1,349 research outputs found

    Redundancy Optimization Strategy for Hands-On Robotic Surgery

    Get PDF
    During hands-on cooperative surgery, the use of a redundant robot allows to address encumbrance issues in the Operating Room (OR), which can occur due to the presence of large medical instrumentation, such as the surgical microscope. This work presents a new Null Space Optimization (NSO) strategy to constraint the position of the manipulator’s elbow within predefined range of motions, according to the spatial requirements of the specific procedure, also taking into account the physical joint limits of the robotic assistant. The proposed strategy was applied to the 7 degrees of freedom (dof) lightweight robot LWR4+. The performance of the NSO was compared to two state-of-the-art null space optimization strategies, i.e. damped posture and fixed optimal posture, over a pool of three non-expert users in both strict (20deg) and negligible (100deg) angular encumbrance limitations. The NSO strategy was proved versatile in providing wide elbow mobility together with safe distance from relevant continuity null space boundaries, guaranteeing smooth guidance trajectories. Future works would be performed in order to evaluate the potential feasibility of NSO in a real surgical scenario

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Safe Robotic Grasping: Minimum Impact-Force Grasp Selection

    Full text link
    This paper addresses the problem of selecting from a choice of possible grasps, so that impact forces will be minimised if a collision occurs while the robot is moving the grasped object along a post-grasp trajectory. Such considerations are important for safety in human-robot interaction, where even a certified "human-safe" (e.g. compliant) arm may become hazardous once it grasps and begins moving an object, which may have significant mass, sharp edges or other dangers. Additionally, minimising collision forces is critical to preserving the longevity of robots which operate in uncertain and hazardous environments, e.g. robots deployed for nuclear decommissioning, where removing a damaged robot from a contaminated zone for repairs may be extremely difficult and costly. Also, unwanted collisions between a robot and critical infrastructure (e.g. pipework) in such high-consequence environments can be disastrous. In this paper, we investigate how the safety of the post-grasp motion can be considered during the pre-grasp approach phase, so that the selected grasp is optimal in terms applying minimum impact forces if a collision occurs during a desired post-grasp manipulation. We build on the methods of augmented robot-object dynamics models and "effective mass" and propose a method for combining these concepts with modern grasp and trajectory planners, to enable the robot to achieve a grasp which maximises the safety of the post-grasp trajectory, by minimising potential collision forces. We demonstrate the effectiveness of our approach through several experiments with both simulated and real robots.Comment: To be appeared in IEEE/RAS IROS 201

    Shared control for natural motion and safety in hands-on robotic surgery

    Get PDF
    Hands-on robotic surgery is where the surgeon controls the tool's motion by applying forces and torques to the robot holding the tool, allowing the robot-environment interaction to be felt though the tool itself. To further improve results, shared control strategies are used to combine the strengths of the surgeon with those of the robot. One such strategy is active constraints, which prevent motion into regions deemed unsafe or unnecessary. While research in active constraints on rigid anatomy has been well-established, limited work on dynamic active constraints (DACs) for deformable soft tissue has been performed, particularly on strategies which handle multiple sensing modalities. In addition, attaching the tool to the robot imposes the end effector dynamics onto the surgeon, reducing dexterity and increasing fatigue. Current control policies on these systems only compensate for gravity, ignoring other dynamic effects. This thesis presents several research contributions to shared control in hands-on robotic surgery, which create a more natural motion for the surgeon and expand the usage of DACs to point clouds. A novel null-space based optimization technique has been developed which minimizes the end effector friction, mass, and inertia of redundant robots, creating a more natural motion, one which is closer to the feeling of the tool unattached to the robot. By operating in the null-space, the surgeon is left in full control of the procedure. A novel DACs approach has also been developed, which operates on point clouds. This allows its application to various sensing technologies, such as 3D cameras or CT scans and, therefore, various surgeries. Experimental validation in point-to-point motion trials and a virtual reality ultrasound scenario demonstrate a reduction in work when maneuvering the tool and improvements in accuracy and speed when performing virtual ultrasound scans. Overall, the results suggest that these techniques could increase the ease of use for the surgeon and improve patient safety.Open Acces

    Deep neural network approach in human-like redundancy optimization for anthropomorphic manipulators

    Get PDF
    © 2013 IEEE. Human-like behavior has emerged in the robotics area for improving the quality of Human-Robot Interaction (HRI). For the human-like behavior imitation, the kinematic mapping between a human arm and robot manipulator is one of the popular solutions. To fulfill this requirement, a reconstruction method called swivel motion was adopted to achieve human-like imitation. This approach aims at modeling the regression relationship between robot pose and swivel motion angle. Then it reaches the human-like swivel motion using its redundant degrees of the manipulator. This characteristic holds for most of the redundant anthropomorphic robots. Although artificial neural network (ANN) based approaches show moderate robustness, the predictive performance is limited. In this paper, we propose a novel deep convolutional neural network (DCNN) structure for reconstruction enhancement and reducing online prediction time. Finally, we utilized the trained DCNN model for managing redundancy control a 7 DoFs anthropomorphic robot arm (LWR4+, KUKA, Germany) for validation. A demonstration is presented to show the human-like behavior on the anthropomorphic manipulator. The proposed approach can also be applied to control other anthropomorphic robot manipulators in industry area or biomedical engineering

    Improved human-robot collaborative control of redundant robot for teleoperated minimally invasive surgery

    Get PDF
    © 2016 IEEE. An improved human-robot collaborative control scheme is proposed in a teleoperated minimally invasive surgery scenario, based on a hierarchical operational space formulation of a seven-degree-of-freedom redundant robot. Redundancy is exploited to guarantee a remote center of motion (RCM) constraint and to provide a compliant behavior for the medical staff. Based on the implemented hierarchical control framework, an RCM constraint and a safe constraint are applied to the null-space motion to achieve the surgical tasks with human-robot interaction. Due to the physical interactions, safety and accuracy of the surgery may be affected. The control framework integrates an adaptive compensator to enhance the accuracy of the surgical tip and to maintain the RCM constraint in a decoupled way avoiding any physical interactions. The system performance is verified on a patient phantom. Compared with the methods proposed in the literature, results show that the accuracy of both the RCM constraint and the surgical tip is improved. The compliant swivel motion of the robot arm is also constrained in a defined area, and the interaction force on the abdominal wall becomes smaller

    On neuromechanical approaches for the study of biological and robotic grasp and manipulation

    Get PDF
    abstract: Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.The electronic version of this article is the complete one and can be found online at: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0305-

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects
    • …
    corecore