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Abstract
Separation Logic with Time Credits is a well established method to formally verify the correctness
and run-time of algorithms, which has been applied to various medium-sized use-cases. Refinement
is a technique in program verification that makes software projects of larger scale manageable.

Combining these two techniques for the first time, we present a methodology for verifying the
functional correctness and the run-time analysis of algorithms in a modular way. We use it to verify
Kruskal’s minimum spanning tree algorithm and the Edmonds–Karp algorithm for network flow.

An adaptation of the Isabelle Refinement Framework [15] enables us to specify the functional
result and the run-time behaviour of abstract algorithms which can be refined to more concrete
algorithms. From these, executable imperative code can be synthesized by an extension of the Sepref
tool [11], preserving correctness and the run-time bounds of the abstract algorithm.
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1 Introduction

Recently the literature has seen various interactive verification efforts for run-time analysis
of efficient algorithms and data structures: Charguéraud et al. [4] verify the union-find
data structure, Zhan et al. [17] formalize amongst others the median of medians selection
algorithm, Karatsuba’s algorithm and splay trees, and most recently Guéneau et al. [8] verify
a state-of-the-art incremental cycle detection algorithm.

While the largest of these developments fits on one page (Figure 1 in [8]) more ambitious
projects have been tackled when only functional correctness is concerned: Esparza et al.
[5] formalized a LTL-model checker, Fleury et al. [6] verified a SAT-solver, Wimmer et
al. [16] formalized a timed automaton model checker, various graph algorithms have been
verified [10, 13]. The list is growing. One key ingredient to manage the complexity of larger
algorithm developments is to use refinement. It allows to separate reasoning about the
abstract algorithmic idea from reasoning about implementation details. In the Isabelle world,
the Isabelle Refinement Framework [15] can be used to express abstract algorithms and to
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20:2 Refinement with Time

use step-wise refinement to form concrete algorithms. As a last step the Sepref tool [11]
can be used to synthesize efficient executable imperative code while preserving correctness.
Target languages for that tool are hybrid languages such as SML, Scala and more recently
the purely imperative language LLVM [12]. Such verification efforts result in executable
algorithms that are often competitive with real world implementations within one order of
magnitude. However, only functional correctness is ensured and not run-time bounds.

This paper brings together run-time analysis and refinement. By extending the refinement
approach to also reason about the run-time of algorithms in a modular and scalable way, we
lay the ground for an additional run-time analysis of larger algorithms.

Our vision is to specify abstract algorithms and their run-time in terms of abstract
operations with time bounds – say Edmonds–Karp algorithm uses at most E ∗ V find-
augmenting-path operations. When we then refine an operation like find-augmenting-path to
a more concrete BFS algorithm involving operations such as set membership test and map
lookup, we can also refine the abstract compound algorithm to use the more refined operations.
Just as for plain refinement we separate abstract run-time arguments from reasoning about
run-times of concrete data structures. As a last step we synthesize executable imperative
code which refines the abstract algorithm and thus obeys both the high-level correctness
theorem and the run-time bound. This synthesis step is only successful when meaningful
time bounds have been specified. For abstract programs with absurd run-time bounds it will
just not be possible to synthesize real programs.

The main contributions of this paper are:
We present a theory for refinement with time by creating NREST, the non-determinism
monad with time, and tools for reasoning about programs in that monad (Section 2).
We extend the Sepref Tool (Section 3.2) to synthesize executable imperative code in
Imperative/HOL with time (Section 3.1) supporting imperative and amortized data
structures seamlessly.
We enable modular development of algorithms by providing a library of efficient amortized
data structures and reusable algorithms with run-time guarantees (Section 4).
We show the applicability of our approach to larger algorithm developments by use-cases
such as Edmonds–Karp and Kruskal’s algorithm (Section 5).

2 Non-determinism Monad With Time

In this section we introduce NREST, the timed non-determinism monad. It allows specifying
the result and time consumption of programs. As this is an extension of the NRES monad of
the Isabelle Refinement Framework, we follow Lammich [11] in some of our explanations.

2.1 Timed Non-determinism Monad
We want to specify the result of a computation together with its worst case execution time. We
design the monad to permit three monadic effects: First, we allow non-deterministic selection
from a set of computation results. This is a common technique in program refinement, used
to hide implementation details of abstract algorithms. Second, we support failure in order to
model non-termination and assertions. Last, we model upper bounds on the run time for
each possible result.1 A program in the timed non-determinism monad is defined over the
type α NREST:

1 Alternatively, one could use a set of pairs of result and time constraint. However, this would not be
fully abstract wrt. upper bounds, in the sense that {(r, 1), (r, 3)} would be equivalent to {(r, 3)}.
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α NREST = RES (α ⇒ enat option) | FAIL,

where enat is the type of extended natural numbers, i.e. N ∪ {∞} and α ⇒ β option is the
standard idiom in Isabelle to model a map from α to β. The type α NREST describes
non-deterministic results with time bounds, where RES M describes the non-deterministic
choice of an element from the domain of M while consuming no more time units than M
specifies for that element. FAIL describes a failed computation, which usually stems from an
assertion that was not satisfied.

We define a refinement ordering on NREST by first lifting the ordering on enat to option
with None as the bottom element, then pointwise to functions and finally to α NREST,
setting FAIL as the top element. With that ordering, NREST forms a complete lattice where
RES (λs. None) is the bottom element, and FAIL is the top element. Intuitively, N ≤ M

means that program N refines program M, i.e. all results of N are also results of M, and
further for each such result, N takes no more time than M does. Any program refines FAIL.

I Example 1. A program that reverses a list and whose run-time is at most four times the
length of the list can be specified by: rev_spec xs = RES [rev xs 7→ 4∗|xs| ]

Here, [a 7→ b] is syntactic sugar for (λx. if x=a then Some b else None).

On the type NREST we define the following functions:

consume :: α NREST ⇒ enat ⇒ α NREST where
consume (RES M) t = RES (λx. case M x of None ⇒ None | Some t′ ⇒ Some (t + t′))
consume FAIL t = FAIL

return :: α ⇒ α NREST where
return x = RES [ x 7→ 0 ]

bind :: α NREST ⇒ (α ⇒ β NREST) ⇒ β NREST where
bind (RES M) f = Sup { consume (f x) t |x t. M x = Some t}
bind FAIL f = FAIL

The term consume M t describes the computation M prolonged by t time steps, return x
is a computation that yields a single result x in no time, and bind m f is the sequential
composition of two computations: First compute any result x of m, then any result y of
f x. The time bounds for the final results have to be determined considering all possible
ways how to reach them. If m or any reachable computation path of f fails the compound
computation also fails. NREST together with bind and return forms a monad and bind as
well as consume are monotonic w.r.t. the refinement ordering:

m ≤ m′ −→ (∀x. f x ≤ f ′ x) −→ bind m f ≤ bind m′ f ′

m ≤ m′ −→ t ≤ t′ −→ consume m t ≤ consume m′ t′

I Example 2. Let m = RES (λ_::nat. Some 0) and f v = consume (return 0) v. Program
m computes any natural number in no time, and f takes a natural number v as argument and
computes the result 0 in at most v steps. Now consider bind m f: Both m and f do not fail,
and together compute the single result 0. But there are computation paths (via any value v
produced by m) with any natural number as a run-time. The supremum over all these is
∞. To sum it all up: bind m f = consume (return 0) ∞. This illustrates why we had to
choose enat for the range of the run-time bound, rather than the type of natural numbers.

ITP 2019



20:4 Refinement with Time

Furthermore we define two derived operations:

SPEC :: (α ⇒ bool) ⇒ (α ⇒ enat) ⇒ α NREST where
SPEC P t = RES (λv. if P v then Some (t v) else None)

assert :: bool ⇒ unit NREST where
assert P = (if P then return () else FAIL)

A computation that returns a result v if and only if P v holds and takes at most t v time
is described by SPEC P t. The computation assert P fails if the predicate P is not satisfied.
For assertions we have the following rules:

P −→ m ≤ m′ −→ do { assert P; m } ≤ m′

(P −→ m ≤ m′) −→ m ≤ do { assert P; m′ }

Here, we use a Haskell-like do notation as a convenient syntax for bind operations. The
first rule is used to show that a program m with assertion P refines the program m′. It
requires to prove P , in addition to the refinement m ≤ m′. The second rule is used to show
that a program m refines a program m′ with an assertion. It allows one to assume P when
proving the refinement m ≤ m′. This way, facts that are proven on the abstract level are
made available for proving refinement.

2.2 Recursive Programs
Non-recursive programs can be expressed by the monad operations and Isabelle/HOL’s if
and case-combinators. Recursion is encoded by a fixed point combinator RECT, such that
RECT F is the greatest fixed point of the monotonic functor F, w.r.t. the flat ordering of
timed result maps with FAIL as the top element. For any non-monotonic F, RECT F is
set to FAIL:

RECT :: ((β ⇒ α NREST) ⇒ β ⇒ α NREST) ⇒ β ⇒ α NREST where
RECT F x = (if mono2 F then (gfp F x) else FAIL)

Here, mono2 denotes monotonicity w.r.t. both the flat ordering and the refinement
ordering. The benefits of this are explained in more detail elsewhere [11]. Note that
programs constructed by the combinators we introduced above are monotonic in that sense
by construction. The combinator RECT is also monotonic w.r.t. the refinement ordering:

mono2 B ∧ (∀F x. B F x ≤ B′ F x) −→ RECT B x ≤ RECT B′ x

For all other combinators we can show similar monotonicity lemmas. Building on them,
we also define while loops, foreach loops and a fold function to conveniently express tail
recursion, folding over the elements of a finite set and folding over a list.

I Example 3. As a running example we consider the formalization of Kruskal’s algorithm.
To illustrate the expressive power of NREST we present the abstract algorithm in Figure 1a:
the greedy algorithm to construct a minimum weight basis for a matroid. This abstract
algorithm will later be instantiated for the cycle matroid, which yields the skeleton of
Kruskal’s algorithm. Already on this abstract level we can structure the algorithm and prove
the functional correctness of the algorithmic idea, as well as its run-time – parameterized
over the run-times of the abstract operations it performs.
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1 minWeightBasis = do {
2 l ← SPEC (λL. sorted_wrt w L
3 ∧ distinct L ∧ set L = E)
4 (λ_. tsc);
5 s ← RES [∅ 7→ teb];
6 T ← nfold l (λe T. do {
7 assert (e/∈T ∧ indep T ∧ e∈c ∧ T⊆E);
8 b ← RES [indep (T∪{e}) 7→tit];
9 if b then do {
10
11 RES [T∪{e}7→ti]
12 } else
13 return T
14 }) s;
15 return T
16 }

(a) The greedy algorithm to construct a minimum
weight basis of a Matroid in the NREST monad.

1Kruskal = do {
2l ← obtain_sorted_edge_list;
3
4
5(djs0, fl0) ← initState;
6(djs, fl) ← nfold l (λ(a,w,b) (djs, fl). do {
7assert (a∈Domain djs ∧ b∈Domain uf);
8b ← RES [¬djs_cmp djs a b 7→ tit];
9if b then do {
10assert ((a,w,b)/∈set fl);
11addEdge djs a b fl
12} else
13return (djs,fl)
14}) (djs0, fl0);
15return fl
16}

(b) A further refinement for the Kruskal algorithm,
where an additional disjoint sets data structure is
passed around.

Figure 1 Two examples of algorithms in the the timed non-determinism monad.

In line two the algorithm obtains a list of the elements of the carrier set E (later this will
be the set of edges of an undirected graph) sorted w.r.t. some weight function w. Starting from
an empty independent set, we iteratively add elements if they leave the set T independent
(i.e. create no cycle in the graph case). For all operations that may cost time, we reserve
some time parameter of type nat or functions to nat: here tsc, teb, tit and ti stand for sorted
carrier set time, empty basis time, independence test time and insertion time.

We can give the specification for this algorithm, and state the refinement theorem:

minWeightBasis ≤ SPEC minBasis (λ_. tsc + tsb + |E| ∗ (tit+ti))

where minBasis S is true iff S is a minimum weight basis. How to prove such a refinement in
a mechanized way is the subject of the next section.

2.3 Generalizing the Weakest Precondition
First let us consider refinement goals with a result on the right hand side: c ≤ RES Q

That is, we want to prove that a program c meets specification Q. Note that program c
might be a composed program using the combinators defined above. In order to come up
with meaningful rules for these combinators we first need to generalize the above goal.

Instead of asking only whether a program satisfies the specification, we also ask “how
much” it satisfies the specification, i.e. how much slack time is between the specified and
actual run-time. As a mental model, we place the “slack time” in front of the actual run-time
and call it the latest starting time such that executing c always terminates before the deadline
Q :: α ⇒ enat option, and denote it as lst c Q :: enat option.

If program c does not fulfill a specificationQ then there is no such time and lst c Q = None,
otherwise its value is the latest feasible starting time. Before we give the definition of lst, let
us explore what we can do with it. We obtain the following equality:

ITP 2019
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c ≤ RES Q ←→ Some 0 ≤ lst c Q

and we can prove the following equation for the bind operator:

lst (bind m f) Q = lst m (λy. lst (f y) Q)

Intuitively it says: The latest starting time for the compound computation bind m f to
satisfy Q is the latest starting time for m in order to meet the latest starting time such that
f y meets the specification Q.

To determine lst c Q, we need to consider the differences between the specified and the
actual run-time for every result of c and take the most conservative one:

lst c Q = Inf r. minus Q c r

Operation minus :: (α ⇒ enat option) ⇒ α NREST ⇒ α ⇒ enat option formalizes tak-
ing the difference. We have the following cases:

c fails: then c may never be executed and thus there is no valid latest starting time, i.e.
minus Q c r = None.
c=RES C and C r = None: as C will never produce the result r, it can be ignored, i.e.
the result is the top element: Some ∞.
c=RES C and C r = Some m andQ r = None: r is specified to not be obtained, but when
starting c we obtain r, thus there is no valid starting time for C: minus Q c r = None.
c=RES C and C r = Some m and Q r = Some n: if more time is needed than specified
(n < m) there is no valid latest starting time and we return None, otherwise the difference
is returned (Some (n−m)).

We can get some more intuition when unfolding lst in the above equality:

c ≤ RES Q

←→ Some 0 ≤ lst c Q (= Inf r. minus Q c r )

←→ ∀r. Some 0 ≤ minus Q c r

The infimum is just a compact version of saying that the difference of Q and c on any
result r is non-negative. By abusing notation and following the intuition of minus one can
restate the last line as “∀r. c r ≤ Q r”. In essence it says, that c meets specification Q, iff
for any r the time that it takes to calculate r for c is at most the time that Q reserved
for that result.

2.4 Sound proof rules for the latest starting time calculus
Instead of solving problems of the form c ≤ RES Q we solve problems of the more general
form Some t ≤ lst c Q. This general form allows us to state syntax directed rules in a
uniform way, which would not be possible otherwise.

From the equality for lst on bind we can derive an introduction rule for bind:

Some t ≤ lst M (λy. lst (f y) Q) −→ Some t ≤ lst (bind M f) Q

For the other combinators we have:

(∀r∈M. Some (t + M r) ≤ Q r) −→ Some t ≤ lst (RES M) Q
Some t ≤ Q x −→ Some t ≤ lst (return x) Q
(∀x. P x −→ Some (t + t′ x) ≤ Q x) −→ Some t ≤ lst (SPEC P t′) Q
Some (t + t′) ≤ lst M Q −→ Some t ≤ lst (consume M t′) Q



M.P. L. Haslbeck and P. Lammich 20:7

For the fold operation nfold :: β list ⇒ (β ⇒ α ⇒ α NREST) ⇒ α ⇒ α NREST we
have the following rule:

I [] l0 s0
∧ (∀x l1 l2 s. l0=l1 · [x] · l2 ∧ I l1 ([x] · l2) s

−→ Some 0 ≤ lst (f x s) (emb (I (l1 · [x]) l2) tbody))
∧ (∀s. I l0 [] s −→ Some (t + tbody ∗ |l0|) ≤ Q s)
−→ Some t ≤ lst (nfold l0 f s0) Q

Here, emb P t = (λx. if P x then Some t else None), nfold is defined in a straightfor-
ward manner and the invariant I is a predicate that takes as its first argument the list of
already processed elements, then the list of elements still to be processed and finally a state
s. For showing that nfold l0 f s0 meets its specification Q with slack time t, one has to show
that an invariant I holds initially, the body preserves the invariant and takes at most tbody

time steps and the invariant in the end implies the desired specification. As we fold over a
finite list, a termination argument is not required.

We also define a rule for RECT and based on that one for while loops. With the above
rules and analogous rules for assert and the combinators if and case, we construct a syntax
directed verification condition generator that exhaustively applies those rules.

I Example 4. After annotating the loop in the abstract program from Figure 1b with
bodytime = tit + ti and a suitable invariant I = λl1 l2 T. Imwb (T, set l2) (where Imwb(T,E)
implies minBasis T for the whole carrier set E), we run the VCG on the refinement theorem of
Example 3 and obtain eleven verification conditions. One of these is the invariant preservation
of the first branch of the if-expression, i.e. when adding an element e:

sorted_wrt w l ∧ distinct l ∧ set l = E ∧ l = l1 · [e] · l2 ∧ indep (T ∪ {e})
∧ Imwb(T, set ([e] · l2)) −→ Imwb(T ∪ {e}, set l2)

This verification condition is one of the central ones in the correctness proof and can be
discharged with an interactive proof.

2.5 Data Refinement
In the process of refining an abstract algorithm to a more concrete one, a usual task is
to replace abstract data structures by concrete ones, for example to replace sets by lists.
Consider the then branch in the algorithm in Figure 1a: instead of using a set to collect the
elements of a basis, we want use a list. We have the following refinement in mind. Given that
a list l represents a set T (denoted by (l,T)∈list_set_rel), the resulting lists of the program
on the left hand side refine the resulting sets produced by the right hand side program:

(l,T)∈list_set_rel −→RES [l · [x] 7→ it] ≤ ⇓(list_set_rel) RES [T∪{x} 7→ it]

Given a refinement relation R, i.e. a relation that relates concrete elements with abstract
elements, the concretization function ⇓R maps abstract results to concrete results w.r.t. R.
Note that, if R is single-valued any concrete result is mapped to at most one abstract result.

⇓R FAIL = FAIL
⇓R (RES X) = RES (λc. Sup {X a| a. (c,a)∈R})

Data refinement is orthogonal to introducing the time counting, as it only acts on the
domain of the maps, not on their values. We can lift all monotonicity lemmas to also include
the data refinement, e.g. for the bind operation we obtain the following rule:

ITP 2019
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M ≤ ⇓R′ M′ ∧ (∀x x′. (x, x′) ∈ R′ −→ f x ≤ ⇓R (f ′ x′)) −→ bind M f ≤ ⇓R (bind M′ f ′)

Analogous rules can be proven for RECT, nfold, assert, and the other combinators.

2.6 Setting Up a VCG for Refinement
In practice, one mostly is confronted with two kinds of refinement goals: first, goals w.r.t.
a specification c ≤ RES Q, which we already considered, and second, refinement of two
abstract algorithms that are structurally similar (c.f. Figure 1). For the latter case, one
simulates the two programs in lock step and uses the monotonicity lemmas mentioned in
the last section to divide and conquer the problem. Collecting these rules we construct an
automated refinement solver, which we illustrate with an example:

I Example 5. Consider the two programs in Figure 1. The concrete program Kruskal is
a specialized minimum weight basis algorithm for the cycle matroid, where the elements
of the matroid are edges in an undirected graph, represented by a tuple (a,w, b) of its end
nodes a and b and weight w. Programs obtain_sorted_edge_list and addEdge are compound
programs. We want to show the following refinement relation:

Kruskal ≤ ⇓ list_graph_rel minWeightBasis

where list_graph_rel relates a set of abstract edges in the graph with a list of edge tuples
representing them. When showing this refinement, several other intermediate refinement
relations are used, e.g. ((djs,fl),T) ∈ djs_graph_rel which relates the abstract edge set T
to the list of edges fl and its corresponding disjoint-sets data structure. The main part of
this refinement proof is to show that testing independence if we add an edge (a,w, b) (i.e.
checking cycle-freedom) can be implemented by comparing the equivalence classes of a and b.

Note that addEdge has to do two things: update the disjoint-sets data structure and add
the edge tuple to the list. We specify this program abstractly, and reserve time tiu and til
for the two actions. In the refinement proof we need to prove that tiu + til ≤ ti. Similarly,
the sum of the costs in obtain_sorted_edge_list must be smaller than tsc.

The VCG for refinement simulates the two programs side by side, using the monotonicity
lemmas to split the problem into smaller parts, and showing the refinements of those smaller
parts. One such part is the goal addEdge djs a b fl ≤ ⇓list_graph_rel (RES [T∪{e} 7→ti])
(with list_graph_rel motivated as above).

3 Refinement to Imperative/HOL with Time

In this section we introduce the time-aware monad of Imperative/HOL [17], which we then
use as the target monad of the adapted Sepref tool [11] with NREST as the source monad.

3.1 Imperative/HOL with Time
Imperative/HOL with time [17] incorporates Atkey’s [1] idea to include time credits in
separation logic into the Imperative/HOL [2] framework. In essence, it enables reasoning
about imperative programs and their run-time in Isabelle/HOL. While all the details can
be found in Section 2.1 of [17], we will give an abstract explanation here that suffices for
our purposes.

A procedure in the monad takes a heap as input and can either fail or return a tuple
consisting of a return value, a new heap and a natural number, specifying the number of
computation steps used. The type of a procedure with result type α is given by:
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datatype α Heap = Heap (heap ⇒ (α × heap × nat) option)

The bind operator as well as fix point iteration, while and other combinators are defined
in a straightforward manner. The term (h,c) ⇒ (r, h′, t) expresses that procedure c started
on heap h does not fail and takes time t to produce result r and heap h′.

While heaps themselves do not form a separation algebra, there is an abstraction function
α that maps a pair of heap and time credits to an abstract heap. Abstract heaps together
with suitable definitions of disjointness and heap addition form a separation algebra. An
assertion P , i.e. a mapping from an abstract heap to bool, being true for a heap h and
time credits n is denoted by α(h, n) |= P . There are basic assertions for an abstract heap
containing an array without time credits (a 7→a xs), references without time credits (r 7→r v)
and time credits ($n).

The separating conjunction P∗Q expresses that the heap and time credits can be parti-
tioned into two disjoint parts satisfying assertions P and Q respectively. The strength of
separation logic is, that this disjointness enables modular reasoning, which also carries over
to reasoning about time credits.

Hoare triples are defined in the following way:

1 <P> c <λr. Q r>t =
2 (∀h n. α (h,n) |= P −→ (∃h′ t r. (c,h) ⇒ (r, h′, t)
3 ∧ α (h′, n − t) |= Q r ∗ true ∧ t ≤ n) )

where the assertion true is true for any heap, thus enabling garbage collection of heap
elements and time credits. The Hoare triple <P> c <λr. Q r>t denotes that procedure c
started from a heap satisfying P terminates with a return value r in a resulting heap that
satisfies Q r ∗ true. In particular it states that the starting heap holds enough time credits
n in order to pay for the cost t of executing the procedure c (see line 3).

The cost model assigns most basic commands (e.g. accessing or updating a reference,
getting the length of an array) to consume one unit of computation time. Commands that
operate on an entire array take n+1 units of computation, where n is the length of the array.
Examples for basic commands are:

<a 7→a xs ∗ $1 ∗ ↑(i < |xs|)> Array.upd i x a <λr. a 7→a xs[i:=x] ∗ ↑(r = a)>t

<$(n+1)> Array.new n x <λr. r 7→a replicate n x>t

where ↑P is a pure assertion, which is valid for an empty heap if P holds globally, xs[i:=x]
denotes a list xs updated at position i with value x, and replicate n x denotes a list of n
elements x.

In Section 4.2 we review available and new infrastructure and automation for proving
valid Hoare triples of procedures in the time-aware monad of Imperative/HOL.

3.2 Adapted Sepref
As a next step we want to automatically synthesize programs in the time-aware Imperat-
ive/HOL monad from abstract algorithms in the NREST monad. This step is performed by
an adaptation of the Sepref tool [11]. Note that, the original tool refines NRES to vanilla
Imperative/HOL; adapting it includes many but rather straightforward modifications. During
that process we identified common patterns and constraints on the source and target monad.
It is future work to come up with a generalized Sepref tool. The core of the tool is the
translation phase, where the concrete program is synthesized. We focus on that phase as the
other phases can be adapted in a straightforward manner.

ITP 2019
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The translation works by symbolically executing the abstract program, thereby synthes-
izing a structurally similar concrete program. During the symbolic execution, the relation
between the abstract and concrete variables is modeled by refinement assertions. The syn-
thesis predicate guiding the “Heap-monad to Non-determinism Refinement” is denoted by
hnr Γ m† Γ′ R m: it means that the concrete program m† implements the abstract program
m, where Γ contains the refinements for the variables before the execution, Γ′ contains the
refinements after the execution, and R is the refinement assertion for the result of m. For
example, a bind is processed by the following synthesis rule:

1 hnr Γ m† Γ′ Rx m ∧
2 (∀x x†. hnr (Rx x x† ∗ Γ′) (f† x†) (R′

x x x† ∗ Γ′′) Ry (f x))
3 −→ hnr Γ (do {x† ← m†; f† x†}) Γ′′ Ry (do {x ← m; f x})

To refine x ← m; f x, we first execute m, synthesizing the concrete program m† (line 1). The
state after m is Rx x x† ∗ Γ′, where x is the result created by m. From this state, we execute
f x (line 2). The new state is R′

x x x† ∗ Γ′′ ∗ Ry y y†, where y is the result of f x.
While executing the abstract program, not only a concrete program is created, but also

the set of refinement assertions Γ evolves: It contains all the data structures (pure or on the
heap) that the concrete program maintains.

All the other combinators (RECT, while, if, case ...) have similar rules that are
used to decompose an abstract program into parts, synthesize corresponding concrete parts
recursively and combine them afterwards.

At the leaves of this decomposition one has to find “atomic” operations, with a suitable
synthesis rule. An example could be the rule for the specification of the compare operation
of a disjoint-sets data structure as in the concrete Kruskal program in Figure 1b:

hnr (is_uf R′ R ∗ nat_assn a′ a ∗ nat_assn b′ b) (uf_cmp R a b)
(is_uf R′ R ∗ nat_assn a′ a ∗ nat_assn b′ b)
bool_assn (RES [djs_cmp R′ a′ b′ 7→ itt] )

The program uf_cmp in the time-aware Imperative/HOL monad refines the abstract
compare operation djs_cmp. If the parameters fulfill the correct refinement assertions, i.e. R
is a concrete union-find implementation of the abstract equivalence relation R′, as well as
a′ = a and b′ = b, then the result of the concrete operation is equal (bool_assn) to the result
of the abstract one, and the parameters are still in the refinement relations as before.

3.3 Heap-monad to Non-determinism Refinement (HNR)
Now we present how we can link NREST with the Imperative/HOL monad via a suitable
synthesis predicate.

1 hnr Γ c Γ′ R m ≡ m 6= FAIL −→
2 (∀h n. α(h, n) |= Γ −→ (∃h′ t r. (c, h) ⇒ (r, h′, t)
3 ∧ (∃ta ra. α(h′, (n+ta)−t) |= Γ′ ∗ R ra r ∗ true
4 ∧ consume (return ra) ta ≤ m ∧ n+ta≥t)))

If the abstract program m does not fail, procedure c started from a heap satisfying Γ produces
a heap satisfying Γ′ and a result r which relates to an abstract result ra via relation R. The
abstract result ra is a valid result of m and has at least ta time units reserved for it. Together
with the time credits on the heap n this pays for the execution cost t (line 4).
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In particular, the execution cost t is paid for by the time units ta specified by the abstract
program and by time credits n that are hidden in the data structures on the heap. One can
see, that amortized data structures seamlessly integrate into the framework: only amortized
run-time costs are visible to the abstract algorithm, while the actual run-time and potential
is hidden in the implementation.

In order to verify that this definition makes sense, observe what we can prove for it:
First, this definition enables us to prove soundness of the synthesis rule for bind from above.
Second, as a final step in an algorithm analysis we would like to extract a Hoare triple for
the concrete program we synthesized. The run-time of final algorithms that we analyze is
typically not dependent on the result, but only on the input. For programs with specifications
of that special form SPEC P (λ_. t) we can extract a standard Hoare triple from a valid
synthesis predicate and vice versa:

hnr Γ c Γ′ R (SPEC P (λ_. t)) ←→ <Γ ∗ $ t> c <λr. Γ′ ∗ (∃A r′. R r′ r ∗ ↑(P r′))>t

While during reasoning the abstract time bound needs to depend on the result (in order
to prove the synthesis rule for bind correct), when proving the run-time of an algorithm, in
most cases the final run-time only depends on the input parameters.

Based on that definition we can provide sound synthesis rules for all the combinators as
well as a frame and a consequence rule. To illustrate how the hnr-approach allows to use
amortized data structures seamlessly, consider the first case-study in Section 5.1.

4 Modular Algorithms and Proof Development

Using our methodology, algorithm design and analysis can be modularized in two ways:
First, separating the implementation details of data structures from the abstract arguments

of algorithms enables focusing on one part of the problem at a time. Both levels have their
own language (time-aware Imperative/HOL and the NREST monad), and the interface is
realized by abstract operations (e.g. mop_append_list) and hnr rules. Sepref is employed to
automatically synthesize concrete algorithms from abstract ones. On the abstract level we
reserve some amount of time for each abstract operation, whose details will get filled in once
one decides which data structure and concrete operation to use, then yielding a sound upper
bound on the run-time. A collection of abstract operations and their implementations by
efficient data structures will be given in the next subsection.

Second, the refinement calculus of NREST programs enables to formulate abstract
algorithms that can be reused as components in larger developments. One example is a
generic BFS component, that is used as a sub-component in the Edmonds–Karp algorithm.
Also abstract algorithms, such as the minimum weight basis algorithm can be formulated on
general matroids, and then later be instantiated for the cycle matroid yielding a blue-print
for Kruskal’s algorithm.

4.1 Library of Operations and Algorithms

Table 1 lists abstract data structures with their abstract operations and the implementations
we currently provide in the Timed Imperative Isabelle Collections Framework (TIICF). Note:
it is easy to extend this list. As an example for a generic re-usable algorithm we provide
breadth first search, which is used in the formalization of the Edmonds–Karp algorithm.
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Table 1 This table shows the abstract data structures with abstract operations that we provide
implementations for in the TIICF. Amortized run-time bounds are marked with an asterisk (*).

abstract operations run-time concrete

matrix create; lookup, update O(n2); O(1) array

set/map create; insert, lookup, delete, update O(1); O(log n) red-black tree
O(n); O(1) array

list create, append; lookup, update O(1)∗; O(1) dynamic array
disjoint sets create; union, find O(n); O(log n) union-find

4.2 Methodology and Automation

The process of formalizing an algorithm is supported by automation in four stages. We
present those from the most abstract to the concrete:

First, when proving the refinement of a specification in the NREST monad to an abstract
algorithm the generation of verification conditions is automated. They can be discharged by
automatic tactics or interactive proof.

Second, abstract algorithms are refined to structurally similar concrete algorithms. Here
a lock step simulation is carried out automatically by the refinement condition generator.
An example is to show the refinement between the programs in Figure 1.

Third, the adapted Sepref tool automatically synthesizes a program in the time-aware
Imperative/HOL monad from a given abstract algorithm containing only abstract oper-
ations with available hnr rules. Automatic proving of side-conditions is performed in a
limited way. Usually, preconditions of concrete operations are provided as an assert in the
abstract algorithm.

Finally, for showing that concrete implementations of abstract operations are correct and
satisfy the given time bounds one has to show hnr predicates. In essence, these are Hoare
triples in time-aware Imperative/HOL. Zhan et al. [17] develop a methodology for proving
functional correctness and (amortized) run-time claims and provide a setup for automation.
One novel component is a special routine for handling time credits during frame inference.
Lammich [11] provides sep_auto – a strong automation for vanilla Imperative/HOL – which
we extend by the above mentioned time frame inference routine to also handle programs in
the time-aware case. Both approaches can be used in order to establish correct Hoare triples
of basic data structures and form a library of algorithms and data structures which can be
used as abstract operations in more advanced algorithms.

5 Case Studies

In this section we present three case studies:
The first one considers the abstract operation “appending an element to the end of a

list” and illustrates three stages of the verification process: implementing the operation for
a concrete data structure in Imperative/HOL with time, designing a synthesis predicate
relating the concrete with the abstract operation and using it in an abstract algorithm.

The latter two case studies describe the verification of more involved algorithms where
refinement helps structuring the development: Kruskal’s minimum spanning tree algorithm
and the Edmonds–Karp algorithm for maximum network flow.
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5.1 Amortized Dynamic Array and Remove Duplicates
Let us consider the following abstract operation, appending an element to the end of a list:

mop_push_list t x xs = RES [xs · [x] 7→ t xs]

The operation is specified in the NREST monad, with a parameter t that represents the
run-time of the operation, here parametrized in the list xs. For an implementor, this leaves
open the possibility to provide an implementation whose time consumption depends on xs,
e.g. on its length. Let us turn to an implementation of that operation on a dynamic array.

Implementation

An abstract dynamic list is represented by a pair of a carrier list bs and a fill level n. The
corresponding abstract list as is the list bs restricted to the first n elements:

dyn_abs (bs,n) as ←→ as = take n bs ∧ n<|bs|

We define a function push_array_fun on abstract dynamic lists that doubles the length
of the list if it is full and then appends an element. We prove its functional correctness:

dyn_abs (bs,n) as −→ dyn_abs (push_array_fun x (bs,n)) (as · [x])

Recall that p 7→a xs denotes a heap containing an array at address p with content xs.
Based on this, one can define an assertion

dyn_array_raw (bs, n) (p, m) = (p 7→a bs ∗ ↑(m = n))

relating an abstract dynamic list with a concrete dynamic array represented by a pair of
address p and fill level m.

For the functional push_array_fun we define a corresponding procedure push_array
which appends an element to the back of a dynamic array, doubling the length if it is
exceeded. We can now show the following raw Hoare triple, with worst-case run-time linear
in the fill level of the dynamic array, as we might have to double the array. The explicit
numbers in the run-time stem from the concrete implementation of push_array and the cost
model of time-aware Imperative/HOL.

n ≤ length bs −→
<dyn_array_raw (bs, n) p ∗ $(5∗n + 9)>
push_array x p
<λp′. dyn_array_raw (push_array_fun x (bs, n)) p′>t

We now incorporate the potential (Φ(bs,n) = 10 ∗ n − 5 ∗ |bs|) into an assertion for a
compound data structure dyn_array and prove the following Hoare triple with amortized
constant run-time:

dyn_array r p = dyn_array_raw r p ∗ $(Φ r)

n ≤ length bs −→
<dyn_array (bs, n) p ∗ $19>
push_array x p
<λp′. dyn_array (push_array_fun x (bs, n)) p′>t
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Note that for showing the latter amortized Hoare triple it does not suffice to employ the
raw Hoare triple, rather push_array must be unfolded again.

As a final step we compose the refinements of abstract lists to abstract dynamic lists
(dyn_abs) and further to dynamic arrays (dyn_array) and obtain dyna_assn:

dyna_assn as p = (∃Abs n. dyn_array (bs,n) p ∗ ↑(dyn_abs (bs,n) as))

where the list and fill level of the abstract dynamic array are hidden behind an existential
quantifier. Then we obtain the final Hoare triple of the procedure:

<dyna_assn as p ∗ $19> push_array x p <λp′. dyna_assn (as · [x]) p′>t

Together with the definition of mop_push_list we can state and prove the synthesis
predicate for the append operation:

19 ≤ t xs′ −→ hnr (dyna_assn xs′ p ∗ Id x′ x) (push_array x p)
(Id x′ x) dyna_assn (mop_push_list t x′ xs′)

Usage

The abstract operationmop_push_list can now be used when specifying an abstract algorithm.
Then a concrete time function t can be specified, which is used to determine the overall cost
of the algorithm. In this example we choose (λ_. 23), which is not a tight bound but enough
to later allow synthesizing a concrete program using dynamic arrays.

Consider the following program to remove duplicates from a list.

1 remdups_impl as = do {
2 ys ← mop_empty_list 12;
3 S ← mop_set_empty 1;
4 (zs,ys,S) ← whileT (λ(xs,ys,S). |xs| > 0) (λ(xs,ys,S). do {
5 assert (|xs| > 0 ∧ |xs| + |ys| ≤ |as| ∧ |S| ≤ |ys|);
6 (x,xs) ← return (hd xs, tl xs);
7 b ← mop_set_member (λ_. rbt_search_t (|as| + 1) + 1) x S;
8 if b then
9 return (xs,ys,S)
10 else do {
11 S ← mop_set_insert (λ_. rbt_insert_t (|as| + 1)) x S;
12 ys ← mop_push_list (λ_. 23) x ys;
13 return (xs,ys,S)
14 }
15 }) (as,ys,S);
16 return ys
17 }

The program uses mop_push_list from above as well as other abstract operations with
corresponding reserved run-time functions. For example insertion into a set:

mop_set_insert t x S = RES [S ∪ {x} 7→ t S]

For each operation in the program some time is reserved. The overall run-time of the
program is then a function of these reserved quantities.

Let remdups_t n = n∗(60 + rbt_search_t (n+1) + rbt_insert_t (n+1)) + 20.
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Note that for the set operations the reserved time in remdups_t is not parametrized in
the size of the set they operate on, but in an over-approximation of it: the length of the
input. Our automation can prove the following refinement theorem and asymptotic bound:

remdups_impl as ≤ SPEC (λys. set ys = set as ∧ distinct ys) (λ_. remdups_t |as|)
remdups_t ∈ Θ(λn. n ∗ logn)

When synthesizing an Imperative/HOL program, the synthesis rules will be applied and
their preconditions must be discharged. For the mop_push_list this boils down to the trivial
check 16 ≤ 23. Note that in that process only the advertised cost of the dynamic array is
concerned, while the amortization is hidden at this level.

Let us consider a more interesting operation. The synthesis rule of the red-black tree
implementation of mop_insert_set is the following:

rbt_insert_t (card S + 1) ≤ t S −→
hnr (Id x′ x ∗ rbt_set_assn S p) (rbt_set_insert x p)

(Id x′ x) rbt_set_assn (mop_set_insert t x′ S)

where rbt_set_assn S p relates a set S with a red-black tree at address p. During synthesis
the Sepref tool has to check whether there is enough reserved time for the set insertion.

|S| ≤ |ys| ∧ |xs| + |ys| ≤ |as|
−→ rbt_insert_t (|S| + 1) ≤ (λ_. rbt_insert_t (|as| + 1)) S

The goal can be discharged with the knowledge from the assertions and the monotony of
rbt_insert_t.

Once more, note that amortized data structures seamlessly can be modeled using time
credits, and this comfort extends to also be available for the abstract algorithm. At the
abstract level, an amortized data structure behaves just as a normal data structure does.

5.2 Kruskal
Kruskal’s algorithm was verified in the standard Refinement Framework in parallel to the
research reported on in this paper. It can be found in the archive of formal proofs [9]. As a
case study, we port it to NREST, adding the run-time claims.

The proof development follows this general structure: first we define the abstract algorithm
for minimum weight basis in matroids (c.f. Figure 1a) and verify it. Then we instantiate
it with the cycle matroid for forests in undirected graphs and refine the algorithm with
the usage of equivalence classes. Figure 1b shows the last-but-one stage in the step-wise
refinement process. In a last step we fix the vertices to be natural numbers and the domain
of the disjoint-set data structure to be the set from {0,...,M}, with M being the maximal
vertex in the graph. After that, we use the implementation of the union-find data structure
from the TIICF to synthesize a concrete algorithm with the Sepref tool.

Provided a procedure that obtains a list of edges of a graph in linear time, a O(n ∗ logn)
sorting algorithm and a union-find data structure with logarithmic find and union operations
we obtain a concrete algorithm that calculates the minimum weight spanning forest for the
graph in time O(E ∗ logE +M +E ∗ logM), with E being the number of edges and M being
the maximal vertex in the graph.

We have only proven the logarithmic bounds for the union-find data structure for this
case-study. Charguéraud et al. [4] verified a union-find data structure with amortized
run-time O(α(M)) (where M is the size of the domain of the disjoint-set data structure and
α is the inverse Ackermann function) in Coq.
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When developing this case study, we learned that the correctness arguments can be
plainly reused, and that adding the proofs of the run-time claims does not interfere, as they
only evoke additional verification conditions and leave the ones concerned with functional
correctness unchanged. However, it is necessary to add more assertions in the algorithms
that speak about the sizes of the data structures used. This reasoning is mostly done on the
abstract level, but the information has to be passed to the concrete algorithm via assertions.
In the Sepref translation phase, this information is needed to discharge the preconditions of
the hnr predicates, which demand that enough time has been reserved to execute the step.

5.3 Edmonds–Karp: Reuse

Before starting this project we had the following working hypothesis:
“Formalizations in the standard Refinement Framework can be easily extended to also

verify the run-time behaviour. In this process, most of the formalization can be reused, and
termination arguments can be translated into run-time arguments.”

We conducted this extension to the Edmonds–Karp algorithm [13, 14] as a case-study.
The result is two-fold: For procedures where the reasoning on the run-time of the algorithm
is already well prepared making this claim explicit is straightforward, for procedures where
only termination has been shown only coarse bounds can be shown with little effort. Fine
tuned run-time bounds require substantial work.

The Edmonds–Karp algorithm repeatedly tries to increase the flow by searching for an
augmenting path in the residual graph and terminates successfully if no such path exists.
The search is conducted by a breadth-first search (BFS) on the residual graph. The structure
of the development follows the original proof [13, 14]; we only give an abstract overview here:

First, an abstract BFS is defined and verified to return the shortest path from some start
node to some end node. The algorithm is parametrized on some graph G=(V,E) and some
procedure that provides the successors of a node in that graph. The run-time of the BFS
consequently depends on |V| and |E| as well as the run-time of the successor procedure and
the allotted run-times for the data-structure operations used.

Second, an abstract Edmonds–Karp algorithm is defined assuming a procedure to find
the shortest path in a graph. For that algorithm functional correctness is proven as well
as the correct run-time bound depending on the underlying network, the run-time of the
shortest-path algorithm and the run-times of the operations that maintain the residual graph.

Finally, by implementing the operations on the residual graph, in particular its successor
function, the abstract algorithms can be interpreted and we obtain a concrete algorithm in
NREST together with a refinement theorem and a compound run-time function. For that
algorithm we synthesize a program in timed Imperative/HOL together with a correctness
theorem and a run-time bound in O(V ∗ E ∗ (E + V )). Residual graphs are represented by
matrices, for which we provide an array implementation in the TIICF, with linear-time
initialization, and constant-time update and lookup operations.

Lammich et al. [14] already quite explicitly work out the bound O(V ∗ E) for the outer
loop iterations of the Edmonds–Karp algorithm. We were able to reuse the whole proof and
additionally embed the result into our time aware non-determinism monad, thus making the
run-time claim less ad-hoc. On the other hand the inner BFS is only proven to terminate
via a terminating lexicographic ordering. Plainly using this leads to a valid but very coarse
run-time bound. Establishing the tight O(E + V ) bound involves some amortized argument
on the abstract level and was a considerable verification effort, but again orthogonal to the
functional correctness proof, which in turn can be reused with no change.
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6 Conclusion

6.1 Related Work
Lammich pioneered the Sepref tool [11] and it has been used to verify several interesting
algorithms and software projects [13, 6, 16]. It was recently adapted to synthesize programs
in LLVM [12] instead of Imperative/HOL. Coming up with a generic Sepref tool that is
parametrized in the target and source language, as well as extending the LLVM semantics to
run-time are interesting future projects.

As already mentioned, time-aware Imperative/HOL is due to Zhan et al. [17], which
builds upon Atkey’s [1] idea to use Time Credits in Separation Logic.

In the Coq community similar theory [3, 7] and the run-time analysis of interesting
algorithms [8] and data structures [4] have been formalized.

To the best of our knowledge, we are the first to combine run-time analysis with refinement.

6.2 Limitations and Future Work
In particular, we are not satisfied with the parametrization of operations with timing functions.
We envision not only counting one currency ($) representing one computation step in the
final concrete algorithm, but to have currencies for abstract operations. Say one abstract
algorithm A incurs cost of one “A-dollar” $A and can be implemented by an algorithm using
several operations C1 and C2 costing some $C1 and some $C2 . Refining algorithms that use
several calls to A should then routinely yield a refinement with costs in terms of $C1 and $C2 .
A target monad of Sepref then would also allow different actions and respective currencies.
Refining abstract operations into this target would exchange these currencies in a sound way,
such that ultimately upper bounds on the usage of these currencies are obtained.

In this paper we only study upper bounds of run-time of algorithms. This should be
relaxed in two ways: First, consider other quantities, e.g. stack usage, or energy usage.
Second, not only upper bounds can be reasoned about, also lower bounds are feasible. A
refinement relation on lower bounds seems to be straightforward. Also combining this in a
pair of enats and keeping track of lower as well as upper bounds seems to be feasible.

We already mentioned, that Lammich’s LLVM semantics could be extended to counting
the number of operations. Obviously, it is future work to extend the collection of efficient
data structures and reusable algorithms, as well as lowering the barriers to verify run-time
arguments by providing more automation.

6.3 Conclusion
In this paper, we have combined the refinement approach of algorithm verification with
techniques to verify the run-time of algorithms: We extended the Isabelle Refinement
Framework to express the result and time consumption of abstract algorithms as well as the
Sepref tool to synthesize executable imperative programs for such abstract algorithms. This
setup makes it possible to carry out the verification of algorithms such as Edmonds–Karp
and Kruskal in a modular way. Separating concerns into the abstract algorithmic idea and
the implementation details of data structures makes larger proof developments feasible.

Our use-cases indicate that for additionally verifying run-time arguments for algorithms
whose functional correctness has already been shown within the vanilla Isabelle Refinement
Framework, formalizations can be reused to a large extent. We think that even larger
developments can be tackled this way, both verifying functional correctness and the run-time
analysis of such algorithms.
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