1,217 research outputs found

    CellPhy: accurate and fast probabilistic inference of single-cell phylogenies from scDNA-seq data

    Get PDF
    We introduce CellPhy, a maximum likelihood framework for inferring phylogenetic trees from somatic single-cell single-nucleotide variants. CellPhy leverages a finite-site Markov genotype model with 16 diploid states and considers amplification error and allelic dropout. We implement CellPhy into RAxML-NG, a widely used phylogenetic inference package that provides statistical confidence measurements and scales well on large datasets with hundreds or thousands of cells. Comprehensive simulations suggest that CellPhy is more robust to single-cell genomics errors and outperforms state-of-the-art methods under realistic scenarios, both in accuracy and speed. CellPhy is freely available a

    CellPhy: accurate and fast probabilistic inference of single-cell phylogenies from scDNA-seq data

    Get PDF
    We introduce CellPhy, a maximum likelihood framework for inferring phylogenetic trees from somatic single-cell single-nucleotide variants. CellPhy leverages a finite-site Markov genotype model with 16 diploid states and considers amplification error and allelic dropout. We implement CellPhy into RAxML-NG, a widely used phylogenetic inference package that provides statistical confidence measurements and scales well on large datasets with hundreds or thousands of cells. Comprehensive simulations suggest that CellPhy is more robust to single-cell genomics errors and outperforms state-of-the-art methods under realistic scenarios, both in accuracy and speed.European Research Council | Ref. ERC-617457- PHYLOCANCERAgencia Estatal de Investigación | Ref. PID2019-106247GB-I00Fundação para a Ciência e a Tecnologia | Ref. PTDC/BIA-EVL/32030/2017Xunta de Galici

    CNETML: maximum likelihood inference of phylogeny from copy number profiles of multiple samples

    Get PDF
    Phylogenetic trees based on copy number profiles from multiple samples of a patient are helpful to understand cancer evolution. Here, we develop a new maximum likelihood method, CNETML, to infer phylogenies from such data. CNETML is the first program to jointly infer the tree topology, node ages, and mutation rates from total copy numbers of longitudinal samples. Our extensive simulations suggest CNETML performs well on copy numbers relative to ploidy and under slight violation of model assumptions. The application of CNETML to real data generates results consistent with previous discoveries and provides novel early copy number events for further investigation

    Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations.

    Get PDF
    Several studies using genome-wide molecular techniques have reported various degrees of genetic heterogeneity between primary tumours and their distant metastases. However, it has been difficult to discern patterns of dissemination owing to the limited number of patients and available metastases. Here, we use phylogenetic techniques on data generated using whole-exome sequencing and copy number profiling of primary and multiple-matched metastatic tumours from ten autopsied patients to infer the evolutionary history of breast cancer progression. We observed two modes of disease progression. In some patients, all distant metastases cluster on a branch separate from their primary lesion. Clonal frequency analyses of somatic mutations show that the metastases have a monoclonal origin and descend from a common 'metastatic precursor'. Alternatively, multiple metastatic lesions are seeded from different clones present within the primary tumour. We further show that a metastasis can be horizontally cross-seeded. These findings provide insights into breast cancer dissemination

    CNETML: Maximum likelihood inference of phylogeny from copy number profiles of spatio-temporal samples

    Get PDF
    Phylogenetic trees based on copy number alterations (CNAs) for multi-region samples of a single cancer patient are helpful to understand the spatio-temporal evolution of cancers, especially in tumours driven by chromosomal instability. Due to the high cost of deep sequencing data, low-coverage data are more accessible in practice, which only allow the calling of (relative) total copy numbers due to the lower resolution. However, methods to reconstruct sample phylogenies from CNAs often use allele-specific copy numbers and those using total copy number are mostly distance matrix or maximum parsimony methods which do not handle temporal data or estimate mutation rates. In this work, we developed a new maximum likelihood method based on a novel evolutionary model of CNAs, CNETML, to infer phylogenies from spatio-temporal samples taken within a single patient. CNETML is the first program to jointly infer the tree topology, node ages, and mutation rates from total copy numbers when samples were taken at different time points. Our extensive simulations suggest CNETML performed well even on relative copy numbers with subclonal whole genome doubling events and under slight violation of model assumptions. The application of CNETML to real data from Barrett’s esophagus patients also generated consistent results with previous discoveries and novel early CNAs for further investigations

    Statistical Methods For Genomic And Transcriptomic Sequencing

    Get PDF
    Part 1: High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but CNV profiling from whole-exome sequencing (WES) is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for WES data. CODEX includes a Poisson latent factor model, which includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based segmentation procedure that explicitly models the count-based WES data. CODEX is compared to existing methods on germline CNV detection in HapMap samples using microarray-based gold standard and is further evaluated on 222 neuroblastoma samples with matched normal, with focus on somatic CNVs within the ATRX gene. Part 2: Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. We propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy, and compare against existing methods. Part 3: Allele-specific expression is traditionally studied by bulk RNA sequencing, which measures average expression across cells. Single-cell RNA sequencing (scRNA-seq) allows the comparison of expression distribution between the two alleles of a diploid organism and thus the characterization of allele-specific bursting. We propose SCALE to analyze genome-wide allele-specific bursting, with adjustment of technical variability. SCALE detects genes exhibiting allelic differences in bursting parameters, and genes whose alleles burst non-independently. We apply SCALE to mouse blastocyst and human fibroblast cells and find that, globally, cis control in gene expression overwhelmingly manifests as differences in burst frequency

    Inferring the clonal identity of single cells from RNA-seq data with Unique Molecular Identifiers

    Get PDF
    Cancer is an evolutionary disease, in which heterogeneous populations of tumor cells can emerge, proliferate, and disappear depending on selective and neutral processes. This principle has been observed in many studies of acute myeloid leukemia (AML), which is the most common blood cancer in adults. Clonal heterogeneity and evolution have been proposed to play a role in the high relapse rate of this type of cancer. In order to understand this feature, it is crucial to have adequate clinical and experimental models that can provide enough data to elucidate the evolutionary history of a tumor, such as patient-derived xenografts (PDX). These models can be combined with high-resolution sequencing technologies, such as single-cell RNA-seq, to provide a detailed view of the heterogeneity and molecular features of the tumor. However, adequate analytical tools have to be applied and developed in order to fully exploit such datasets. Here I present the analysis of the clonal heterogeneity of an AML patient and the corresponding PDX model, which was treated with multiple rounds of chemotherapy. This model allowed to study the response of the tumor populations to the pressure induced by the therapy, and the possible evolutionary forces behind it. Datasets for these AML samples were generated with multiple types of sequencing methods, one of which was single-cell RNA sequencing. To enable the analysis of somatic mutations and clonal populations in this kind of data, I developed a software package, which is capable of extracting and proofreading variant sequences by making use of Unique Molecular Identifiers (UMIs), which are sequence barcodes that allow to distinguish reads that come from PCR amplification duplicates. The benefits of employing this proofreading approach for variant calling and for inferring the clonal identity of single cells were demonstrated. Finally, I applied to the analysis of the single-cell data of the AML PDX samples that were treated with chemotherapy, as well as other datasets with UMI-based sequencing
    • …
    corecore