25 research outputs found

    Refinement with Time - Refining the Run-Time of Algorithms in Isabelle/HOL

    Get PDF
    Separation Logic with Time Credits is a well established method to formally verify the correctness and run-time of algorithms, which has been applied to various medium-sized use-cases. Refinement is a technique in program verification that makes software projects of larger scale manageable. Combining these two techniques for the first time, we present a methodology for verifying the functional correctness and the run-time analysis of algorithms in a modular way. We use it to verify Kruskal\u27s minimum spanning tree algorithm and the Edmonds - Karp algorithm for network flow. An adaptation of the Isabelle Refinement Framework [Lammich and Tuerk, 2012] enables us to specify the functional result and the run-time behaviour of abstract algorithms which can be refined to more concrete algorithms. From these, executable imperative code can be synthesized by an extension of the Sepref tool [Lammich, 2015], preserving correctness and the run-time bounds of the abstract algorithm

    A More Pragmatic CDCL for IsaSAT and Targetting LLVM

    Get PDF
    IsaSAT is the most advanced verified SAT solver, but it did not yet feature inprocessing (to simplify and strengthen clauses). In order to improve performance, we enriched the base calculus to not only do CDCL but also inprocess clauses. We also replaced the target of our code synthesis by Isabelle/LLVM. With these improvements, we can solve 4 times more SAT Competition 2022 problems than the original IsaSAT version, and 4.5 times more problems than any other verified SAT solver we are aware of. Additionally, our changes significantly reduce the trusted code base of our verification

    The End of History? Using a Proof Assistant to Replace Language Design with Library Design

    Get PDF
    Functionality of software systems has exploded in part because of advances in programming-language support for packaging reusable functionality as libraries. Developers benefit from the uniformity that comes of exposing many interfaces in the same language, as opposed to stringing together hodgepodges of command-line tools. Domain-specific languages may be viewed as an evolution of the power of reusable interfaces, when those interfaces become so flexible as to deserve to be called programming languages. However, common approaches to domain-specific languages give up many of the hard-won advantages of library-building in a rich common language, and even the traditional approach poses significant challenges in learning new APIs. We suggest that instead of continuing to develop new domain-specific languages, our community should embrace library-based ecosystems within very expressive languages that mix programming and theorem proving. Our prototype framework Fiat, a library for the Coq proof assistant, turns languages into easily comprehensible libraries via the key idea of modularizing functionality and performance away from each other, the former via macros that desugar into higher-order logic and the latter via optimization scripts that derive efficient code from logical programs

    Correct-by-construction implementation of runtime monitors using stepwise refinement

    Get PDF
    Runtime verification (RV) is a lightweight technique for verifying traces of computer systems. One challenge in applying RV is to guarantee that the implementation of a runtime monitor correctly detects and signals unexpected events. In this paper, we present a method for deriving correct-by-construction implementations of runtime monitors from high-level specifications using Fiat, a Coq library for stepwise refinement. SMEDL (Scenario-based Meta-Event Definition Language), a domain specific language for event-driven RV, is chosen as the specification language. We propose an operational semantics for SMEDL suitable to be used in Fiat to describe the behavior of a monitor in a relational way. Then, by utilizing Fiat\u27s refinement calculus, we transform a declarative monitor specification into an executable runtime monitor with a proof that the behavior of the implementation is strictly a subset of that provided by the specification. Moreover, we define a predicate on the syntax structure of a monitor definition to ensure termination and determinism. Most of the proof work required to generate monitor code has been automated

    Proof-Producing Synthesis of CakeML from Monadic HOL Functions

    Get PDF
    We introduce an automatic method for producing stateful ML programs together with proofs of correctness from monadic functions in HOL. Our mechanism supports references, exceptions, and I/O operations, and can generate functions manipulating local state, which can then be encapsulated for use in a pure context. We apply this approach to several non-trivial examples, including the instruction encoder and register allocator of the otherwise pure CakeML compiler, which now benefits from better runtime performance. This development has been carried out in the HOL4 theorem prover

    Generating Verified LLVM from Isabelle/HOL

    Get PDF
    We present a framework to generate verified LLVM programs from Isabelle/HOL. It is based on a code generator that generates LLVM text from a simplified fragment of LLVM, shallowly embedded into Isabelle/HOL. On top, we have developed a separation logic, a verification condition generator, and an LLVM backend to the Isabelle Refinement Framework. As case studies, we have produced verified LLVM implementations of binary search and the Knuth-Morris-Pratt string search algorithm. These are one order of magnitude faster than the Standard-ML implementations produced with the original Refinement Framework, and on par with unverified C implementations. Adoption of the original correctness proofs to the new LLVM backend was straightforward. The trusted code base of our approach is the shallow embedding of the LLVM fragment and the code generator, which is a pretty printer combined with some straightforward compilation steps
    corecore