Attribution as a Specification Paradigm". Proceedings of the

ACM SIGSOFF/SIGPLAN Symposium on Practical Software Development

Environments, pp. 120-129, Boston, Mass., November 1988. Association

for Computing Machinery ACM Sigplan Notices 24, 2.

[41 N. Anand. "clarify Function!". ACM SIGPLAN Notices, Vol. 23, No. 6, pp.

69-79, June 1988.

[5] W. Appelt and K. Horn. "Multiple changeffles in WEB". TUGboat, Vol. 7,

No. 1, p. 20, March 1986.

[61 Mouloud Arab. "Enhancing Program Comprehension: FORMATTING and

DOCUMENTING". ACM SIGPLAN Notices, Vol. 27, No. 2, pp. 37-46,

February 1992.

129

BIBLIOGRAPHY

A. Avenarius, S. Oppermann, L Peides, and J. Stritzinger. The FUEB System

of Structured Documentation. Report PI-R6/89, Institut für Praktische

Informatik, Technische Hochschule Darmstadt, 1989.

Adrian Avenarius and Siegfried Opperman. "FWEB: A Literate Program-

ming System for Fortran8x". ACM SIGPLAN Notices, Vol. 25, No. 1, pp.

52-58, January 1990.

[91 Ronald Baecker and Aaron Marcus. "Design Principles for the Enhanced

Presentation of Computer Program Source Text". Proceedings CHI'86

(Human Factors in Computing Systems), pp. 51-58, New York, NY, April

1986. Association for Computing Machinery.

Ronald Baecker and Aaron Marcus. Human Factors and Typography for

More Readable Programs. Addison-Wesley, Reading, MA, 1990. ISBN

0-201-10745-7.

R. Bahike and G. Sneking. 'The PSG system: From formal language

definitions to interactive programming environments". ACM Transactions

on Programming Languages and Systems, Vol. 8, No. 4, pp. 547-576,

October 1986.

Kent Beck and Ward Cunningham. The Literate Program Browser. Tech-

nical Report CR-8-52, Computer Research Laboratory Textronic, Incor-

porated, 1986.

Mordechai Ben-An. "Foreet: A tool for design and documentation of

Fortran programs". Software - Practice and Experience, Vol. 16, No. 10,

pp. 915-924, October 1986.

Jon L. Bentley. "Programming Pearls—Literate Programming". Commu-

nications of the ACM, Vol. 29, No. 5, 1986.

Jon L. Bentley and Donald E. Knuth. "Programming Pearls". Communic-

ations of the ACM, Vol. 29, No. 6, 1986.

130

BIBLIOGRAPHY

Judy M. Bishop and Kevin M. Gregson. "Literate Programming and the

LIPED Environment". Structured Programming, No. 1, pp. 23-34,1992.

Peter Breitenlohner. "Still another aspect of multiple change files: The

PATCH processor". TUGboat, Vol. 9, No. 1, pp. 11-12, April 1988.

Preston Briggs. NuWeb. Announcement to LITPROG@edu . SHSU mailing

list, April 1993.

Frederick P Brooks Jr. The mythical man-month. Addison-Wesley, 1982.

M. Brown and D. Cordes. "A literate programming design language".

COMPEUR090, Proceedings of the 1990 IEEE International Conference on

Computer Systems and Software Engineering, pp. 548-549, Tel Aviv, Israel,

May 1990.

M. Brown and B. Czejdo. "A Hypertext for Literate Programming". Selim

G. Aid et. al. (editor), Advances in Computing and Information, Proceedings

of International Conference ICCI'90, pp. 250-259, Niagara Falls, Ontario,

Canada, May 1990. Lecture Notes in Computer Science 468.

Marcus Brown and David Cordes. "Literate programming applied to

conventional software design". Structured Programming, No. 11, pp. 85-

98, 1990.

Marcus K Brown. An Interactive Environment for Literate Programming.

PhD thesis, Texas A&M University, College Station, TX, August 1988.

Marcus E. Brown. The Literate Programming Tool. Technical report,

Computer Science Department, Texas A&M University, August 1988.

Marcus E. Brown and Bait Childs. An Interactive Tool for Literate Pro-

gramming, (unpublished), in Third Workshop on Empirical Studies of

Programmers, unpublished proceedings, Austin, Texas, April 1989.

[26] Marcus E. Brown and Bait Childs. 'An Interactive Environment for Liter-

131

BIBLIOGRAPHY

ate Programming". Structured Programming, Vol. 11, No. 1, pp. 11-25,

1990.

Carlos F. Bunge and Gerardo Cisneros. "Modular libraries and literate

programming in software for ab initio atomic and molecular electronic

structure calculations". Computers & Chemistry, No. 12, pp. 85-89, 1988.

Bait Childs. "Literate programming, a practitioner's view". TUGboat,

Vol. 13, No. 3, pp. 261-268, 1992.

Bart Childs and Timothy Jay McGuire. "Symbolic computing, automatic

programming, and literate programming". Computational Techniques and

Applications, Proceedings of CTAC-91, Adelaide, Australia, July 1991. Aus-

tralian National University.

David Cordes and Marcus Brown. 'The literate-programming paradigm".

Computer, Vol. 24, No. 6, pp. 52-61, June 1991.

Ward Cunningham and Kent Beck. Scroll Controller Explained, An Ex-

ample of Literate Programming in Smailtalk. Technical Report CR-86-53,

Computer Research Laboratory, Textronix Incorporated, 1986.

R. M. Damerell. "Error detecting changes to Tangle". TUGboat, Vol. 1,

No. 7, pp. 22-24, 1986.

Peter J. Denning. 'Announcing Literate Programming". Communications

of the ACM, Vol. 30, No. 7, p. 593, July 1987.

Christine Detig and Joachim Schrod. P/WEB, A WEB system for Modula-2.

Report PI-R10/88, Institut für Praktisthe Informatik, Technische Hoch-

schule Darmstadt, March 1988.

V Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Interactive Program-

ming Environments, "Programming environments based on structured

editors: The MENTOR experience", pp. 128-140. McGraw-Hill, New

York, NY, 1984.

132

BIBLIOGRAPHY

V Donzeau-Gouge, G. Kahn, B. Lang, and B. Mélèse. "Document struc-

ture and modularity in Mentor". Peter Henderson (editor), Proceedings

of the ACM SIGSOFT/SIGPLAN Symposium on Practical Software Develop-

ment Environments, pp. 141-147, Pittsburgh, Pennsylvania, April 1984.

Association for Computing Machinery.

Angus Duggan. Literate Programming. AReview. LIFCS Report ECS-LIPCS-

93-263, Department of Computer Science, The University of Edinburgh,

April 1993.

G. Engels, M. Nag!, and W. Schaefer. "On the Structure of Structure-

Oriented Editors for Different Applications". Proceedings of the ACM

SIGSOFT/SIGPLAN Symposium on Practical Software Development Envir-

onments, pp. 190-198. Association for Computing Machinery, 1986. ACM

Sigplan Notices 22.

G. Engels and W. Schaefer. Formal methods and software development

Proceedings of the International Joint Conference on Theory and Prac-

tice of Software Development (TAPSOFT), volume 186 of Lecture Notes in

Computer Science, "Graph Grammar Engineering: A Method Used for the

Development of an Integrated Programming Support Environment", pp.

179-193. Springer-Verlag, 1985.

Scott E. Fahiman. The Igor Project. Announcement to Usenet newsgroup

comp. lang . dyl an, August 1993.

Rodney Farrow. "Automatic Generation of Fixed-Point-Finding Evaluators

for Circular, but Well-Defined, Attribute Grammars". Proceedings of the

SIGPLAN '86 Symposium on Compiler Construction, pp. 85-98, Palo Alto,

California, June 1986. Association for Computing Machinery.

S. Feiner S. Nagy, and A. van Dam. 'An experimental system for creating

and presenting interactive graphical documents". ACM Transactions on

Graphics, No. 1, pp. 58-77, 1982.

133

BIBLIOGRAPHY

James C. Ferrans, David W. Hurst, Michael A. Sennett, Burton M. Covnot,

Wenguang Ji, Peter Kajka, and Wei Ouyang. "HyperWeb: a Framework

for Hypermedia-Based Environments". Herbert Weber (editor), Proceed-

ings of the Fifth ACM SIGSOFT Symposium on Software Development En-

vironments, pp. 1-10, lfSrson's Corner, Virginia, USA, December 1992.

Association for Computing Machinery.

C. N. Fischer, Gregory F. Johnson, Jon Mauney, Anil Pal, and Daniel Stock.

"The Poe Language-Based Editor Project". Peter Henderson (editor), Pro-

ceedings of the ACM SIGSOFf/SIGPLAI'I Symposium on Practical Software

Development Environments, pp. 21-29, Pittsburgh, Pennsylvania, April

1984. Association for Computing Machinery.

Jim Fox. "Webless literate programming". TUGboat, Vol. 11, No. 4, pp.

511-513,1990.

David B. Garlan and Philip L. Miller. "GNOME: An Introductory Pro-

gramming Environment Based on a Family of Structure Editors". Peter

Henderson (editor), Proceedings of the ACM SIGSOFT/SIGPLAN Sym-

posium on Practical Software Development Environments, pp. 65-72, Pitt-

sburgh, Pennsylvania, April 1984. Association for Computing Machinery.

[471 Peter Gragert and Marcel Roelofs. Reduce WEB version 3.4, (unpublished).

Available by anonymous ftp from utmf 0 . math. utuente . n]..

Klaus Guntermann and Wolfgang Riffling. 'Another approach to multiple

changefiles". TUGboat, Vol. 7, No. 3, p. 134, October 1986.

Klaus Guntermann and Joachim Schrod. "WEB adapted to C". TUGboat,

Vol. 7, No. 3, pp. 134-137, October 1986.

Klaus Guntermann and Helmut Waldschmidt. "Modular programming

with WEB". Electrosoft, Vol. 1, No. 1, pp. 27-43, March 1990.

Wilfred J. Hansen. Interactive Programming Environments, "Program-

134

