12,348 research outputs found

    Optimizing structural modeling for a specific protein scaffold: knottins or inhibitor cystine knots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knottins are small, diverse and stable proteins with important drug design potential. They can be classified in 30 families which cover a wide range of sequences (1621 sequenced), three-dimensional structures (155 solved) and functions (> 10). Inter knottin similarity lies mainly between 15% and 40% sequence identity and 1.5 to 4.5 Å backbone deviations although they all share a tightly knotted disulfide core. This important variability is likely to arise from the highly diverse loops which connect the successive knotted cysteines. The prediction of structural models for all knottin sequences would open new directions for the analysis of interaction sites and to provide a better understanding of the structural and functional organization of proteins sharing this scaffold.</p> <p>Results</p> <p>We have designed an automated modeling procedure for predicting the three-dimensionnal structure of knottins. The different steps of the homology modeling pipeline were carefully optimized relatively to a test set of knottins with known structures: template selection and alignment, extraction of structural constraints and model building, model evaluation and refinement. After optimization, the accuracy of predicted models was shown to lie between 1.50 and 1.96 Å from native structures at 50% and 10% maximum sequence identity levels, respectively. These average model deviations represent an improvement varying between 0.74 and 1.17 Å over a basic homology modeling derived from a unique template. A database of 1621 structural models for all known knottin sequences was generated and is freely accessible from our web server at <url>http://knottin.cbs.cnrs.fr</url>. Models can also be interactively constructed from any knottin sequence using the structure prediction module Knoter1D3D available from our protein analysis toolkit PAT at <url>http://pat.cbs.cnrs.fr</url>.</p> <p>Conclusions</p> <p>This work explores different directions for a systematic homology modeling of a diverse family of protein sequences. In particular, we have shown that the accuracy of the models constructed at a low level of sequence identity can be improved by 1) a careful optimization of the modeling procedure, 2) the combination of multiple structural templates and 3) the use of conserved structural features as modeling restraints.</p

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Improving the accuracy of template-based predictions by mixing and matching between initial models

    Get PDF
    BACKGROUND: Comparative modeling is a technique to predict the three dimensional structure of a given protein sequence based primarily on its alignment to one or more proteins with experimentally determined structures. A major bottleneck of current comparative modeling methods is the lack of methods to accurately refine a starting initial model so that it approaches the resolution of the corresponding experimental structure. We investigate the effectiveness of a graph-theoretic clique finding approach to solve this problem. RESULTS: Our method takes into account the information presented in multiple templates/alignments at the three-dimensional level by mixing and matching regions between different initial comparative models. This method enables us to obtain an optimized conformation ensemble representing the best combination of secondary structures, resulting in the refined models of higher quality. In addition, the process of mixing and matching accumulates near-native conformations, resulting in discriminating the native-like conformation in a more effective manner. In the seventh Critical Assessment of Structure Prediction (CASP7) experiment, the refined models produced are more accurate than the starting initial models. CONCLUSION: This novel approach can be applied without any manual intervention to improve the quality of comparative predictions where multiple template/alignment combinations are available for modeling, producing conformational models of higher quality than the starting initial predictions

    Novel computational methods for in vitro and in situ cryo-electron microscopy

    Get PDF
    Over the past decade, advances in microscope hardware and image data processing algorithms have made cryo-electron microscopy (cryo-EM) a dominant technique for protein structure determination. Near-atomic resolution can now be obtained for many challenging in vitro samples using single-particle analysis (SPA), while sub-tomogram averaging (STA) can obtain sub-nanometer resolution for large protein complexes in a crowded cellular environment. Reaching high resolution requires large amounts of im-age data. Modern transmission electron microscopes (TEMs) automate the acquisition process and can acquire thousands of micrographs or hundreds of tomographic tilt se-ries over several days without intervention. In a first step, the data must be pre-processed: Micrographs acquired as movies are cor-rected for stage and beam-induced motion. For tilt series, additional alignment of all micrographs in 3D is performed using gold- or patch-based fiducials. Parameters of the contrast-transfer function (CTF) are estimated to enable its reversal during SPA refine-ment. Finally, individual protein particles must be located and extracted from the aligned micrographs. Current pre-processing algorithms, especially those for particle picking, are not robust enough to enable fully unsupervised operation. Thus, pre-processing is start-ed after data collection, and takes several days due to the amount of supervision re-quired. Pre-processing the data in parallel to acquisition with more robust algorithms would save time and allow to discover bad samples and microscope settings early on. Warp is a new software for cryo-EM data pre-processing. It implements new algorithms for motion correction, CTF estimation, tomogram reconstruction, as well as deep learn-ing-based approaches to particle picking and image denoising. The algorithms are more accurate and robust, enabling unsupervised operation. Warp integrates all pre-processing steps into a pipeline that is executed on-the-fly during data collection. Inte-grated with SPA tools, the pipeline can produce 2D and 3D classes less than an hour into data collection for favorable samples. Here I describe the implementation of the new algorithms, and evaluate them on various movie and tilt series data sets. I show that un-supervised pre-processing of a tilted influenza hemagglutinin trimer sample with Warp and refinement in cryoSPARC can improve previously published resolution from 3.9 Å to 3.2 Å. Warp’s algorithms operate in a reference-free manner to improve the image resolution at the pre-processing stage when no high-resolution maps are available for the particles yet. Once 3D maps have been refined, they can be used to go back to the raw data and perform reference-based refinement of sample motion and CTF in movies and tilt series. M is a new tool I developed to solve this task in a multi-particle framework. Instead of following the SPA assumption that every particle is single and independent, M models all particles in a field of view as parts of a large, physically connected multi-particle system. This allows M to optimize hyper-parameters of the system, such as sample motion and deformation, or higher-order aberrations in the CTF. Because M models these effects accurately and optimizes all hyper-parameters simultaneously with particle alignments, it can surpass previous reference-based frame and tilt series alignment tools. Here I de-scribe the implementation of M, evaluate it on several data sets, and demonstrate that the new algorithms achieve equally high resolution with movie and tilt series data of the same sample. Most strikingly, the combination of Warp, RELION and M can resolve 70S ribosomes bound to an antibiotic at 3.5 Å inside vitrified Mycoplasma pneumoniae cells, marking a major advance in resolution for in situ imaging

    Computational optimization algorithms for protein structure refinement

    Get PDF
    is worthy of acceptance

    Contact prediction in protein modeling: Scoring, folding and refinement of coarse-grained models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several different methods for contact prediction succeeded within the Sixth Critical Assessment of Techniques for Protein Structure Prediction (CASP6). The most relevant were non-local contact predictions for targets from the most difficult categories: fold recognition-analogy and new fold. Such contacts could provide valuable structural information in case a template structure cannot be found in the PDB.</p> <p>Results</p> <p>We described comprehensive tests of the effectiveness of contact data in various aspects of de novo modeling with CABS, an algorithm which was used successfully in CASP6 by the Kolinski-Bujnicki group. We used the predicted contacts in a simple scoring function for the post-simulation ranking of protein models and as a soft bias in the folding simulations and in the fold-refinement procedure. The latter approach turned out to be the most successful. The CABS force field used in the Replica Exchange Monte Carlo simulations cooperated with the true contacts and discriminated the false ones, which resulted in an improvement of the majority of Kolinski-Bujnicki's protein models. In the modeling we tested different sets of predicted contact data submitted to the CASP6 server. According to our results, the best performing were the contacts with the accuracy balanced with the coverage, obtained either from the best two predictors only or by a consensus from as many predictors as possible.</p> <p>Conclusion</p> <p>Our tests have shown that theoretically predicted contacts can be very beneficial for protein structure prediction. Depending on the protein modeling method, a contact data set applied should be prepared with differently balanced coverage and accuracy of predicted contacts. Namely, high coverage of contact data is important for the model ranking and high accuracy for the folding simulations.</p

    Automated protein structure modeling in CASP9 by I‐TASSER pipeline combined with QUARK‐based ab initio folding and FG‐MD‐based structure refinement

    Full text link
    I‐TASSER is an automated pipeline for protein tertiary structure prediction using multiple threading alignments and iterative structure assembly simulations. In CASP9 experiments, two new algorithms, QUARK and fragment‐guided molecular dynamics (FG‐MD), were added to the I‐TASSER pipeline for improving the structural modeling accuracy. QUARK is a de novo structure prediction algorithm used for structure modeling of proteins that lack detectable template structures. For distantly homologous targets, QUARK models are found useful as a reference structure for selecting good threading alignments and guiding the I‐TASSER structure assembly simulations. FG‐MD is an atomic‐level structural refinement program that uses structural fragments collected from the PDB structures to guide molecular dynamics simulation and improve the local structure of predicted model, including hydrogen‐bonding networks, torsion angles, and steric clashes. Despite considerable progress in both the template‐based and template‐free structure modeling, significant improvements on protein target classification, domain parsing, model selection, and ab initio folding of β‐proteins are still needed to further improve the I‐TASSER pipeline. Proteins 2011; © 2011 Wiley‐Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/88077/1/23111_ftp.pd
    corecore