9,751 research outputs found

    A volume-preserving counterexample to the Seifert conjecture

    Full text link
    We prove that every 3-manifold possesses a C1C^1, volume-preserving flow with no fixed points and no closed trajectories. The main construction is a volume-preserving version of the Schweitzer plug. We also prove that every 3-manifold possesses a volume-preserving, CāˆžC^\infty flow with discrete closed trajectories and no fixed points (as well as a PL flow with the same geometry), which is needed for the first result. The proof uses a Dehn-twisted Wilson-type plug which also preserves volume

    Reusing Test-Cases on Different Levels of Abstraction in a Model Based Development Tool

    Full text link
    Seamless model based development aims to use models during all phases of the development process of a system. During the development process in a component-based approach, components of a system are described at qualitatively differing abstraction levels: during requirements engineering component models are rather abstract high-level and underspecified, while during implementation the component models are rather concrete and fully specified in order to enable code generation. An important issue that arises is assuring that the concrete models correspond to abstract models. In this paper, we propose a method to assure that concrete models for system components refine more abstract models for the same components. In particular we advocate a framework for reusing testcases at different abstraction levels. Our approach, even if it cannot completely prove the refinement, can be used to ensure confidence in the development process. In particular we are targeting the refinement of requirements which are represented as very abstract models. Besides a formal model of our approach, we discuss our experiences with the development of an Adaptive Cruise Control (ACC) system in a model driven development process. This uses extensions which we implemented for our model-based development tool and which are briefly presented in this paper.Comment: In Proceedings MBT 2012, arXiv:1202.582

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    DoctorEye: A clinically driven multifunctional platform, for accurate processing of tumors in medical images

    Get PDF
    Copyright @ Skounakis et al.This paper presents a novel, open access interactive platform for 3D medical image analysis, simulation and visualization, focusing in oncology images. The platform was developed through constant interaction and feedback from expert clinicians integrating a thorough analysis of their requirements while having an ultimate goal of assisting in accurately delineating tumors. It allows clinicians not only to work with a large number of 3D tomographic datasets but also to efficiently annotate multiple regions of interest in the same session. Manual and semi-automatic segmentation techniques combined with integrated correction tools assist in the quick and refined delineation of tumors while different users can add different components related to oncology such as tumor growth and simulation algorithms for improving therapy planning. The platform has been tested by different users and over large number of heterogeneous tomographic datasets to ensure stability, usability, extensibility and robustness with promising results. AVAILABILITY: THE PLATFORM, A MANUAL AND TUTORIAL VIDEOS ARE AVAILABLE AT: http://biomodeling.ics.forth.gr. It is free to use under the GNU General Public License

    Formalising interface specifications

    Get PDF

    Atomic components

    Get PDF
    There has been much interest in components that combine the best of state-based and event-based approaches. The interface of a component can be thought of as its specification and substituting components with the same interface cannot be observed by any user of the components. Here we will define the semantics of atomic components where both states and event can be part of the interface. The resulting semantics is very similar to that of (event only) processes. But it has two main novelties: one, it does not need recursion or unique fixed points to model nontermination; and two, the behaviour of divergence is modelled by abstraction, i.e. the construction of the observational semantics
    • ā€¦
    corecore