61 research outputs found

    Enhanced Recursive Reed-Muller Erasure Decoding

    Get PDF
    Recent work have shown that Reed-Muller (RM) codes achieve the erasure channel capacity. However, this performance is obtained with maximum-likelihood decoding which can be costly for practical applications. In this paper, we propose an encoding/decoding scheme for Reed-Muller codes on the packet erasure channel based on Plotkin construction. We present several improvements over the generic decoding. They allow, for a light cost, to compete with maximum-likelihood decoding performance, especially on high-rate codes, while significantly outperforming it in terms of speed

    Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting

    Full text link
    This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from sunflowers by allowing for scattered petal overlaps. The proof then follows from a boosting argument on the camellia petals with second moment Fourier analysis. For erasure channels, this gives a self-contained proof of the bit-error result in Kudekar et al.'17, without relying on sharp thresholds for monotone properties Friedgut-Kalai'96. For error channels, this gives a shortened proof of Reeves-Pfister'23 with an exponentially tighter bound, and a proof variant of the bit-error result in Abbe-Sandon'23. The control of the full (block) error probability still requires Abbe-Sandon'23 for RM codes
    corecore