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Abstract

Hands-on robotic surgery is where the surgeon controls the tool’s motion by applying forces

and torques to the robot holding the tool, allowing the robot-environment interaction to be

felt though the tool itself. To further improve results, shared control strategies are used to

combine the strengths of the surgeon with those of the robot. One such strategy is active

constraints, which prevent motion into regions deemed unsafe or unnecessary. While research in

active constraints on rigid anatomy has been well-established, limited work on dynamic active

constraints (DACs) for deformable soft tissue has been performed, particularly on strategies

which handle multiple sensing modalities. In addition, attaching the tool to the robot imposes

the end effector dynamics onto the surgeon, reducing dexterity and increasing fatigue. Current

control policies on these systems only compensate for gravity, ignoring other dynamic effects.

This thesis presents several research contributions to shared control in hands-on robotic surgery,

which create a more natural motion for the surgeon and expand the usage of DACs to point

clouds. A novel null-space based optimization technique has been developed which minimizes

the end effector friction, mass, and inertia of redundant robots, creating a more natural motion,

one which is closer to the feeling of the tool unattached to the robot. By operating in the

null-space, the surgeon is left in full control of the procedure. A novel DACs approach has also

been developed, which operates on point clouds. This allows its application to various sensing

technologies, such as 3D cameras or CT scans and, therefore, various surgeries. Experimental

validation in point-to-point motion trials and a virtual reality ultrasound scenario demonstrate

a reduction in work when maneuvering the tool and improvements in accuracy and speed when

performing virtual ultrasound scans. Overall, the results suggest that these techniques could

increase the ease of use for the surgeon and improve patient safety.
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Chapter 1

Introduction

1.1 Motivation

Approaches to surgical robotics can be subdivided into three main areas: autonomous, where

the robot moves independently of the surgeon for at least part of the procedure; teleoperative,

where the surgeon controls the robot through a remote console; and hands-on robotic surgery,

where the surgical tool attached to the end effector of the robot is maneuvered directly by forces

and torques applied by the surgeon to the tool.

Autonomous surgical systems include those in which the robot is a passive tool holder, and

those in which it autonomously interacts with the patient. The first robotic assisted surgery,

performed by [Kwoh et al., 1988], used an autonomous industrial robot to position a surgical

needle guide for brain tumor biopsy, replacing the manually-adjustable stereotactic frame. To

minimise potential brain damage, a probe needs to be inserted on a straight-line path, avoiding

major blood vessels and other vital parts of the brain. Historically, the surgeon localised the

area to be operated on, attached the stereotactic frame to the skull of the patient and manually

adjusted the angle of the tool, which was calculated from a computerised tomographic (CT)

image of the patient. Like the stereotactic frame, this autonomous surgical robot was a posi-

tioning guide -it played no role in tissue removal-, but it offered quicker targeting and improved

accuracy. A commercially available autonomous clinical neurosurgical robot of this type is the

Neuromate (Renishaw Plc.) [Benabid et al., 1987] [Li et al., 2002].
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Autonomous surgical robots which interact with the patient, such as the Probot [Davies et al.,

1991] [Harris et al., 1997], which targeted prostatectomies, and the ROBODOC [Paul et al.,

1992] [Pransky, 1997] and the CASPAR [Siebert et al., 2002], which targeted lower limb arthro-

plasty, also aim to improve accuracy in surgical resections. However, autonomous systems

which remove tissue from the patient leave many open questions concerning safety, liability,

and ethics [Davies et al., 2004]. Removing the surgeon from the procedure can also lead to

anxiety for clinical regulators, surgeons, and patients [Davies, 1996].

For these reasons, the ROBODOC is the only autonomous robotic system which removes tissue

to have seen widespread commercialisation. Due to their simplicity, passive tool holder robots

have been more widely commercialised in systems such as the Pathfinder (Prosurgics Inc.) and

Spine Assist (Mazor Robotics Rtd.), however, they are limited to positioning tasks and therefore,

cannot be applied to more general surgeries.

Teleoperative robotic surgery, whereby the surgeon controls the robot remotely via a master

console, allows for greater surgeon involvement than autonomous systems. Commercial systems,

such as the da Vinci Surgical System (Intuitive Surgical Inc.) and the Sensei X (Hanson Med-

ical Inc.), have made robotic laparoscopic and endovascular surgery possible. This minimally

invasive technique, where surgery is performed through a small incision, has been demonstrated

to reduce pain and loss of function following surgery as compared with conventional proce-

dures [Alexander, 1997].

However, by controlling the robot remotely, the forces and torques of the tool’s interaction with

the surgical environment are lost. The lack of this haptic feedback has been demonstrated to

increase average force application to the tissue by at least 50% and peak force by a factor of

2 [Wagner et al., 2002]. In addition, a lack of force feedback has been shown to result in an

increase in gallbladder perforation in laparoscopic cholecystectomy [Joice et al., 1998] and an

increase in suture ruptures in anastomosis in porcine intestine [Ruurda et al., 2004].

To restore this haptic feedback in telemanipulation, research systems such as the Neuroarm

[Sutherland et al., 2013] use a force/torque sensor on the slave device and replicate the sensed

wrench at the master console. However, challenges still remain. The force/torque sensing

solution must be able to undergo the harsh sterilisation procedures performed using heat and/or
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chemicals, adding to the already steep costs of force/torques sensors [Okamura et al., 2010].

Additionally, research is ongoing in ensuring stability in these systems [Okamura, 2009] and, to

date, no commercialised teleoperative system provides haptic feedback.

Hands-on robotic surgery, a term first coined in [Davies et al., 1999], is an alternative approach in

which the surgical tool attached to the end effector of the robot is maneuvered directly by forces

and torques applied by the surgeon to the tool itself. This type of strategy is advantageous, as

the forces and torques of the interaction between the robot and the surgical environment can

be felt directly through the instrument, without the need for an additional force/torque sensor

at the end effector. This natural feedback can be used by the surgeon to more precisely apply

forces and torques to the hard or soft target tissue. This allows hands-on robotic surgery to

avoid the above mentioned issues with stability and sterilisability in providing haptic feedback

in teleoperative setups.

In addition, the surgeon is more involved in the procedure as compared to autonomous robotic

solutions, which can increase its acceptability among surgeons and regulatory bodies [Davies

et al., 2004]. The robot only applies control to ensure safety or accuracy through active con-

straints, which only limit motion when the tools are brought into regions which have been

deemed unsafe or unnecessary for the surgery.

Current clinical applications of active constraints in systems such as the Rio (Mako Surgical

Corp.) are limited to rigid bone surgeries, as constraint representations are fixed and intra-

operative tracking and registration is simple in such scenarios. To expand the benefits of active

constraints in accuracy and safety to soft tissue surgery, research into dynamic active constraints,

which can protect deforming anatomy, has recently begun.

At present, dynamic active constraints strategies are restricted to particular representations

of the anatomy’s geometry or place limits on the motion of the deforming region, preventing

their applicability to general surgical procedures. Deformation of soft tissue due to tool inter-

actions and patient breathing and heart beat can take arbitrary shape and therefore, achieving

a constraint representation that is able to handle unpredictable deformations is one of the main

challenges to making hands-on robotic surgery more widely used.

In addition, the deformations of the soft tissue anatomy must be tracked intra-operatively
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to ensure precise application of the constraints to aid the surgeon. Research is ongoing into

various techniques and sensing modalities for real-time nonrigid registration and tracking of

deformable tissue using ultrasound [Weon et al., 2015] and stereo camera imaging [Faria et al.,

2014]. Additionally, the ability to use a particular tracking strategy is dependent on the type

of surgery to be performed. As a result, the current limitation on the constraint representation

in dynamic active constraints strategies further prevents their general applicability to surgery,

as they are unable to handle various tracking solutions.

Another problem in hands-on robotic surgery is that, by attaching the surgical instrument to

the tool point of the robot, the dynamics of the robot at the end effector are imposed on the

surgeon when maneuvering the tool. These dynamics can include the mass and inertia of the

robot links, joint friction, gear backlash, and other disturbances, such as interactions with the

sterile draping. The imposition of additional dynamics can reduce the surgeon’s dexterity and

increase fatigue over long procedures which range from 40 to 120 minutes [Lang et al., 2011] for

current hands-on surgeries.

1.2 Thesis Aim

The difficult interaction between the robot and the surgeon in hands-on robotic surgery and

its confinement to rigid bone procedures, are some of the most important issues limiting the

acceptance of this strategy and its expansion to more types of surgery. Hence, the aim of this

thesis is to develop robot control strategies that can allow surgeons to interact with the robot in

a way that more closely resembles his or her interaction with the tool unattached to the robot,

and active constraints that can handle the unpredictable deformations found in soft tissue, and

can be applied using various tracking modalities and therefore, to a variety of procedures.

More specifically, this thesis aims to create a more natural motion for the surgeon by reducing

the dynamics of the robot at the end effector using the redundant degrees-of-freedom of the

many robot kinematic configurations in the literature. Redundant robots are those in which

there are more joints than are necessary to achieve an arbitrary pose in space. Using a null-

space control strategy, these redundant degrees-of-freedom can be varied without affecting the
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tool pose at the end effector. Additionally, the tool point dynamics are a function of the joint

configuration of the robot and change based on the position of the redundancy. Therefore,

by using a null-space based natural motion control strategy, the end effector dynamics can be

reduced in order to decrease fatigue and restore dexterity for the surgeon in hands-on robotic

surgery.

Secondly, this thesis aims to create a form of dynamic active constraints for hands-on robotic

surgery which does not require a mesh representation and instead can generate constraints

directly from streaming point clouds. Such a strategy can be applied to general tracking modal-

ities as many of these techniques can be reduced to point clouds and therefore, the methodology

could be applied to many type of soft tissue surgeries. Additionally, by generating a constraint

surface from point clouds, the constraint representation can take on arbitrary deformations and

motions, where the main bottleneck becomes the refresh rate of point cloud information.

1.3 Thesis Contributions

Research performed towards these aims has resulted in three main contributions;

A novel redundancy optimisation controller has been developed, which lessens the impact of

the dynamics of the robot at the end effector on the surgeon by reducing the mass, inertia,

friction force, and friction torque at the tool point. By lessening the effect of these dynamics,

the feeling of the surgeon’s interaction with the robot is made more natural, closer to the

surgical instrument unattached to the robot, thereby, restoring dexterity and reducing fatigue.

The optimisation is performed in the null-space of the end effector as to ensure the controller

does not impact the surgeon’s desired tool commands, leaving the surgeon in full control of the

surgery at hand. This research is presented in Chapters 3 and 4.

A new dynamic active constraints approach for hands-on robotic surgery has been proposed

which creates an implicit constraint surface from a point cloud representation of the region to

be protected using the metaball approach from computer graphics. By generating the dynamic

active constraints from point clouds, this methodology can be applied to general soft tissue

tracking modalities, thereby expanding the applicability of the technique to a variety of surgical
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procedures. In addition, the dynamics of the robot have been incorporated into the enforcement

of the constraint. These dynamics are necessary in hands-on robotic surgery to ensure an

appropriate response to the surgeon’s force and torques. This research is presented in Chapter

5.

A virtual reality environment for hands-on robotic surgery has been created, which allows for

the testing of shared control strategies for dynamic soft tissue in a more immersive setting,

while still preserving the true interaction between the surgeon and the robot. Bringing surgical

robotic control research to a clinical setting is a long and arduous process due to necessary safety

regulations and phantoms which can exhibit complex soft tissue deformations are difficult to

fabricate. Conversely, a virtual setup can provide a safe and versatile way in which to test

novel strategies. Registration of the robot with the virtual surgical theater, such that the

robot’s position in the virtual environment matches that in the real world, allows the complex

dynamic interactions between the physical hardware, the control strategy, and the surgeon to

be preserved. In addition, the forces and torques can be applied to simulate the interaction of

the robot with the virtual soft tissue. This research is presented in Chapter 6.

As a result of this research, currently, two peer-reviewed papers have been published, a workshop

presentation has given, and a journal paper is currently under second review:

J. G. Petersen and F. Rodriguez y Baena, “Mass and friction optimization for natural

motion in hands-on robotic surgery”, IEEE Transactions on Robotics, Under Review.

J. G. Petersen and F. Rodriguez y Baena, “Mass and inertia optimization for natural

motion in hands-on robotic surgery”, in Proceedings of the IEEE International Conference

on Intelligent Robots and Systems, pp. 4284-4289, Sept. 2014.

J. G. Petersen and F. Rodriguez y Baena, “A dynamic active constraints approach for

hands-on robotic surgery”, in Proceedings of the IEEE International Conference on Intel-

ligent Robots and Systems, pp. 1966-1971, Nov. 2013.

J. G. Petersen and F. Rodriguez y Baena, “Shared control for hands-on robotic surgery”,

IEEE International Conference on Intelligent Robots and Systems Workshop on Cognitive

Surgical Robotics, Nov. 2013.
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1.4 Chapter Summaries

In Chapter 2, a comprehensive literature review of the state-of-the art in shared control for

general and surgical robotics is presented. Additionally, a categorical structure for classifying

various cooperative control strategies is developed and applied throughout the survey.

In Chapter 3, a strategy to reduce the impact of the end effector dynamics on the surgeon to

create a more natural motion is investigated. Optimisation criteria for reducing the mass and

inertia at the tool point are developed and a control strategy to perform the optimisation in

the null-space of the end effector to ensure the surgeon’s desired commands are not affected,

is shown. Extensive simulation work on a planar robot demonstrates the effectiveness of the

proposed methodology in reducing the mass and inertia over the workspace of a planar robot.

In addition, compatibility of mass and inertia optimisation joint configurations and the impact

of modeling uncertainty on the optimisation results are investigated. Finally, simulated trials

demonstrate a reduction in the time required to follow a trajectory as compared with classical

redundancy resolution schemes.

In Chapter 4, the natural motion strategy of Chapter 3 is extended to optimise the projection

of the joint friction onto the end effector. Simulations of a seven degree-of-freedom lightweight

robot demonstrate the efficacy of the proposed mass, inertia, friction force, and friction torque

optimisation techniques over the workspace of the robot. Additionally, combined optimisations

of mass and friction force are considered. Through experimental user trials, the effectiveness

of these strategies in producing a more natural motion for the user over standard surgical

redundancy control strategies is shown.

In Chapter 5, a dynamic active constraints approach, which can directly generate a constraint

surface from point cloud data and incorporates the kinematics and dynamics of the robot, is

developed. Null-space control is used to allow unimpeded motion tangent to the constraint

surface and for the simultaneous application of natural motion and dynamics active constraints

in Chapter 6. The proposed methodology is demonstrated in simulation on constraint surfaces

generated from two different points clouds, one in which the point cloud’s motion is unknown

and the other in which the point cloud’s motion is known (i.e. can be predicted). Lastly, an



CHAPTER 1. INTRODUCTION 24

experiment using a dynamic brain phantom and a lightweight seven degree-of-freedom robot is

used to demonstrate the feasibility of the proposed technique on physical hardware.

In Chapter 6, a virtual reality environment for testing hands-on robotic surgery control tech-

niques is demonstrated, which utilises a physical robot registered to a virtual surgical theater to

preserve the dynamic iteration between the robot, the surgeon, and the control strategy, while

providing force and torque feedback based on virtual interactions with dynamic soft tissue.

Within this setup, the dynamic active constraints and natural motion of Chapters 3, 4, and

5 are demonstrated working simultaneously in a chest ultrasound scenario. The results show

efficacy of the dynamic active constraints in improving the user’s accuracy and ensure safety

for the patient when performing ultrasound scans.

In Chapter 7, conclusions are drawn about the thesis contributions with regards to the stated

research aims. Additionally, I present and discuss the limitations of the work presented here,

and areas for future research are identified.



Chapter 2

Shared/Cooperative Control in

Robotics

This chapter presents a thorough review of the published literature on shared control in robotics.

Portions of this chapter are edited versions of the work published in:

J. G. Petersen and F. Rodriguez y Baena, “Mass and friction optimization for natural

motion in hands-on robotic surgery”, IEEE Transactions on Robotics, Under Review.

J. G. Petersen and F. Rodriguez y Baena, “Mass and inertia optimization for natural

motion in hands-on robotic surgery”, in Proceedings of the IEEE International Conference

on Intelligent Robots and Systems, pp. 4284-4289, Sept. 2014. ➞2014 IEEE.

J. G. Petersen and F. Rodriguez y Baena, “A dynamic active constraints approach for

hands-on robotic surgery”, in Proceedings of the IEEE International Conference on Intel-

ligent Robots and Systems, pp. 1966-1971, Nov. 2013. ➞2013 IEEE.

2.1 Introduction

Shared control strategies, also known as cooperative or collaborative control strategies, are those

in which the user and robot simultaneously enact control policies to achieve a task. The aim

of these type of methodologies is to perform the task better than the device or user can alone,
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by combining the benefits of both the human and robot. In general, the human has a better

overall understanding of the task to be completed and thus, is more trusted to perform the

most critical tasks and make high level decisions about the workflow or any plan modifications.

On the other hand, robots are more accurate and precise due to better spatial analysis and

registration. Additionally, robots are much stronger than humans and do not tire over lengthy

tasks. Cooperative control has been demonstrated to improve many aspects of various functions,

both in medicine and in general robotics, including reducing the user’s mental load and fatigue,

as well as the time taken to complete a task, and increasing accuracy and precision.

This literature review aims to provide an overview of the current state-of-the-art research in

shared control for robotics, by first presenting a categorical structure to classify various co-

operative control strategies and then, examining shared control’s usage in general robotics.

Finally, present clinical and research applications of cooperative control in surgical systems are

detailed.

2.2 Types of Shared Control

Shared control strategies can be divided into several areas, each providing a different method

for mixing the control of the human and the robot to achieve better overall results in the desired

task. However, these methodologies are not mutually exclusive and can be combined to draw on

the individual benefits of each control type. Four categories for shared control have been devised;

degree-of-freedom sharing, input modification, space sharing and active guidance.

2.2.1 Degree-of-Freedom Sharing

Degree-of-freedom sharing cooperative control strategies are those in which the control policies

of the user and the robot function in orthogonal spaces, such that the control actions of the

two do not directly affect one another. There are two main ways in which these strategies are

implemented.

The first method uses the robot to constrain particular degrees-of-freedom of the end effector

while the user retains control of the remaining motions. In this way, the robot can position
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a majority of the degrees-of-freedom of the necessary tool pose and leave the remaining, often

critical degrees-of-freedom to the user. Performing a task this way can increase accuracy and/or

decrease task completion time as compared with performing the task by hand or using a man-

ually adjusted fixture. Leaving the user in control of the speed and direction of the task has

increased acceptance of these types of systems, as compared to autonomous robots, particularly

in surgical systems [Davies et al., 2004]. For this form of degree-of-freedom sharing to function

precisely, accurate calibration and registration of the robot to the target must be performed

to ensure the robot is properly aligned and constraining the correct degrees of freedom to a

sufficient level of accuracy for the desired task.

The second implementation for degree-of-freedom sharing is null-space control methodologies on

redundant robots. Redundant robots mimic human capabilities in that they have more degrees-

of-freedom than is necessary to achieve any pose at the end effector in three-dimensional space.

Redundancy is most commonly used to avoid obstacles in the way of the body of the robot

without affecting the main task at the tool point [Maciejewski and Klein, 1985] [Minami and

Takahara, 2003] [Park et al., 2008].

In this form of degree-of-freedom sharing, the robot reconfigures the redundant degrees-of-

freedom without affecting the surgeon’s desired motions and forces at the end effector, again

leaving the surgeon fully in control of the procedure. These methodologies aim to improve

the user’s performance in the tool point task by taking advantage of the fact that end effector

performance in aspects such as force and velocity transmission and effective mass varies based

on the position of the redundant degrees-of-freedom.

In redundant robots, the kinematic model in admittance controlled systems and the kinematic

and dynamic models in impedance controlled systems must be as accurate as possible to ensure

that the appropriate null-space is computed. An inaccurate null-space computation can result in

torques intended for the null-space to affect the end effector, disrupting the user’s command of

the tool. Additionally, inaccurate modeling can reduce the intended improvements in the user’s

performance, as the characteristics at the end effector must be computed from the model.
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2.2.2 Input Modification

Input modification is used to alter the user’s commanded forces, torques, velocities, and/or

positions to improve the performance of the user in the task at hand. The simplest form of

input modification is used in impedance controlled devices to compensate for gravity’s effect on

the robot and tool. As these systems are typically back-drivable (a force or torque on a link of

the robot can cause a rotation/translation of its driving motor), they require this control as a

baseline to ensure the robot does not fall over during use. This strategy can be thought of as a

constant additional force and torque input added to the user’s desired commands.

More complicated force and torque input modification strategies focus on scaling the user’s

applied wrench. Scaling up these wrenches can improve the user’s ability to manipulate heavy

objects. However, careful consideration must be taken to minimise the scaling up of noise to en-

sure stability. Conversely, methodologies which scale down the user’s wrench can increase safety

by preventing strong forces and torques from being applied to delicate environments.

Similarly, motion scaling can be used in teleoperative scenarios to modify the user’s command

input such that larger movements by the user correspond to proportionally smaller movements

of the robot. By doing so, small, delicate tasks can be performed at a scale more natural for

the user, resulting in higher accuracy [Prasad et al., 2004].

In environments where there is some periodic and predictable component to the motion of the

target, this periodicity can be added to the user’s desired motion, allowing him or her to act

on an effectively stationary target. In addition to potentially increasing the accuracy of the

task, this shared control strategy can also reduce the user’s mental load, as he or she no longer

needs to add this component of motion manually. This technique can additionally enable tasks

to be performed on fast, periodic targets which normally would be very difficult or impossible

to work on unassisted [Trejos et al., 1999]. Accuracy in predicting the target motion is a key

requirement of this type of technique, since poor prediction could result in the robot colliding

and damaging the target.

In the frequency domain, input modification is used to filter the commanded position of the

user. For instance, by removing the high frequency components of the user’s motion, the impact
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of hand tremor on the position of the tool point can be reduced. Additionally, in tasks which

operate near the order of the amplitude of the noise and tremor in the signal, frequency based

techniques can be used to identify intended user motions from involuntary ones, which can

increase accuracy in tasks on the micro-scale. Frequency filtering techniques must take care not

to remove frequencies which the user is controlling with and, hence, degrade controllability of

the tool. In addition, in systems which utilise user intention identification to determine when

and where to move the tool, careful application must be used, as a false positive could cause

the system to move against the surgeon’s wishes and harm the patient.

2.2.3 Space Sharing

Space sharing cooperative control strategies define free spaces where the user can openly move

and constrained spaces where the controller directs the user back to the free space region. Space

sharing is used to prevent the tool from entering hazardous areas or to assist in training the user

to work in a particular area. Since an absolute position constraint is very difficult to execute

in practice, the level to which the tool can penetrate into the constrained space varies upon

application and the control system used. The boundary of the constrained region is often offset

from the damaging region to decrease the possibility of the tool reaching the tissue.

To ensure the free and constrained spaces align with the desired setup, the robot must be

properly registered to the task space at sufficient accuracy for the task at hand. Inaccurate

registration can result in the user being able to freely move into spaces which are considered

dangerous and to be constrained from work areas which are necessary to complete the desired

task. Furthermore, in scenarios where the environment is dynamic, such as in soft tissue surgery,

the spaces can change in time and must be precisely tracked and updated throughout the

procedure.

2.2.4 Active Guidance

Active guidance shared control methodologies are those which apply forces and torques to the

user in order to guide them along a corridor, trajectory, or towards a point. Of the shared

control categories presented here, this technique is the most similar to autonomous robotics.
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As such, it is more commonly used in training scenarios, due to the complicated safety, legal,

and ethical concerns which can arise when using these strategies on patients. Within training

environments, active guidance is used to lead a trainee in the proper movement and forces

necessary for the specific application.

2.3 Shared Control in General Robotics

In this section, I will focus on shared control in general robotics, that is, strategies the primary

application of which has been presented as non-clinical. By doing so, I aim to evaluate the

suitability of non-medical control strategies for potential surgical use, thereby expanding the

range of methods which can be applied to robotic surgery.

2.3.1 Active Constraints in General Robotics

Active constraints, also known as virtual fixtures, were first developed by [Rosenberg, 1992]

as a perceptual overlay designed to “reduce (the) mental processing required to perform the

task, reduce the work load of certain sensory modalities, and most of all allow precision and

performance to exceed natural human abilities” (pp. 3). Analogous to mechanical fixtures,

which physically limit tool motion, active constraints use haptic feedback to virtually impose

constraints on the motion of the user. Virtual implementation allows for the constraints to be

applied in a variety of complex situations where physical fixtures would normally be difficult to

implement, including small scale tasks. In addition, virtual fixtures can be changed much more

easily than mechanical fixtures, to adapt to new tasks. Recent research into dynamic active

constraints also demonstrates fixtures which change shape to accommodate environments which

deform and shift during the task [Gibo et al., 2009] [Rydén and Chizeck, 2013].

Active constraints can be subdivided into two types: forbidden region active constraints and

guidance active constraints. Forbidden region active constraints are space sharing control strate-

gies which restrict the tool’s motion into particular regions of the workspace. Guidance con-

straints, which can be either space sharing or active guidance cooperative control methodologies,

encourage the user to move along a specific surface or path, or towards a point. In space shar-
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ing form, guidance constraints function similarly to forbidden region constraints, where the free

space is a path or point, and forces are applied to return the user to the path or point [Abbott

et al., 2007]. Active guidance methodologies apply forces to direct tool motion along a desired

path or surface [Pezzementi et al., 2007] [Castillo-Cruces and Wahrburg, 2010].

However, a recent survey on virtual fixtures in both general and medical applications found

active guidance was rarely used [Bowyer et al., 2014]. Particularly in surgery, guidance con-

straints have open issues about liability and safety. Therefore, this section will focus on some

of the recent developments in forbidden region active constraints research in general robotics.

A more complete review of active constraints/virtual fixtures can be found in [Bowyer et al.,

2014].

Many virtual fixtures implementations use virtual springs to enforce the motion constraint [Ho

et al., 1995] [Turro et al., 2001] [Gibo et al., 2009]. These springs apply a force which is

proportional to the distance between the tool point and the constraint surface in order to

provide a simple yet effective strategy for directing the user back to the free space region.

However, these constraints store elastic potential energy as the tool enters the constraint region

and releasing the device can cause unintentional and potentially dangerous motions from the

release of this energy. In addition, these types of constraints require a penetration into the

constrained region before any opposing action is taken.

The work of [Kikuuwe et al., 2008] aims to overcome these issues by creating constraints which

use a model of plasticity. In plasticity, the controller provides a stiff collision at the constraint

boundary to prevent motion into the constraints up to a certain force level. Past this force

threshold, the tool can enter the constraint, however, the controller in the constraint only dissi-

pates energy. While direct application of this type of strategy is discontinuous and, hence, can

cause instabilities, a discretised proxy-based method for plasticity was developed in [Kikuuwe

et al., 2006] and demonstrated on impedance and admittance controlled devices in [Kikuuwe

et al., 2008]. However, a comparison of this plasticity based method was not made with other

virtual fixture techniques.

Similar work on reducing constraint penetration using passive means was performed by [Hen-

nekens et al., 2008]. Using a previously developed method [Constantinescu et al., 2005], con-
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straint impulse forces based on the current velocity, coupled with a PD controller to reduce drift

in the constraint, were applied at the boundary and inside the constraint. Experimental results

demonstrated a decrease in the penetration depth compared to a spring-damper constraint and

subjects reported sensing the contact as a plastic collision.

The recent widespread availability of low cost three-dimensional (3D) cameras and range finders

has enabled large scale point cloud representations of environments to be quickly acquired. Using

these streaming point clouds, research into forbidden region virtual fixtures has been performed

for haptic rendering in teleoperative scenarios.

Implicit surfaces were used by [Leeper et al., 2012] to generate a smooth representation of the

point cloud data for haptic rendering. The surfaces were generated through two weighting

methods, metaballs [Blinn, 1982] and point-sets [Adamson and Alexa, 2003], and their surface

normals were computed via the gradient. Constraints were imposed based on the distance to

the zero set of the implicit surface and in the direction of the gradient.

An alternative proxy-based method for haptic rendering of point clouds was presented in [Rydén

et al., 2011]. When the user commanded the haptic device to move through a point cloud, the

haptic proxy would not penetrate the point cloud and a force would be applied to the master in

the direction of the proxy and proportional to the distance between the two. Directly using the

point cloud points allowed for more accurate representations of rough surfaces and corners, but

smooth surfaces had increased roughness due to noise in the data. Further developments to this

method included the ability to constrain to an offset from the point cloud [Rydén and Chizeck,

2012] and an extension to six degrees-of-freedom constraints [Rydén and Chizeck, 2013].

To date, active constraints in general robotics that can handle dynamic environments have been

limited to methodologies for teleoperation and haptic rendering, which allow for the haptic

master device and slave robot to be decoupled. This simplifies the issue of forbidden region

protection to position controlling the slave. Hands-on scenarios require an approach which

considers the kinematics and dynamics of the robot in order to provide an appropriate impedance

when constrained and a compliant response otherwise, as the surgeon is directly applying forces

to the device.
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2.3.2 Power Assist Systems

Power assist systems use input modification shared control strategies to allow the human user

to more easily lift and/or carry heavy objects. Due to the limitations in their applicability to

surgery, which will be discussed below, a complete review of power assist systems has not been

performed and I refer the reader to [Gopura et al., 2011] and [Lee et al., 2012].

Power assist systems typically attempt to detect user intent to move using force sensors [Rah-

man and Ikeura, 2010] [Aguirre-Ollinger et al., 2012] and some combine this with electromyo-

graphic (EMG) sensors attached the skin to estimate user stiffness and damping [Gopura et al.,

2009] [Farina and Merletti, 2000]. In both cases, these methods scale the user’s applied forces,

effectively reducing the mass of the object being lifted or maneuvered.

In [Rahman and Ikeura, 2010], it was shown that, in collaborative lifting scenarios, users would

tend to apply too much force to the object. This was because, in the small time between the

start of the user’s push and the controller acting, they could sense the full weight of the object.

These peak forces were reduced by using an exponentially decreasing effective mass impedance

model.

The Berkeley Lower Extremity Exoskeleton used positive feedback of the system dynamics

to amplify the system’s sensitivity to external forces, without the use of force/torque sensors

[Kazerooni et al., 2005]. However, this amplification treats all forces equally, such that external

disturbances cause the system to respond in the same way as the user’s commands. Additionally,

the control strategy was shown to be very sensitive to modeling uncertainty and the stability

of the system was shown to be less robust using the controller [Zoss et al., 2005].

Amplification of the user’s forces through control can have a potentially dangerous effect. When

a controller attempts to emulate dynamics that differ significantly from the intrinsic hardware

dynamics, an increased risk of coupled or contact instability arises [Colgate and Hogan, 1989]

[Buerger and Hogan, 2007]. In addition, as shown in [Kazerooni and Snyder, 1995], a very

stiff impedance interacting with such controls would be unstable. In hands-on robotic surgery,

the robot interacts with potentially deforming and/or pulsating environments, which can range

in stiffness from hard contacts, such as bone, to deformable contact with soft tissue. The
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complexity of this environment would make it very difficult to ensure stability. Thus, gaining

regulatory approval for a potentially unstable controller in a clinical environment would be

taxing.

Additionally, the amplification effect can increase interaction forces with tissue. The desired

forces and torques, which the surgeon wishes to apply to the tool and, consequently, the anatomy,

are based on the surgeon’s medical training and understanding of the goals and decision making

processes necessary to complete the surgery safely. The application of scaled forces and torques

could potentially cause the surgeon to harm the patient unintentionally.

Lastly, the surgeon’s forces can range from delicate (for interacting with soft tissue) to large

(for gross positioning). This would require the force sensor to have a large range and still be of

sufficient sensitivity to detect changes in more delicate interactions.

2.3.3 Manipulability Measures

Manipulability measures are used to find optimal poses in order to improve the performance

of manipulators in specific tasks. When optimised in the null-space, these methodologies are

degree-of-freedom shared control strategies, however, most manipulability measures have not

been demonstrated in this capacity.

Kinematic manipulability ellipsoids were demonstrated in [Yoshikawa, 1985b] for velocity and

force transmission, and a control strategy was presented for their maximisation in redundant

robots. In [Chiu, 1988], these kinematic manipulability measures were extended to allow for

directional force and velocity optimisation.

To account for the dynamics of the manipulator, the dynamic manipulability ellipsoid was

presented in [Yoshikawa, 1985a] for optimising acceleration transmission. This measure was

extended to account for the effects of gravity [Chiacchio, 2000]. The effects of velocity on

dynamic manipulability were shown in [Rosenstein and Grupen, 2002], however, no extension

to the measure to account for the effects of velocity was proposed.

An additional measure of the dynamic performance of a manipulator, the dynamic conditioning

index, was shown in [Ma and Angeles, 1990] and aimed to quantify the amount of dynamic
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coupling and the numerical stability of the inertia matrix. This measure was later applied to

the end effector mass matrix by [Ficuciello et al., 2014] to quantify the coupling between the

directions of motion at the tool. The authors applied an impedance controller with reduced

inertia at the end effector to improve the ease of use for the user, while optimising this measure in

the null-space in order to reduce the stability issues which occur when applying inertia reducing

controllers. The authors found increased stability when using their controller, however, the

force amplification issues discussed in Section 2.3.2, were not addressed.

The avoidance manipulability ellipsoid was developed in [Minami and Takahara, 2003] in order

to quantify the ability of a manipulator to reconfigure its redundancy to avoid an obstacle, while

still achieving its goals at the end effector. An index was created from this ellipsoid in [Tanaka

et al., 2005] for obstacle avoidance during trajectory tracking and manipulator dynamics were

included into the measure in [Kobayashi et al., 2013].

It was demonstrated in [Chiacchio, 2000] that the manipulability ellipsoids were an approxi-

mation of the actual performance of manipulators and that the abilities of a robot were more

accurately represented by a polytope, or n-dimensional polygon. Several methods to optimise,

according to the full polytope of various measures, have been developed.

From the acceleration polytope, the acceleration radius was proposed in [Graettinger and Krogh,

1988], which specified the lower bound on the acceleration of the end effector for a particular con-

figuration. The acceleration radius was generalised in [Bowling and Khatib, 1998] to overcome

the inhomogeneity problem in mixed manipulability optimisations of rotations and translations

described in [Doty et al., 1995]. More recently, the power manipulability ellipsoid was proposed

in [Mansouri and Ouali, 2011] as an alternative method for dealing with inhomogeneity. This

measure was extended in [Choi et al., 2012] to the convex hull-based power manipulability index,

allowing for analysis with respect to the power polytope.

While measures using polytopes have been shown to more accurately characterise manipulator

behavior, they have yet to be demonstrated to function in real-time on a redundant system

capable of achieving arbitrary poses in Cartesian space. They have been successfully applied

to offline robotic design optimisation using the full polytope for manipulability in [San Martin

et al., 2007] and [Yu and Liang, 2012], however, the aim of the work presented in this PhD
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thesis is to optimise the interaction for a given robot online, as this allows the benefits of

the optimisation to be used in current clinical systems without significant system redesign.

Additionally, these measures have focused on the ability of the robot to act on its environment.

For hands-on surgery, the surgeon is applying forces and torques to the robot and therefore, the

measures I develop should optimise the way in which the robot reacts to the surgeon.

2.3.4 Cooperative Object Manipulation

Cooperative object manipulation involves a robot assisting a human in the maneuvering of an

object. This area is a natural application for shared control, as the robot can simultaneously

apply a control policy to ease the motion for the human. However, it can be difficult to apply a

cooperative object manipulation strategy which is both responsive to the user’s commands and

ensures stability. Typical control in this area falls under the category of input modification, as

the robot is often compensating for gravity and the coupling of the robot’s impedance control

strategy with the human’s provides an inherent filtering.

One area of cooperative object manipulation research has aimed to quantify the control strategy

employed in a task where two humans are cooperating to move an object. In this task, only one

of the humans knows the desired trajectory or position of the object and the other is considered

to be passive assistance. By determining the passive human’s control strategy, this research

aims to create a shared object manipulation strategy for the robot which is intuitive for the

user to interact with due to its human-like characteristics.

Early work by [Ikeura et al., 1994] found the passive human’s control strategy could be charac-

terised by an impedance model consisting of a spring, mass, and damper. The most significant

effect in the model was found to be the damper, whereas the mass and spring were nearly ne-

glected. Using impedance control robots in this manner was shown to improve accuracy results

over admittance controlled robots in [Kosuge and Kazamura, 1997].

This work was expanded to utilise a variable impedance model in [Ikeura and Inooka, 1995]

and [Rahman et al., 1999], as it was found that humans exhibit a high impedance at low

velocities for accurate positioning and a low impedance at high velocities for quick motion.

Further, it was demonstrated by [Ikeura et al., 2002] that the human’s variable impedance was
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an optimal solution to a cost function consisting of a weighting of damping magnitude and

change in damping. This solution again resulted in high impedance at low velocities and low

impedance at high velocities.

An alternative variable impedance model was presented in [Tsumugiwa et al., 2002], which

utilised an estimate of the user’s arm stiffness from force and position data at the end effector to

adjust the damping coefficient in the robot’s impedance control. This control strategy was found

to increase stability and accuracy in trajectory tasks as compared to the standard invariable

impedance model.

In [Tsumugiwa et al., 2003], it was found that the human-like impedance control strategy for

the robot was not precise enough to collaboratively perform a peg-in-hole task. Alternatively,

a hybrid control strategy was devised which utilised the impedance model when moving toward

the target and a torque control strategy consisting of gravity and friction during fitting.

While the previous methodologies aim to directly reproduce the control strategy a human would

utilise in shared manipulation for positioning and trajectory tracking, an alternative strategy

intends to modify the natural dynamics of the object through control in order to increase the

ease of manipulation for the user. To overcome the high applied torques and unintuitive object

motion which occurs when positioning long objects in typical collaborative control, a virtual

holonomic constraint at the point held by the robot was proposed in [Takubo et al., 2002].

Modeling the constraint point as a virtual wheel restricted the possible motions of the object,

simplifying the necessary steering and allowing for quicker and more accurate positioning.

2.3.5 Summary

Cooperative control has been applied to a variety of problem areas in general robotics and

various improvements have been demonstrated which neither the human nor the robot could

achieve alone. In this section, I have investigated the general robotics shared control strategies

of active constraints, power assist systems, manipulability measures, and cooperative object

manipulation. However, many of these strategies were found to be not applicable to clinical

scenarios due to safety concerns or did not offer potential improvements for hands-on robotic

surgery. In the next section, I will examine the current state-of-the-art in shared control for
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surgery.

2.4 Shared Control in Surgery Today

Shared control has seen widespread usage in surgery since the first introduction of robotics

for clinical applications. The first usage of robots in surgery was performed by [Kwoh et al.,

1988], in which a PUMA 200 industrial robot replaced the manually adjusted stereotactic frame

for positioning a surgical needle guide in brain tumor biopsy. After positioning, the robot was

turned off and the surgeon inserted the needle through the guide. This degree-of-freedom shared

control strategy allowed for quicker targeting and improved accuracy.

Even in the initial stages of surgical robotics, a common theme in shared control for surgery

was present: to improve clinical outcomes while still leaving the surgeon in control of the

critical portions of the surgery. In [Davies et al., 2004], it was suggested that systems with

the surgeon in the loop are more easily accepted in a clinical environment than autonomous

systems such as the Probot [Harris et al., 1997] and ROBODOC [Kazanzides et al., 1992] due to

uncertainties about who is in charge of the procedure. Indeed, recent medical robotics literature

surveys show many more surgeon-operated than autonomous systems [Beasley, 2012] [Bergeles

and Yang, 2014].

In addition, locking the robot in place and leaving the surgeon in charge of the crucial task

of needle insertion in [Kwoh et al., 1988] highlight the imperative for safety in shared control

in surgery. Robotic systems for surgery typically contain many software fallback systems to

ensure that the robot does not do anything unexpected and injure the patient. The Passive Arm

with Dynamic Constraints (PADyC) aimed to ensure safety by implementing passive degree-

of-freedom sharing and space sharing cooperative control strategies via mechanical clutches at

the joint level [Troccaz and Delnondedieu, 1996] [Schneider and Troccaz, 2001]. In this way,

the device could not move autonomously or exert forces by itself, but could still direct motion

and protect the patient. However, this concept was not taken further due to the, sometimes,

discontinuous nature of applying constraint at the joint level, as well as rapid wear of the

clutched joints.
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In this section, I will focus on current commercial systems in use clinically and research systems

which are still in development. This is because surgical robotics has a high rate of system

turnover due to the difficulties of achieving improvements to clinical outcomes under stringent

requirements in the areas of equipment cost, time required for procedures, and safety concerns.

We refer the reader to the medical robotics reviews in [Dogangil et al., 2010], [Beasley, 2012],

and [Bergeles and Yang, 2014] for a more complete history of robotics in surgery.

Additionally, shared control has been used extensively in rehabilitation robotics, however, the

majority of the work in this area has focused on active guidance of trajectories, which is not

commonly used in surgery. Therefore, rehabilitation robotics will not be covered in this review

and I refer the reader to the literature survey of [Marchal-Crespo and Reinkensmeyer, 2009] for

information on this area.

2.4.1 Surgical Guides

“Surgical guides” are degree-of-freedom sharing robots which are used to position surgical tools.

After being registered to the patient anatomy, these devices move to the appropriate positions

for the surgery and are often fixed in place while the surgeon is performing the main task. The

surgeon uses the guide to control the insertion or cutting degrees-of-freedom while the robot

maintains the remaining positional coordinates, leading to a more accurate and/or quicker

procedure, with the surgeon still in charge of the critical portions of the surgery. Due to

their general simplicity and safer operation, as compared to systems which are active during

the procedure, surgical guides have seen widespread clinical usage. However, their application

remains solely in surgical areas with well-defined rigid anatomy to use for reference.

The Neuromate (Renishaw Plc.) is a stereotactic neurosurgical robot used for electrode im-

plantation, neuro-endoscopy, and biopsy [Varma and Eldridge, 2006]. The system achieves the

same accuracy as a conventional stereotactic frame, however, it results in a faster procedure as

it can accurately reposition for multiple targets more quickly [Li et al., 2002]. Additionally, a

reduction in clinical complication rates has been demonstrated [Cossu et al., 2005].

The Renaissance (Mazor Robotics Ltd.), called the SpineAssist in its first generation, is a

surgical guide which is directly mounted to the patient’s bone structure [Shoham et al., 2003].
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The Renaissance is designed to have a small operating workspace, matching that required by

minimally invasive procedures, as opposed to floor mounted general purpose systems like the

Neuromate. This smaller design reduces the cost of the robot and increases patient safety due to

lower inertia and smaller motors. Additionally, by attaching the robot directly to the patient’s

anatomy, the patient does not need to be immobilised or tracked in real time throughout the

surgery to maintain registration [Shoham et al., 2007].

Another bone-mounted surgical guide is the iBlock (OMNIlife science Inc.), which is used for

total-knee arthroplasty [Plaskos et al., 2005]. The device positions a planar bone-cutting guide

that the surgeon uses to perform manual cutting. As compared to free-hand methods for bone-

cutting, the iBlock has been shown to be more accurate and reduce preparation time due to the

actuated positioning [Koulalis et al., 2011].

2.4.2 Motion Filtering and Scaling in Surgery

Motion filtering and motion scaling, which are input modification cooperative control strate-

gies, have been used in teleoperative surgery to allow surgeons to operate more easily at the

microscale. At this level, involuntary motions, such as tremor, can impact accuracy more

severely [Riviere et al., 1998]. To reduce these inaccuracies, frequency filtering is used to ex-

tract the intended master motions. In motion scaling, motion commands of the master device

are scaled down, such that the slave device moves a proportionally smaller distance than the

master. Motion scaling has been shown to allow for higher accuracy, more so than tremor

filtration in teleoperation [Prasad et al., 2004].

The da Vinci (Intuitive Surgical Inc.) is a commercial teleoperative surgical system for mini-

mally invasive surgery which is claimed to have been used on over 2 million patients [Intuitive

Surgical Ltd., 2015]. The device uses motion scaling and tremor filtering to make “delicate

motions easier to perform” in the space limited surgical environment [Guthart and Salisbury,

2000]. The da Vinci consists of a surgical master console providing the surgeon with a 3D view

of the surgery to improve spatial awareness of the surgical environment and a patient-side cart

with 3 or 4 slave robotic arms for various tools and the 3D cameras.

While the effectiveness of the da Vinci as compared to laparotomy and conventional laparoscopy
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has been established [Health Quality Ontario, 2010], the device does not provide haptic feed-

back, and this has been demonstrated to increase the chances of tissue damage. In an anal-

ysis of laparoscopic cholecystectomy surgeries, it was found that, in 15 out of 20 procedures,

gallbladder perforation had occurred, 11 incidences of which were attributed to “too much

force/rotation/displacement” [Joice et al., 1998]. The authors suggested that a potential cause

was inappropriate levels of force being applied, due to diminished tactile and force feedback.

In a simulated blunt dissection procedure, it was discovered that the lack of force feedback

increased average force application to the tissue by at least 50%, peak force by a factor of 2,

and the number of errors which damaged tissue by a factor of over 3 [Wagner et al., 2002]. As a

result, a large amount of research has been performed into incorporating stable force feedback

into a laparoscopic teleoperative setup [Westebring-van der Putten et al., 2008] [Puangmali

et al., 2008].

The RAVEN II, developed at the University of Washington and University of California Santa

Cruz, is an open-source teleoperative surgical platform [Lum et al., 2009]. The system consists

of two 7 degree-of-freedom cable driven arms with remote center of motion mechanisms and

provides an open API to connect various haptic devices [Hannaford et al., 2013]. Motion scaling

has been demonstrated on the device [Jong Yoon et al., 2013] and tactile haptic feedback has

been integrated through additionally developed sensors [Wottawa et al., 2013].

While tremor filtering is not effective in teleoperative scenarios, it is more effective in hands-on

devices, where motion scaling is limited. The Micron is a hands-on microsurgical tool developed

at Carnegie Mellon University designed to increase accuracy through active stabilisation of the

tool tip [Riviere and Thakor, 1996]. The device uses both motion scaling and tremor filtering

and has demonstrated a significant reduction in position error in experiments with both surgeons

and non-surgeons [Maclachlan et al., 2012].

2.4.3 Motion Compensation in Surgery

To expand robotic surgery to dynamic soft tissue procedures such as beating heart surgery, tele-

operative systems have used motion compensation, an input modification collaborative control

technique. By sensing and predicting periodic organ motion and overlaying this information
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on top of the surgeon’s master device commands, the surgeon can operate on an effectively

static organ. Due to camera data processing delays and servo time delays, research in this area

focuses mainly on the prediction of the soft tissue motion in order to ensure the additional

motion commanded to the slave matches, as accurately as possible, the current behavior of the

dynamic anatomy.

In addition to the increased accuracy which these techniques can provide, they have also been

shown to cause less damage to the organs as compared to conventional methods for operating

on dynamic soft tissue that use mechanical stoppers or induce cardiac arrest. Procedures such

as direct coronary artery bypass require precise hand motions and performing them on beating

hearts requires strong mental concentration [Nakamura et al., 2001]. Using motion compensation

can help to reduce this mental load on the surgeon, allowing him or her to focus more closely

on the required task. Lastly, procedures which were previously very difficult to perform due

to the quick nature of the tissue motion, such as mitral valve annuloplasty [Yuen et al., 2009],

can be performed more easily due to these techniques. However, ensuring robust and accurate

compensation and prediction in spite of time delays and soft tissue deformation variability still

remains a research challenge.

The first research into incorporating motion prediction for surgery was, however, performed in

a simulated hands-on surgery using a moving platform [Trejos et al., 1999]. The surgeon rested

or attached his or her hand holding the tool to the platform and the platform was actuated

in synchronisation with the motion of the organ being operated on. The system resulted in a

higher accuracy over free-hand, however, task completion time was lengthened, even when a

stationary image of the operation was shown to the user.

The first implementation of motion compensation for teleoperative surgery was demonstrated

in [Nakamura et al., 2001] for minimally invasive cardiac surgery. An autoregressive model was

used to track and predict the heart’s motion for compensation, however, a large tracking error

was present due to the speed of the camera feedback system.

To improve the robustness to irregularities in the quasi-periodic nature of the heart motion,

it was proposed in [Ortmaier et al., 2005] to use a method based on Takens Theorem, which

states that a sufficiently long vector derived from previous values in a time series can be used to
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reconstruct the underlying system dynamics. ECG signals were utilised to estimate the heart’s

motion when the view of the tracking cameras was occluded. However, the performance of this

method degraded in situations where there was too much variation in the tracked data.

The use of future heart motion prediction to increase accuracy was demonstrated in [Rotella,

2005] and [Ginhoux et al., 2005]. Model predictive controllers provided an estimate of the

heart’s position several time steps into the future. This method compensates for time delays in

camera processing, resulting in a higher accuracy than the previously discussed methods.

The ECG signal from the heart was used in [Bebek and Çavusoglu, 2007] to estimate the period

of the heartbeat for a receding horizon model predictive controller. Prediction and tracking

were both improved as compared to estimation without ECG.

An extended Kalman filter (EKF) was utilised in [Yuen et al., 2009] to update the parameters

of a time-varying Fourier series model which predicted and compensated for the 1D motion

of mitral valve annulus. The EKF approach was shown to better handle changing heart rates

and to have improved state prediction over a range of measurement noise, as compared to an

AR model, as the EKF adjusted “to rapid changes in heart rate through explicit modeling of

quasiperiodicity” [Yuen et al., 2009].

2.4.4 Active Constraints for Surgery

Active constraints for surgery were first demonstrated by [Ho et al., 1995] for precise cutting

of the femur and tibia for mounting prosthetic knee components. Knee prosthetics require high

precision cuts for a good alignment of the prosthesis, which ensures the joint performs well

and has a long life. In addition, in this work, the robot was backdrivable and controlled by

the surgeon holding a handle mounted at end effector, making this the first implementation

of hands-on robotic surgery. Ho et al. allowed free motion in the interior of the cut and, as

the surgeon approached a predefined constraint boundary, increased the stiffness of the robot,

resulting in a very high stiffness at the edge of the forbidden region.

Since then, a significant amount of research has been performed on active constraints for surgical

applications due to their potential to increase accuracy and safety. In this section, I will focus on



CHAPTER 2. SHARED/COOPERATIVE CONTROL IN ROBOTICS 44

active constraints strategies which are currently being utilised on clinical devices and large scale

research systems still in development. In addition, I will review the current state of dynamic

active constraints research. For a full history of active constraints usage in surgery and general

robotics, I refer the reader to [Hager et al., 2008] and [Bowyer et al., 2014].

Commercial Systems

Currently, there are three commercially employed surgical systems which use active constraints.

The Sculptor, formerly the Acrobot, which has been recently acquired by Mako Surgical Corp,

was developed from the first research into active constraints for surgery [Ho et al., 1995]. The

system is a hands-on surgical robot which targets bone resection for knee prosthesis implan-

tation. To reduce the mechanical impedance for the surgeon at the end effector, the device

consists of a three axis spherical backdrivable manipulator mounted on a six axis large scale

gross positioning device [Jakopec et al., 2003]. The system has demonstrated significant re-

sults in improving accuracy over conventional techniques using jigs and fixtures [Cobb et al.,

2006].

The Rio (Mako Surgical Corp.) was developed as a competitor to the Sculptor and is currently

being used in Total Hip Arthroplasty and Unicompartmental and Total Knee Arthroplasty [Lon-

ner and Kerr, 2012]. The hands-on surgical system is backdrivable and utilises a tracking system

to continuously align the planned active constraints intra-operatively. Similarly to the Sculptor,

the Rio has demonstrated improved accuracy over conventional manual cutting techniques for

hip and knee arthroplasty [Nawabi et al., 2013] [Citak et al., 2013].

The Navio Precision Freehand Sculpting system (Blue Belt Technologies Inc.), is a hand-held

robotic tool which is used to resect bone in unicondylar knee replacement [Smith et al., 2014].

Alternatively to the other devices discussed in this section, the Navio implements active con-

straints by physically retracting the cutting burr as the tool enters into the forbidden area [Bris-

son et al., 2004]. This has the advantage of not requiring large motors or a braking system to

limit the user’s motion and allows the entire device to be hand-held.

All three of these commercial systems discussed in this section target rigid bone resection due to

the simplification in registering the forbidden region, which can be performed via markers rigidly
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attached to the bone structure. Additionally, in these surgeries, the constraint region does not

need to be tracked and updated intra-operatively due to the lack of soft tissue deformation.

These simplifications reduce the applicability of these devices to other surgeries involving soft

tissue.

Large scale systems such as the Sculptor and Rio allow for multiple tools to be used on a single

system. By doing so, the robot can assist in several tasks, as opposed to the Navio which

can only perform one. However, by attaching a full robotic arm to the tool, the surgeon must

additionally interact with the dynamics of the manipulator which can include joint friction,

backlash, the mass and inertia of the robot links and other disturbances, such as interactions

with the sterile draping. These effects can contribute to a sense of bulkiness and drag, which can

reduce the surgeon’s comfort and ease of use in manipulation tasks, particularly over the length

of current hands-on robotic surgical procedures, which can range from 40 to 120 minutes [Lang

et al., 2011].

Research Systems

In addition, there are several large scale research systems which utilise active constraints and

various other shared control techniques.

The Johns Hopkins University Steady-Hand Robot has seen continued development for over a

decade [Taylor et al., 1999] [Mitchell et al., 2007] [He et al., 2012] and several different types

of active constraints strategies have been tested on the device [Kumar et al., 1999] [Li and

Okamura, 2003] [Bettini et al., 2004] [Li et al., 2007]. The hand held smart tool is intended

for microsurgeries, such as vitreoretinal surgery similarly to the Micron [Maclachlan et al.,

2012] (discussed in Section 2.4.2). Through input modification shared control strategies, such

as tremor filtration [Mitchell et al., 2007] and scaled motion [Kumar et al., 2000], the Steady-

Hand aims to improve the accuracy of the surgeon operating at such a small scale. However,

as the system consists of a small scale admittance controlled robot to which the surgical tool

is attached, active constraints and scaled force feedback [He et al., 2012] can also be imple-

mented.

The Neuroarm (University of Calgary) is a MR-compatible teleoperative robotic platform in-
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tended for neurosurgery [Sutherland et al., 2003]. By providing real-time images to the sur-

geons, they “can correct for brain shift and can ensure complete removal of a tumor during

operation” [Sutherland et al., 2013]. Motion scaling has been demonstrated on the system and,

due to the presence of haptic feedback, other forms of shared control such as active constraints

are possible.

The Mirosurge (DLR, German Aerospace Center), developed from the Kinemedic, is a multi-

robot surgical platform which can operate in both hands-on and teleoperative modes [Hagn

et al., 2010]. The system consists of several MIRO robots [Hagn et al., 2008] which are directly

attached to the operating table and a surgical console made up of two Omega.7 haptic devices

(Force Dimension Ltd.) and a Miracube 3D display (Miracube Inc.). The system exhibits

several forms of shared control, including guidance active constraints [Ortmaier et al., 2006],

degree-of-freedom sharing in hands-on mode [Konietschke et al., 2006] and motion scaling in

teleoperative mode [Konietschke et al., 2009].

The Active Constraint Technologies for Ill-Defined or Volatile Environments (ACTIVE) FP7

project is an “integrated redundant robotic platform for neurosurgery” [ACTIVE, 2012]. This

multi-university collaborative project incorporates two seven degree-of-freedom LWR 4+ robots

(KUKA GmbH.), two 7 degree-of-freedom Sigma.7 haptic devices (Force Dimension Ltd.), and

the Active Headframe, a novel actuated device for head support. The project incorporates

active constraints and can operate in both teleoperative and hands-on modes. The author of

this thesis was involved in the software implementation of the active constraints within this

project and their integration with the overall system.

Similarly to the commercial devices discussed in the previous section, which utilise active con-

straints, hands-on systems using large scale robots impose additional dynamics on the surgical

tool and, hence, the surgeon. The Mirosurge and the Kuka LWR 4+ used in the ACTIVE

project aim to reduce the effect of the end effector dynamics on the surgeon through lightweight

system designs. However, neither of these systems utilise control to make the interaction of the

surgeon with the robot closer to the experience of the tool unattached to the robot.
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Dynamic Active Constraints

Recently, techniques to expand the capabilities of active constraints to handle the dynamic

nature of soft tissue surgery have been explored. To ensure the protection of delicate tissue

structures, these dynamic active constraints must be able to handle the arbitrary shapes and

deformations which can occur from tool interactions and patient heartbeat and breathing.

Dynamic virtual fixtures using potential fields were created in [Ren et al., 2008] for beating

heart surgery. The constraints were precomputed from preoperative MR and CT images and

the authors proposed synchronising the constraints with the patient using ECG signals and

intra-operative ultrasound. Due to their precomputed nature, the constraints were unable to

handle unpredicted motion, such as deformation due to contact with tools or abnormal changes

in cardiac behavior.

A one degree-of-freedom dynamic regional constraint was demonstrated by [Gibo et al., 2009] for

assisting in a teleoperative positioning task in which the user attempted to depress an actuated

soft tissue phantom to a particular depth. Two methods for enforcing the constraint were tested;

one based on the current position of the tissue and one based on a prediction of its position.

Experimental results found that the methodology was an improvement over static constraints

and unconstrained teleoperation, however, the two constraint methods tested by the authors

had comparable results.

Real-time MR imaging was used in [Navkar et al., 2012] to generate dynamic active constraints

for assistance in beating heart surgery. The constraints aimed to prevent the tool from contact-

ing the inner walls of the heart by applying forces towards the center of constrained pathway.

Experimental testing in a simulated scenario demonstrated an improvement in off-path error as

compared to both visual-only guidance and no guidance.

A form of active constraints referred to as dynamic frictional constraints, distinguish between

when the user has actively moved the tool into the forbidden region and when the dynamic

constraint has moved onto where the tool is positioned [Bowyer and Rodriguez y Baena, 2014].

These constraints only act when the former situation has occurred as, in the latter case, the

tool “is no longer reactive to the actions of the surgeons, instead, it is actively generating tool
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motion of its own volition” [Bowyer, 2014]. To prevent this, a fully dissipative friction-based

control policy was presented which ensures the active constraint does not take control of the

tool’s motion, leaving the surgeon fully in control at all times.

To date, no work has been presented on dynamic active constraints which can handle arbitrary

shapes and deformations. Early work considered single point constraints and the work of [Navkar

et al., 2012] was specific to beating heart surgery. While the constraints presented in [Bowyer,

2014] provide a unique strategy for handling safety in dynamic soft tissue surgery, the control

methodology requires a meshed representation of the constraint geometry. Real-time non-rigid

registration of soft tissue is an ongoing research problem [Faria et al., 2014] [Weon et al., 2015]

and therefore, real-time updating of constraint meshes to ensure patient protection is difficult.

Alternatively, a method which can utilise streaming point cloud data from 3D cameras and range

finders, in addition to mesh data, would be able to handle arbitrary and deforming constraint

geometries in real-time.

2.5 Summary

This chapter has presented a literature review on the current state-of-the-art in shared control for

both general and surgery specific robotics. Current hands-on robotic devices are bulky, making

them physically hard to maneuver. However, hand-held smart tools are typically surgery specific

and therefore, not easily adaptable to new tasks like large scale robotic systems. A control

strategy which can improve the transparency of the human-robot interaction to make it more

natural — that is, closer to the tool unattached to the robot, without affecting the surgeon’s

usability — could reduce fatigue and improve the surgeon’s ease of use, leading to increased

acceptance of such devices.

To this end, in Chapters 3 and 4, a novel hands-on degree-of-freedom sharing cooperative control

strategy is developed for optimising the mass, inertia, frictional force, and frictional torque at

the end effector of a redundant robot, without affecting the pose of the tool. The efficacy

of the proposed optimisation technique is demonstrated through extensive simulations and a

user-based experimental setup built around a commercial robotic platform.
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In addition, current dynamic active constraint approaches require structured representations of

the underlying geometry and can not handle arbitrary deformations. A dynamic active con-

straints approach which does not require a priori knowledge of the structure to be constrained

could bypass the need for non-rigid registration and feature mapping, and directly constrain a

streaming point cloud representation of the anatomy.

In Chapter 5, a novel shared control technique for hands-on robotic surgery is presented for

generating meshless dynamic active constraints directly from point clouds using implicit sur-

faces. The combined strategies are validated in a virtual reality ultrasound scenario in Chapter

6.



Chapter 3

Redundant Mass and Inertia

Optimisation for Natural Motion

This chapter presents a novel hands-on control methodology for optimising the mass and inertia

at the end effector of a redundant robot, without affecting the pose of the tool. By reducing

these effects at the tool point, the surgeon can move the surgical instrument more naturally,

closer to the tool unattached to robot and therefore, dexterity is increased and fatigue is reduced.

The research presented here is an edited version of the work published in:

J. G. Petersen and F. Rodriguez y Baena, “Mass and inertia optimization for natural

motion in hands-on robotic surgery”, in Proceedings of the IEEE International Conference

on Intelligent Robots and Systems, pp. 4284-4289, Sept. 2014. ➞2014 IEEE.

3.1 Introduction

As discussed in Chapter 1, hands-on robotic surgery is advantageous because it enables the

forces and torques of the interaction between the robot and the environment to be felt directly

through the tool, without the need for an additional force sensor at the end effector. The

surgeon can utilise this natural feedback to more precisely apply forces and torques to the hard

or soft target tissue, a valuable feature when performing surgery with robotic assistance. In

addition, the surgeon is in control of the speed and direction of the surgical task, which has lead

50
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to increased acceptance of these types of systems, as compared to autonomous robots [Davies

et al., 2004].

However, by attaching the surgical tool to the end effector of the robot, the surgeon must also

interact with the dynamics of the robot at the tool point. These dynamics can include joint

friction, gear backlash, the mass and inertia of the robot links, and other disturbances, such

as interactions with the sterile draping. Each of these factors can reduce the dexterity of the

surgeon and increase fatigue, particularly over the time frame of current hands-on procedures,

which can range from 40 to 120 minutes [Lang et al., 2011]. The aim of the work presented in

this chapter is to reduce these end effector dynamics. This will achieve a more natural feeling

for the surgeon when performing hands-on robotic surgery, by providing an experience which is

closer to the feeling of the tool unattached to the robot.

The effects of the system dynamics on the user are more apparent in large scale systems such as

the Sculptor (formerly Stanmore Implants Worldwide Ltd., recently acquired by Mako Surgical

Corp.) [Cobb et al., 2006] and the RIO (Mako Surgical Corp.) [Hagag et al., 2011], making

them bulky and physically harder to maneuver. Hand-held smart tools such as the Steady-

Hand Robot [He et al., 2012] do not have a large dynamic effect on the surgeon, however, they

are typically surgery specific and, as a result, not easily adaptable to new tasks like large scale

robotic systems. Therefore, a natural motion solution for large scale systems can, in principle,

provide the largest possible benefits for the surgeon and these improvements could affect a wider

range of surgeries.

One strategy for modifying the end effector dynamics is to mechanically design the robot to

have low mass and inertia at the tool point. Early hands-on robotic systems, such as the

Acrobot [Jakopec et al., 2003], employed specially designed mechanisms with a limited number

of degrees-of-freedom to reduce these effects. In [Khatib and Burdick, 1987], a methodology for

creating a robot with uniform and isotropic bounds on the end effector acceleration through

optimisation of the link masses, inertias, and lengths was presented. The German Aerospace

Center (DLR) has developed two robots which aim to have low inertia and mass in order to

enable safe human-robot collaboration: the Light-Weight Robot (LWR) [Albu-Schäffer et al.,

2007] and the MIRO [Hagn et al., 2008].



CHAPTER 3. REDUNDANT MASS AND INERTIA OPTIMISATION 52

Robotic surgical systems are quite costly to develop as they have special requirements for safety

and sterilisability and can take years of testing for clinical certification. A significant redesign

of a current surgical system would also be required to undergo recertification. Additionally,

for some systems, reducing the dynamic effects on the surgeon may not be possible without

compromising performance goals. Furthermore, the tool point dynamics can still be varied

in lightweight redundant systems for a given pose using control and so, further improvements

upon design considerations can be made by optimising in the null-space. Therefore, a control

solution to minimise the effects of the robot’s end effector dynamics on the surgeon can offer

improvements to current clinical systems, without the need for a costly system redesign.

Control strategies exist in the general robotics literature which aim to ease the user’s ability to

maneuver objects in collaborative tasks. Power assist systems, for which literature reviews can

be found in [Gopura et al., 2011] and [Lee et al., 2012], amplify the user’s forces and torques

such that the effective mass of the object the human is interacting with is reduced, allowing the

user to more easily lift and/or maneuver heavy objects. The user’s forces are typically detected

with force sensors as in [Aguirre-Ollinger et al., 2012] and [Ammar et al., 2010], and some

methods utilise EMG sensors attached the user’s skin to provide an estimate of the subject’s

arm stiffness and damping, as in [Gopura et al., 2009] and [Farina and Merletti, 2000].

However, amplification of the user’s forces through control can have potentially dangerous ef-

fects. An increased risk of contact or coupling instability arises when an impedance controller

attempts to emulate dynamics that differ significantly from the intrinsic hardware dynam-

ics [Colgate and Hogan, 1989] [Buerger and Hogan, 2007]. Additionally, it was shown in [Kaze-

rooni and Snyder, 1995] that a very stiff impedance interacting with such controls would be

unstable. The environment in hands-on robotic surgery is quite complex, as the target tissue

may pulsate and deform and the stiffness of the tissue can range from hard contacts, such as

bone, to soft contacts, such as heart, liver, or brain. Due to the complexity of this environment,

ensuring stability would be difficult and, therefore, such a controller could not be applied in a

clinical scenario.

In addition, amplifying the user’s wrench can increase the surgeon’s interaction forces and

torques with the tissue. Surgeons use their medical training and understanding of the goals and
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decision making processes necessary to complete the surgery safely, to apply appropriate forces

and torques to the patient through the surgical tool. Scaling the surgeon’s applied forces and

torques could potentially cause the surgeon to unintentionally harm the patient through the

robot. Similarly, the force and torque scaling in these type of impedance controllers affects the

surgeon’s ability to accurately feel the forces and torques of the interaction between the surgical

tool and the tissue through the end effector. Thus, such strategies remove an essential benefit

of hands-on robotic surgery.

Lastly, these types of impedance controllers require force/torque sensors at the tool point in

order to measure the user’s desired input. However, for surgery, these sensors are required

to undergo harsh sterilisation procedures, typically performed through heat and/or chemical

sterilisation [Okamura et al., 2010]. Thus, specially designed force/torques sensors are necessary

to handle such sterilisation processes, driving up the already high cost of these devices.

In [Ficuciello et al., 2014], an impedance controller with reduced inertia was applied at the

end effector of the robot in a collaborative drawing task in order to improve the subject’s ease

of use. In addition, the dynamic conditioning index [Ma and Angeles, 1990] was optimised in

the redundancy to minimise the coupling between the Cartesian degrees-of-freedom at the end

effector in order to reduce the above mentioned stability issues, which occur when applying

inertia reducing controllers. The region of stability for the controller was found to be increased

using the controller, however, the effects of force amplification on the tool’s interaction with the

surface were not addressed.

Therefore, as an alternative to using an impedance controller at the tool point, a control strategy

which minimises the end effector dynamics using the redundant degrees-of-freedom would be

advantageous, as it avoids the stability and safety problems with tool point impedance control

strategies and ensures that the surgeon can accurately sense the tool interactions with the

environment directly through the surgical instrument.

For these reasons, a null-space based optimisation control methodology has been developed,

which reduces the effect of the end effector dynamics on the surgeon. By creating a control strat-

egy rather than a design solution, expensive design or redesign and certification work is avoided

and the methodology could potentially be applied to current clinical hands-on robotic systems.
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In addition, by reducing the end effector dynamics in the redundant degrees-of-freedom, stability

and safety issues with impedance controllers applied at the end effector are avoided.

This chapter will first derive model based representations of the mass, inertia, frictional force,

and frictional torques at the end effector of a general n-degree-of-freedom manipulator. Follow-

ing this, measures for mass and inertia are developed for directional and overall optimisation,

and combined mass and inertia optimisation methodologies are demonstrated. Friction force

and torque optimisation will be performed in Chapter 4. A null-space optimisation control

strategy is presented to reduce the effect of these tool point dynamics on the surgeon, without

affecting his or her desired commands. Simulation results show the extent of the reduction in

mass and inertia, which the optimisation strategy provides over the workspace of a four degree-

of-freedom planar robot, and the methodology’s sensitivity to uncertainties in the dynamic

model parameters is investigated. Combined mass and inertia optimisations are performed to

examine the relative reductions in these quantities as compared to single optimisations. Lastly,

simulated trajectory trial results demonstrate a reduction in the time required to move the

tool through a trajectory, as compared with conventional redundancy resolution techniques in

hands-on robotic surgery.

3.2 End Effector Dynamics

When maneuvering the tool attached to the robot, the surgeon is interacting with the end

effector dynamics of the robot. In this section, I will derive these configuration dependent

dynamics from the joint space dynamics for later optimisation.

The joint space dynamics of an n degree-of-freedom serial manipulator can be written in the

Lagrangian formalism as,

A(q)q̈ + b(q, q̇) + g(q) + τf = τm + τj (3.1)

where A(q) is the n × n inertia matrix, b(q, q̇) is the n × 1 vector of Coriolis and centrifugal

torques, g(q) is the n×1 vector of gravity torques, τf is the n×1 vector of joint friction torques,
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and τm is the n× 1 vector of joint motor torques. τj is the projection of the user’s end effector

forces and torques onto the joints, that is, τj is the torques at the joints resulting from the

user’s forces and torques at the end effector.

τj , JT







Fu

τu






(3.2)

where Fu and τu are the forces and torques applied by the user at the end effector.

The dynamics of the end effector position and orientation can be computed from the joint space

dynamics by multiplication with the transpose of the dynamically consistent inverses of the

linear velocity Jacobian, Jv, and the angular velocity Jacobian, Jω, respectively,

Jv = A−1JT
v Λv and Jω = A−1JT

ω Λω (3.3)

where Λv =
(

JvA
−1JT

v

)−1
is the pseudo kinematic energy matrix associated with mass and

Λω =
(

JωA
−1JT

ω

)−1
is the pseudo kinematic energy matrix associated with inertia.

The resulting equations of motion provide a mathematical description of how the surgeon and

robot interact at the tool point. The equations of motion associated with linear motion can be

expressed as,

Λvẍ+ vv + pv + J
T

v τf = FEE
m + Fu (3.4)

where vv is the vector of Coriolis-centrifugal forces at the end effector, pv is the vector of end

effector gravity forces, J
T

v τf is the projection of the frictional torques onto the linear end effector

dynamics and FEE
m , J

T

v τm is the vector of forces at the end effector resulting from motor

torques. The equations of motion associated with angular motion can be written as,

Λωω̇ + vω + pω + J
T

ωτf = τEE
m + τu (3.5)

where vω is the vector of Coriolis-centrifugal torques at the end effector, pω is the vector of end



CHAPTER 3. REDUNDANT MASS AND INERTIA OPTIMISATION 56

effector gravity torques, J
T

ωτf is the projection of the frictional torques onto the angular end

effector dynamics and τEE
m , J

T

ωτm is the vector of torques at the end effector resulting from

motor torques.

The projections of the frictional torques onto the end effector, J
T

v τf and J
T

ωτf , are the frictional

forces and torques which the surgeon feels when moving the tool as a result of the friction on

the joints. We will define the effective end effector friction force, FEE
f and the effective end

effector friction torque, τEE
f as these projections.

FEE
f , J

T

v τf and τEE
f , J

T

ωτf (3.6)

Assuming the motor torques applied to the space of the end effector are used only to compensate

for gravity and that Coriolis-centrifugal forces are small, the resulting dynamic systems which

the surgeon interacts with consist of the operational space mass and inertia and the effective

end effector frictional forces and torques.

Λvẍ+ FEE
f = Fu and Λωω̇ + τEE

f = τu (3.7)

From these equations, two factors can be identified which affect the way in which the robot

interacts with the surgeon. First, the resulting accelerations from the surgeon’s forces and

torques are scaled by the mass and inertia of the manipulator. The surgeon performs surgery

with a set of tools, each of which has specific inertial properties that the surgeon is likely

accustomed to. Attaching these tools to the robot modifies the mass/inertia which the surgeon

experiences when using them. To provide a more natural response of the tool to the surgeon’s

forces (i.e a closer experience to the tool being handled while not attached to the robot), I

will minimise the end effector inertial properties without affecting the surgeon’s desired tool

pose.

Second, the effective frictional forces and torques reduce the impact of the surgeon’s forces and

torques, requiring the surgeon to apply more forces to achieve the same acceleration for the

same mass/inertia. Clearly, the tool alone does not exhibit friction of this type. To reduce this
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effect, I will minimise the friction forces and torques without changing the surgeon’s desired

end effector position and orientation.

This chapter will develop a null-space optimisation strategy to reduce the mass and inertia

at the end effector of the robot, without affecting the surgeon’s commands at the tool point.

Friction force and torque optimisation and combined mass and friction optimisation will instead

be addressed in Chapter 4.

3.3 End Effector Mass and Inertia Optimality Measures

3.3.1 Overall Mass and Inertia Optimality Measures

As shown in Section 3.2, the end effector mass and inertia with which the surgeon is interacting

can be characterised by the pseudo kinetic energy matrices for mass, Λv, and inertia, Λω,

respectively. As the inverses of these matrices are guaranteed to exist and are more robust to

singular or near singular configurations [Hogan, 1984], I will use the inverses in creating our

optimisation criteria.

The effective mass and inertia at the end effector were shown to be representable geometrically

as belted ellipsoids [Khatib, 1995], in the form depicted in Figure 3.1 for the 2D case. The shape

of this ellipsoid depends on the configuration of the robot and, if the robot is redundant, the

configuration of the redundancy. This means that I can reconfigure the redundancy to achieve a

different effective mass/inertia for the robot, without affecting the surgeon’s desired end effector

pose.

In order to minimise or maximise either the mass or the inertia, I will examine the Singular

Value Decomposition (SVD) of the symmetric inverse pseudo kinetic energy matrix.

Λ−1 = UΣUT (3.8)

where U is the orthogonal matrix consisting of the singular vectors of Λ−1 and Σ is the diag-

onal matrix of singular values. The singular vectors correspond to the principal axes of the
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Figure 3.1: The belted mass ellipsoid [Khatib, 1995] overlaid on a simulated four degree-of-
freedom planar robot with the effective mass, me, for a particular direction highlighted.

mass/inertia ellipsoid and the singular values correspond to inverse of the mass/inertia in the

principal directions.

As the determinant of an orthogonal matrix is ±1, the determinant of the inverse mass/inertia

matrix is equal to the product of its singular values.

det(Λ−1) =

m
∏

i=1

σi (3.9)

Therefore, to minimise the mass or inertia, the negative of the determinant of the inverse pseudo

kinetic energy matrices should be minimised.

cdet = − det(Λ−1) (3.10)

So far, I have considered mass and inertia separately. This is due to the inhomogeneity resulting

from an attempt to combine the two [Doty et al., 1995]. To simultaneously optimise mass and

inertia, a weighted sum can be used, where the weights reflect the relative importance to be

given to rotations, as opposed to translations.
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ccm = wv det(Λ
−1
v ) + wω det(Λ−1

ω ) (3.11)

where wv and wω are the weights of the mass and inertia optimisations respectively.

3.3.2 Directional Mass and Inertia Optimality Measures

In addition to optimising the overall mass and inertia at the end effector, specific directions can

also be optimised to create a preferred direction of motion that could be used in cases where

there is frequent motion along a particular pathway or where the intended direction is known

a priori. The mass or inertia felt when applying a force or torque in a specific direction is

referred to as the effective mass/inertia [Khatib, 1995]. The effective mass (me) for a particular

direction is shown in Figure 3.1.

The effective mass or inertia in a specified direction can be computed by,

1

mu
= uTΛ−1

v u and
1

Iu
= uTΛ−1

ω u (3.12)

where u is the unit vector in the desired direction, and mu and Iu are the effective mass and

inertia respectively, in the direction of u. As these are the quantities that I am directly interested

in modifying, I use these as our measure for optimisation.

cdm = −uTΛ−1
v u and cdi = −uTΛ−1

ω u (3.13)

Additionally, multiple directions can simultaneously be optimised by a weighted sum of the

effective mass or inertia in the specified directions.

cdw = −
n
∑

i=1

wiu
T
i Λ

−1
v ui −

m
∑

j=1

wju
T
j Λ

−1
ω uj (3.14)

where wi and wj are the weights associated with i-th effective mass and j-th effective inertia,

respectively.
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3.4 Redundant Optimisation of End Effector Mass

For each of the natural motion metrics discussed above, the optimisation problem I wish to

solve is to find the joint angles which minimise the specified metric, subject to the constraint

that the joint angles must result in a pose equal to the surgeon’s current pose on the entire path

between the initial configuration and optimum.

minimize
q

c(q)

subject to

∫ tf

t0

‖x(q0)− f(r(t))‖ dt = 0

(3.15)

where r(t) is a parametrisation of the path between the initial joint angles and optimum such

that r(t0) = q0 and r(tf ) = qopt and f(q) is the forward kinematics of the manipulator. Note

that this constraint is stronger than simply requiring the end effector pose corresponding to the

optimum joint angles to be equal to the surgeon’s initial pose. As the null space manifold can

be discontinuous, joint angles can exist which satisfy the desired pose, but cannot be reached

from the current joint angles without violating the desired end effector pose in the transition.

Therefore, only solutions which are reachable from the current joint position are valid.

To simplify this problem and ensure it remains solvable in real-time, I use a local optimiser

which controls the redundancy to the local end effector dynamics measure optima, relative

to the current set of joint angles. The control necessary to move towards the local optima is

computed and projected into the null space of the current end effector pose. The local optima to

the current pose can be reached by simply computing the gradient of the optimality measure and

performing gradient descent. A velocity saturation method for gradient descent was presented

in [Sentis, 2007] which I will use here,

ωdes = −
kp∇c

kd

vd = min

(

1,
ωmax

|ωdes|

)

Fp = −kd(q̇ − vdωdes)

(3.16)

where kp is a spring gain, kd is a damping gain, and ωmax is the maximum allowed velocity.
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Null-space controllers are used to simultaneously achieve a hierarchy of tasks such that the tasks

do not affect each other and higher priority tasks take precedence over lower priority tasks in

the event of a loss of degrees of freedom. We use the dynamic recursive null-space formulation

presented in [Sentis, 2007] in order to allow for concurrent dynamic active constraints application

[Petersen and Rodriguez Baena, 2013] and towards our goal of developing a complete hands-

on robotic control system. Equation (3.17) shows the general form of the recursive null-space

controller which allows N hierarchical tasks to operate concurrently.

Γ =

N
∑

k=1

JT
k|prec(k)Fk|prec(k) (3.17)

where Jk|prec(k) = JkNprec(k) is the Jacobian of the k-th task operating in the null space of

the previous k − 1 tasks, Nprec(k) = I −
N
∑

k=1

Jk|prec(k)Jk|prec(k) is the combined null space of the

higher order tasks, and Fk|prec(k) represents the forces of the k-th task acting in the null space

of the previous k − 1 tasks.

As our goal is to optimise while not affecting the desired tool position and orientation of the

surgeon, the work in this chapter uses two tasks: dynamic compensation of the point in contact

with the surgeon and the null space optimisation. The two-task version of (3.17) used here is

as follows:

Γ = JT
t (ut + pt) +NT

t J
T
p (Fp + up + pp) (3.18)

where Jt is the linear and angular velocity Jacobian of the contact point with the surgeon, ut

and pt are the Coriolis-centrifugal and gravity forces respectively at the contact point with the

surgeon, Jp is the Jacobian of the posture, Fp represents the optimisation forces (3.16), up and

pp are the Coriolis-centrifugal and gravity forces respectively of the posture, and Nt = I − J tJt

is the dynamically consistent null space of Jt.

Using this strategy, the robot can reconfigure without affecting the surgeon, to achieve the

optimal local configuration in the null-space.
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3.4.1 Additional Optimality Measures

In addition to mass/inertia optimisation, this formulation allows for the addition of further

terms to cater for other criteria using a weighted summation. Safety can be improved using

gradient based methods such as joint limit avoidance [Liegeois, 1977] [Klein and Huang, 1983];

obstacle avoidance to prevent collisions with the patient, surgeon, or equipment [Maciejewski

and Klein, 1985] [Choi and Kim, 1999]; and self collision avoidance [Sugiura et al., 2006] [Stasse

et al., 2008].

3.5 Simulations

To verify our optimisation strategy, a four degree-of-freedom planar manipulator was imple-

mented in MATLAB 2013a (Mathworks Inc.) and its dynamics were simulated using MAT-

LAB’s ODE functions. Four degrees-of-freedom were chosen as they provide a single degree of

redundancy when constraining the end effector’s position and orientation in a planar scenario.

The parameters of this model are shown in Table (3.1) and the center of mass for each link was

located at half the link’s length. These values have been chosen to reflect the link length and

inertial distribution found in general robots with decreasing length and inertial properties tend-

ing away from the base degree-of-freedom. Further natural motion simulations and experiments

using the parameters of a real system will be performed in Chapter 4.

Link Length (m) Mass (kg) Inertia (kg*m2)

1 1.00 2.00 0.010

2 0.75 1.50 0.005

3 0.50 0.75 0.005

4 0.50 0.50 0.001

Table 3.1: The kinematic and dynamic parameters used in the simulation of the four degree-of-
freedom planar robot.

3.5.1 Effectiveness of Mass Optimisation Over the Robot’s Workspace

To demonstrate the general effectiveness of the mass optimisation strategy presented here, it

must be shown that for a majority of end effector poses over the robot’s workspace, there is
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Figure 3.2: The local minimum and maximum belted mass ellipsoids for a single end effector
position and orientation overlaid on their corresponding joint configurations.

a substantial improvement in the mass properties at the joint pose corresponding to the local

minimum of the mass metric as compared to the joint point corresponding to the local maximum.

The local minimum and maximum poses are the joint configurations which correspond to the

local minimum and maximum of the optimality measures, relative to the initial joint angles.

Figure 3.2 depicts the minimal and maximal mass configurations for a single end effector pose

with the belted mass ellipsoids overlaid.

Therefore, the mass determinant of 1000 random, initially nonsingular configurations of the

robot were maximised and minimised. 1000 trials were chosen as I believe this covers a majority

of the workspace of the robot. Additionally, this number of trials was chosen as it allowed them

to be run within a reasonable amount time, approximately 12 hours for the 2000 optimizations.

Initial joint configurations were found by drawing from a uniform distribution over [0, 2π) for

each joint and checking for singularities by computing the singular value decomposition of JJT .

Keeping the initial position and orientation of the end effector fixed, the robot used (3.18) to

optimise (3.10) from the initial joint parameters to find the local minimum. A proportional-

derivative (PD) controller with gains kp,ee = 30 and kd,ee = 5 was applied to the end effector

to eliminate integration drift and the parameters of (3.16) were set as kp = 50, kd = 15, and

ωmax = 3rad/s. As (3.16) is used to minimise the optimisation criterion, a modified version
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Figure 3.3: The percentage change in the largest principal mass component between the mini-
mum and maximum joint configurations for randomly generated end effector poses.

was used to obtain the local maximum:

ωdes =
kp∇c

kd

vd = min

(

1,
ωmax

|ωdes|

)

Fp = −kd(q̇ − vdωdes)

(3.19)

Figure 3.3 depicts the percentage change in the largest principal mass component between the

maximum and minimum mass determinants for each of the random trials, arranged in ascending

order. For this specific robot, the minimum configuration represents, on average, a 60.85%

reduction in the largest principal component of the mass ellipsoid relative to the maximum

configurations with a standard deviation of 19.35%. This difference in the end effector mass

properties of the local minimum and local maximum demonstrates a reduction in mass over the

robot’s workspace when using our optimisation technique.

3.5.2 Effectiveness of Inertia Optimisation Over the Robot’s Workspace

Additionally, to demonstrate the effectiveness of the inertia optimisation scheme over the robot’s

workspace, 1000 random, initially nonsingular configurations of the robot were minimised and
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(a) Minimum Inertia Determinant

End Effector Inertia = 0.0340 kg*m

(b) Maximum Inertia Determinant

Figure 3.4: The local minimum and maximum inertia joint configurations for a single end
effector position and orientation.
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Figure 3.5: The percentage change in the inertia between the minimum and maximum joint
configurations for randomly generated end effector poses.
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maximised. Similarly to the previous section, initial joint configurations were computed by

drawing from a uniform distribution over [0, 2π) for each joint and checking for singularities by

computing the singular value decomposition of JJT . A PD controller with gains kp,ee = 30 and

kd,ee = 5 was applied to the end effector in order to avoid integration drift and ensure the initial

position and orientation of the end effector was fixed. The robot was commanded with (3.18)

to optimise (3.10) from the initial joint configuration and the parameters of (3.16) were set as

kp = 50, kd = 15, and ωmax = 3rad/s. Figure 3.4 depicts the minimal and maximal inertia

configurations for a single example end effector pose.

Figure 3.5 depicts the percentage chance in the inertia at the end effector between the maximum

and minimum joint poses. The minimum joint configuration has a 38.70% average reduction in

the inertia as compared with the maximum inertia joint configuration, with a standard deviation

of 11.57%. This represents a large reduction in the inertia the surgeon would feel in general

when rotating the robot about the tool point.

3.5.3 Compatibility of Mass and Inertia Optimal Joint Configurations

Comparing the minimum and maximum joint configurations for mass (Figure 3.2) and for inertia

(Figure 3.4), it appears that mass and inertia optimisation are not compatible for this specific

robot, as the optimal mass configuration is close to the least optimal inertia pose and vice-versa.

To further examine this issue, 1000 random end effector poses over the workspace of the robot

were optimised for mass and inertia, using the same methodology as in the previous sections.

Figure 3.6a depicts the resulting distance between the optimal mass and inertia joint poses for

each end effector position and orientation, demonstrating a large difference in general between

these configurations. Further, Figure 3.6b depicts the impact that optimising for mass has

on the inertia at the tool. The inertia at the end effector at the mass optima is, in general,

substantially larger than at the optimal inertia configuration.

However, even when the distance between optimal poses is large, a combined optimisation solu-

tion can still simultaneously reduce the mass and inertia of the robot at the end effector. 1000

random end effector poses were optimised using a 50%-50% mass-inertia ratio and the resulting

mass and inertia were compared with the least optimal mass and inertia joint configurations. As
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Figure 3.6: The L2 distance between the optimal mass and optimal inertia joint configurations
(a) and the percentage change in the inertia between the optimal mass and optimal inertia poses
(b) for 1000 trials.
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Figure 3.7: The percentage improvement in mass (a) and inertia (b) at the combined optima
relative to the least optimal mass and inertia poses.
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Figure 3.8: The percentage change in the largest principal mass component between an opti-
misation using the true dynamic parameters and an optimisation using normally distributed
dynamic parameters.

shown in Figure 3.7, the combined optimisation, in general, reduced both the mass and inertia

at the tool point, although not to the level seen in the single optimisations.

There are several ways in which the choice of using a single mass or inertia optimisation or using

a combined strategy can be made. The decision can be made based on the most significant

quantity affecting the robot, the quantity that affects the most common movement performed

when using the robot, or based on the quantity which is most reduced by the null-space strategy

in general. On the specific robot used in the simulations here, mass is the more significant

quantity affecting the end effector motions and, in addition, is more substantially reduced by

the proposed simulations. Further investigation of the combined optimisation effects will be

performed on a robot capable of achieve general six dimensional end effector poses in Chapter

4.

3.5.4 Effectiveness Under Modeling Uncertainty

In a real system, the parameters of the dynamic model are only estimates of the true values. In

order to test the impact of modeling uncertainty on the optimisation procedure, 1000 random

trials of a constant end effector pose were performed, in which the mass and inertia properties

were drawn from a normal distribution, with the mean equal to the true value of the parameter
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and the standard deviation equal to 10% of its value (mi,e ∼ N (mi, (0.1mi)
2) and Ii,e ∼

N (Ii, (0.1Ii)
2)). Using the proposed control strategy (3.18), these trials optimised the effective

mass at the end effector which was computed from the estimated parameters in order to compare

the resulting joint configuration and actual effective mass with an optimisation using the true

parameter values. A PD controller with gains kp,ee = 30 and kd,ee = 5 was applied to the end

effector to eliminate integration drift and the parameters of (3.16) were set as kp = 50, kd = 15,

and ωmax = 3rad/s.

Figure 3.8 depicts the percentage difference between the optimisation results using the true and

estimated mass and inertia parameters on the largest principal mass component, in ascending

order. The results demonstrate that the change in the principal mass component while opti-

mising using mass and inertia parameter estimates is, in the worst case, 0.7976% less optimal

that using the true values. This suggests that this level of parameter variation does not have

a large effect on the optimisation results. Note that a negative change in the largest principal

component does not reflect a more optimal pose, as optimality is defined as the product of the

principal components.

3.5.5 Effectiveness of Directional Mass Optimisation Over the Robot’s Workspace

To investigate the effectiveness of the proposed directional mass optimisation strategy over

the workspace of the robot, the directional mass optimality measure (3.13) was minimised

and maximised using (3.18) for 1000 random, initially nonsingular configurations. Initial joint

configurations were found by drawing from a uniform distribution over [0, 2π) for each joint

and checking for singularities by computing the singular value decomposition of JJT . The

optimisations were performed for end effector positions and orientations fixed to the initial

pose and the direction optimised for all cases was arbitrarily chosen to be the negative vertical

direction. The choice of the optimisation direction does not affect the overall results as the

orientation angle is random due to the way in which the joint angles are chosen, preventing

any biasing with respect directions which exhibit larger changes in mass. A PD controller with

gains kp,ee = 30 and kd,ee = 5 was applied to the end effector to eliminate integration drift and

the parameters of (3.16) were set as kp = 50, kd = 15, and ωmax = 3rad/s.
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Figure 3.9: The local minimum and maximum effective mass in the vertical direction and belted
mass ellipsoids for a single end effector position and orientation overlaid on their corresponding
joint configurations.
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Figure 3.10: The percentage change in the effective mass in the vertical direction between the
minimum and maximum joint configurations for randomly generated end effector poses.
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Such an optimisation could be used to ensure that the user’s interaction with the robot feels

“lightweight” when moving up and down. This would help reduce fatigue and improve ease of

use when moving towards a target, or if motion in the vertical direction is much more frequent

than any other in a particular task. Figure 3.9a shows the configuration with locally optimal

posture for minimising the mass in the specified direction. Additionally, Figure 3.9b depicts the

configuration for the maximum effective mass in the negative y-direction.

Figure 3.10 depicts the percentage change in the effective mass in the vertical direction between

the minimum and maximum directional mass optimisation metrics for each of the random trials,

arranged in ascending order. The minimum configuration on this specific robot represents,

on average, a 22.64% reduction in the effective mass relative to the maximum configurations

with a standard deviation of 19.91%. The reduction in effective mass over the workspace

of this specific robot is not as substantial as the overall mass metric results, however, does

demonstrate a reduction in effective mass for most poses. Figure 3.11 illustrates a case in which

the reduction in mass is not as substantial. In configurations for which the desired direction to

be optimised aligns with the rotation axis of the last joint such that an instantaneous translation

in the specified direction can be performed only by a rotation of the final joint, a substantial

change in the mass properties is not possible because the effects of the last joint cannot be

reduced. Therefore, this strategy is most effective in configurations where moving the robot

in the specified direction requires multiple links of the robot to move in coordination. This

reduction in mass may be more substantial for more poses on a robot capable of six dimensional

end effector poses in space and will be investigated in Chapter 4. Directional inertia optimisation

was not performed in this section since the planar nature of the robot allows for only a single

rotation direction.

3.5.6 Simulation Trajectory Trials

In order to compare the performance of these measures against current surgical methodologies

for redundancy resolution, a test scenario was created. A translational trajectory task requiring

acceleration and deceleration was designed to test the effects of mass optimisation and its effect

on motion due to external forces from the surgeon as mass is more substantially reduced by
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Figure 3.11: The local minimum and maximum effective mass in the vertical direction and
belted mass ellipsoids for a single end effector position and orientation demonstrating the limited
reduction in mass when optimising in a direction corresponding to the rotation axis of the last
joint.

our proposed methods as discussed in Section 3.5.3. Figure 3.12 shows the trajectory that the

robot followed in each trial. The corner points were used as references for the robot with the

desired target switched when the robot reached the current point. To simulate the surgeon

following the trajectory, external forces were applied to the system using a force saturated PD

controller.

v = kp(xdes − x)− kdẋ

F = min (v, Fmax) ∗
v

‖v‖

(3.20)

where Fmax is the maximum force allowable and kp and kd are the position and damping gains

respectively. For the trajectory trials presented here, the gains were set empirically to allow for

minimal overshoot when combined with the robot controllers as follows: kp = 30, kd = 10, and

Fmax = 1N .

Four control methodologies were tested for this pattern; active local mass determinant minimi-

sation, initial minimum posture, “elbow up” posture, and damped posture. The gains of the

active mass minimisation controller were empirically set to kp = 50, kd = 15, and ωmax = 3rad/s
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Figure 3.12: The test trajectory used for comparing the performance of the proposed null-space
based optimisation strategy with alternative redundancy resolution strategies.

such that the null-space exhibited approximately critical damped response to the optimal pos-

ture.

The initial minimum pre-optimised posture case controlled the redundancy to the position

corresponding to the minimum mass determinant of the starting end effector pose using a PD

controller with gains who were empirically chosen to exhibit close to critically damped response:

kp,pos = 30 and kd,pos = 15. The null-space strategy in this case minimises the sum of squared

errors to the desired joint configuration when the end effector pose is not consistent with the

chosen set of joint angles. This strategy was included to compare a pre-optimised configuration

with active optimisation during motion, in order to determine if such a control technique could

provide natural motion in a more constrained surgical theater.

In the “elbow up” posture controller, the robot’s redundancy was controlled to a constant “elbow

up” position using a PD controller with gains who were empirically chosen to approximate a

critically damped response: kp,pos = 30 and kd,pos = 15. This strategy is generally used to keep

the robot in a position which avoids the general work area. In the scenario here and in general

for many surgical applications, the main body was controlled in the redundancy to be above

the end effector in order to stay out of the way of the motion.

In the damped posture controller, the joint configuration of the robot in the redundancy was
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controlled to have dynamic compensation and damping with the damping gain empirically set

to kd,pos = 15 to allow for the degree of null-space motion commonly seen in this type of control.

This control mode is commonly used in redundant systems to allow for reconfiguration by the

user by hand. The redundancy remains in approximately the same position when moving the

end effector and, by applying a force on the redundancy, the user can reconfigure the robot

manually for the current task.

Control Strategy Time (s)

Determinant Minimisation 5.32

Initial Min Posture 6.16

Elbow Up Posture 8.26

Damped Posture 10.30

Table 3.2: The time taken for each control strategy to perform the desired trajectory.

When applying the same force to the end effector, the resulting acceleration will be a function

of the mass of the robot at the tool point. Therefore, the time the robot takes to complete the

trajectory is indicative of the mass of the robot throughout the trajectory. The time taken by

each strategy to perform the trials is shown in Table (3.2).

3.6 Discussion

While the “feel” of the response of the robot to the surgeon depends on several factors, the

focus of the work in this chapter is on the apparent mass/inertia at the end effector. The results

presented are limited by using a 2D robot and a simulated surgeon however, they demonstrate

the impact of mass and inertia on the performance of the robot. User trials on a robot capable

of achieving 6D poses at the end effector will be demonstrated in Chapter 4. Section 3.5.1 and

3.5.2 demonstrate how optimising the mass and inertia, on average, makes a difference over

the workspace, i.e. it can produce a substantial change in the apparent mass/inertia during a

hands-on interaction. Additionally, although limited to a fixed pose, the approach is shown to

still be effective in the presence of model uncertainty (Figure 3.8).

Section 3.5.6 shows that methods which consider the mass of the device are able to follow

the trajectory in less time than the “elbow up” posture and damped posture cases. Figure

3.13 shows why this is the case by plotting the maximal principal component of the belted
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Figure 3.13: The principal mass component over time for each controller during the trajectory
trials.

mass ellipsoid over time for each control strategy. The “elbow up” posture and damped posture

control strategies show a consistently higher mass throughout the simulations, causing the robot

to be more difficult to accelerate/decelerate and thus guide along the course. Therefore, the

optimisation strategy provides a more natural motion for the user.

In the case of the damped posture presented here, the maximum mass component varies by up

to 1.5 times its smallest value, as shown in Figure 3.13 with corresponding joint poses and mass

ellipsoids shown in 3.14. From the viewpoint of the user, this would require a different control

strategy to achieve good performance in all areas of the workspace. By removing the need for

this motor skill, the surgeon can focus more on the surgery at hand and less on determining the

right amount of force to achieve the desired motion.

In some surgeries, the workspace is heavily constrained and using an active optimisation strategy

may not be possible. The pre-optimised constant posture strategy demonstrates that many of

the benefits of considering mass can still be gained without using the active solution. In these

situations, the optimal joint configuration for the area where the surgery will take place can be

found pre-operatively for constant redundancy position control and the surgical equipment can

be arranged around the already optimised robot.
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Figure 3.14: A comparison of the mass ellipsoid at two times during the trajectory while using
the damped posture controller demonstrating the large change in the mass properties which
occurs when using this controller.

3.7 Summary

This chapter has demonstrated a null-space based optimisation strategy which reduces the mass

and inertia at the end effector of the robot in order to create a more natural motion, closer to

the tool unattached to the robot. By optimising in the null-space of the tool pose, the desired

commands of the surgeon at the tool point are unaffected and safety concerns regarding the

stability and force amplification in impedance controllers applied to the end effector is avoided.

By providing a control strategy rather than a design solution, the approach presented here can

be applied to current large scale hands-on robotic surgery devices without the need for a costly

and lengthy system redesign.

In this chapter, the dynamics of the robot at the end effector have been derived and measures to

quantify the overall and directional tool point mass and inertia have been developed. Weighted

solutions to simultaneous mass and inertia optimisations have been discussed and a redundant

optimisation strategy has been demonstrated, which minimises the measures in the null-space of

the tool pose such that the optimisation does not affect the surgeon’s desired commands at the

end effector. Simulation work on a four degree-of-freedom planar robot has demonstrated the

reduction in mass and inertia which the optimisation strategy provides over the workspace of
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the robot, and an investigation into the effect of uncertainty in the parameters of the dynamic

model has revealed that a reasonably small amount of parameter variation does not substantially

affect the optimisation results. Combined optimisation simulation results demonstrate that

simultaneous optimisation of mass and inertia can reduce both these quantities even when

their individual optimal poses are conflicting. Finally, simulated trajectory trial results show a

reduction in the time required to complete a trajectory when using the optimisation controller,

as compared to conventional redundancy resolution controllers, damped posture and elbow

up.

In the next chapter, frictional force and torque optimisation measures will be developed in order

to reduce the frictional effects at the end effector, on the surgeon. In addition, combined mass

and friction optimisation will be presented. Simulation results on a seven degree-of-freedom

system will show the efficacy of the proposed methods in reducing the end effector dynamics over

the workspace of the robot. Lastly, experimental results on the same robot used in simulation

will demonstrate a reduction in the work required to move the device in point-to-point motions,

as compared to conventional surgical redundancy resolution schemes, creating a more natural

motion for the surgeon.



Chapter 4

Redundant Mass and Friction

Optimisation for Natural Motion

This chapter presents a novel hands-on control methodology for optimising the friction force

and torque at the end effector of a redundant robot without affecting the pose of the tool.

The efficacy of the overall and directional mass and friction optimisation methodologies over

the workspace of a robot is demonstrated through simulation of a lightweight seven degree-of-

freedom robot. Additionally, these metrics are shown in combined optimisations with mass to

simultaneously reduce both of these quantities at the end effector. Lastly, experimental user

trials validate the proposed strategies by demonstrating a reduction in the work required to

move the tool, thereby providing a more natural motion for the surgeon.The research presented

here is an edited version of the work under review in:

J. G. Petersen and F. Rodriguez y Baena, “Mass and friction optimisation for natural

motion in hands-on robotic surgery”, IEEE Transactions on Robotics, Under Review.

4.1 Introduction

Natural motion intends to reduce the effects of the robot dynamics at the end effector on the

surgeon which result from attaching the surgical tool to the device. By providing an experience

which is closer to the tool unattached to the robot, the surgeon’s ease of use can be improved

78
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and fatigue from interacting with these dynamics over long surgeries can be lessened. While the

previous chapter addressed the impact of the mass and inertia of the robot at the end effector

on the surgeon, other dynamic effects of the robot at the tool point can reduce the ability of

the surgeon to maneuver the surgical instrument. This chapter aims to reduce the effect of the

friction forces and torques at the end effector which result from the joint level friction in order

to provide a more natural motion for the surgeon.

There exist several models which aim to accurately capture the nonlinear and complex effects

of friction [Olsson et al., 1998] [Bona and Indri, 2005]. Recent models for friction based on

the work of [Dahl, 1968] have addressed the Stribeck effect [Wit et al., 1995] and incorporated

elastoplastic effects into the presliding region [Dupont et al., 2002] [Hayward et al., 2009].

However, performing a null-space optimisation using a model-based estimate of the current

friction on the robot’s joints can result in motions which are undesirable for hands-on robotic

surgery. As opposed to the effective mass and inertia at the end effector which depend only

on the joint angles and the direction of motion, the friction at the tool point exhibits an

additional dependence on the velocity of the tool, outside of the static friction regime [Olsson

et al., 1998] [Bona and Indri, 2005]. As a result, changes in the direction and magnitude of the

velocity of the end effector cause the direction and magnitude of the friction forces and torques

at the tool point to change. Therefore, in an optimisation scheme which utilised an accurate

model-based estimate of the joint friction, quick changes in the velocity of the tool would result

in rapid reconfiguration of the redundant degrees-of-freedom in order to maintain an optimal

pose with respect to these changing values. Clinical application of such a strategy would likely

be difficult, as such rapid changes would be disconcerting for the surgeon. Additionally, these

changes in direction and corresponding reconfigurations may cause the system to spend more

time in non-optimal poses as it transitions between the optimal joint configurations, lessening

the reduction in friction which the controller would have.

Such a control strategy would also only optimise when the robot was in motion, as the frictional

forces and torques at the end effector are zero when the robot is stopped. An optimisation

technique which could continue to reconfigure the redundancy to ensure low friction for the

next motion of the tool would be able to reduce the frictional effects of that motion.
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As the surgeon is in control of the motion of the tool and, hence, the speed and direction of

the surgical procedure, the motion of the tool is unknown to the robot controller. Research has

been performed into understanding and predicting the surgeon’s intent, however, this research

has been limited to general task descriptions (e.g. place or position) [Hundtofte et al., 2002] [Li

and Okamura, 2003] or has focused on high level workflow decisions [Rosen et al., 2006] [Holden

et al., 2014] due the complexity of such a task. Alternatively, by providing a joint configuration

which reduces the overall frictional forces and torques at the end effector, these effects could be

lessened regardless of the subsequently surgical instrument motion.

As a result of these concerns, optimality measures for the friction force and torque at the tool

point have been developed, which are independent of the velocity of the robot’s joints, in order to

prevent rapid reconfigurations of the redundancy to accommodate changes in the frictional forces

and torques resulting from quick tool velocity changes. In addition, this methodology configures

the robot to ensure a general improvement in these quantities regardless of the direction of

motion as the intended motion of the surgical instrument is unknown to the controller.

First, this chapter will develop joint velocity independent optimality metrics for the frictional

force and torque at the end effector using the novel concept of the “potential velocity” of the

end effector, which is used to create a theoretical friction force and torque at the tool point

for which to optimise. Simulation results on a seven degree-of-freedom lightweight robot will

demonstrate the effectiveness of the overall and directional mass and friction optimisations over

the robot’s workspace. Next, the trade-offs when performing a combined mass and friction

optimisation are examined and the impact of modeling uncertainty on end effector friction

is investigated. Finally, the results of an experimental point-to-point user trial demonstrate a

reduction in the work required to move the tool, as compared with standard surgical redundancy

resolution techniques, indicating a more natural motion when using the proposed optimisation

strategies.
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4.2 End Effector Friction Force and Torque Optimisation

When the surgeon applies forces and torques to the end effector, he or she not only feels the mass

and inertia of the manipulator, but also the joint friction torques. As shown previously in Section

3.2, the joint friction torques can be projected onto the end effector using the dynamically

consistent inverses of the Jacobian (3.3) to find the effective friction force and torque which the

surgeon feels at the tool point.

FEE
f , J

T

v τf and τEE
f , J

T

ωτf (4.1)

where τf is the vector of joint friction torques, J
T

v and J
T

ω are the dynamically consistent inverses

of the linear and angular Jacobians, respectively, and FEE
m and τEE

m are the vectors of forces

and torques, respectively, at the end effector resulting from the motor torques.

4.2.1 Directional End Effector Friction Force and Torque Optimality Mea-

sures

Friction models such as [Wit et al., 1995] and [Dupont et al., 2002] aim to accurately model

the friction forces present at the joint by incorporating complex effects such as stiction and the

Stribeck effect. These models typically exhibit a dependence on velocity outside of the static

friction regime [Olsson et al., 1998] [Bona and Indri, 2005].

However, using an accurate real-time estimation of the current joint friction to optimise the pose

of the robot in hands-on robotic surgery can lead to behavior that is undesired. In such a set-up,

rapid changes in the velocity of the end effector may cause the direction and magnitude of the

frictional forces and torques to quickly change and, as a result, cause the system to reconfigure

rapidly to optimise these changing values. Such rapid changes are likely to be disconcerting

for the surgeon and dissuade clinical usage. Secondly, with an accurate friction estimate, if the

surgeon was not moving the tool, the robot would no longer change configuration. A strategy

which is able to continuously optimise when the robot is at rest would be able to reduce the

frictional effects for the next motion. Lastly, I assume that I do not know the surgeon’s intended
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motion. Therefore, a general optimisation strategy, which can reduce the friction that would

occur regardless of the direction of the next motion, would be advantageous.

For these reasons, I have developed a methodology which sacrifices the precision of the true

frictional forces to allow for values which are more consistent with the joint pose rather than

the velocity in order to simplify the optimisation and to avoid the aforementioned issues. To do

this, I propose the concept of the “potential velocity” of the end effector, which is to be used

in combination with a standard joint friction model. At the current pose, the joint velocities

required for the end effector to move at a particular velocity at a specified pose can be computed

using the dynamically consistent inverse of the linear and angular Jacobians.

q̇Pv , Jvẋp and q̇Pω , Jωωp (4.2)

q̇Pv and q̇Pω are defined as the vectors of potential joint velocities for a potential end effector

linear velocity, ẋp, or angular velocity, ωp.

The potential joint velocities for a given direction and speed can be used to compute the

potential frictional force and torque at the end effector, FEE
f (q̇Pv ) and τ

EE
f (q̇Pω ). The potential

friction here does not represent the true friction occurring at the end effector at the current

time. Rather, it represents what the friction would be if the device were moving at the potential

velocity at the current pose. In this way, the friction being optimised is more closely tied to

the current pose, as opposed to the current velocity. To minimise the potential frictional force

or torque for a given direction and speed, it suffices to minimise the squared magnitude of the

friction vector.

cdf = ‖FEE
f (q̇Pv )‖

2 and cdτ = ‖τEE
f (q̇Pω )‖

2 (4.3)

By optimising friction when moving at the potential joint velocities, the robot will continue to

optimise even at rest and avoid rapid reconfiguration due to changes in tool motion direction

and speed.
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4.2.2 End Effector Friction Force and Torque Optimality Measures

To achieve general optimisation with respect to frictional force and torque when moving the

robot in any direction, I utilise a summation of the directional optimisation measure in the

orthogonal Cartesian directions. The optimality measure associated with frictional force can be

expressed as,

cf =
3

∑

i=1

‖FEE
f (q̇P,iv )‖2 (4.4)

where q̇P,1v = Jvẋ, q̇
P,2
v = Jvẏ, and q̇

P,3
v = Jv ż are vectors of potential joint velocities associated

with unit linear velocities in the three Cartesian directions, ẋ, ẏ, and ż using (4.2).

Similarly, the optimality measure associated with frictional torques can be expressed as,

cτ =

3
∑

i=1

‖τEE
f (q̇P,iω )‖2 (4.5)

where q̇P,1ω = Jωωx, q̇
P,2
ω = Jωωy, and q̇P,3ω = Jωωz are the potential joint velocities associ-

ated with unit angular velocities about the three Cartesian directions, ωx, ωy, and ωz using

(4.2).

Multiple end effector velocity directions and combined optimisations of frictional forces and

torques can be accomplished using a weighted sum. Similarly to (3.11) and (3.14), a weighted

sum is required for combined optimisations, since forces and torques can not be directly added.

ccf = wf

n
∑

i=1

‖FEE
f (q̇P,iv )‖2 + wτ

m
∑

j=1

‖τEE
f (q̇P,jω )‖2 (4.6)

4.2.3 Combined Optimisation

Finally, the optimality measures developed above can be combined into a single metric, in which

each measure must be weighted according to, for example, relative importance or expected
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effect,

c = wmcm + wici + wfcf + wτ cτ (4.7)

where wm, wi, wf , and wτ are the weights for the mass, inertia, frictional force, and frictional

torque metric respectively.

4.2.4 Kuka LWR 4+ Friction Model

The robot I will be using for testing these measures in simulation and in an experimental setup

will be the Kuka LWR 4+ (Kuka Robotics GmbH), which has seven degrees-of-freedom and

is able to be controlled in impedance mode. To perform friction optimisation, an appropriate

joint friction model for the robot must be chosen.

The LWR 4+ is intended for compliant assembly in industrial tasks and, as such, aims for

a higher payload (7kg) than traditional impedance systems. To accomplish this, the system

is inherently non-back-drivable and, instead, provides a virtual impedance through modeling.

This, however, results in a limitation of the system whereby each joint on the Kuka in impedance

mode requires 1.5Nm of torque before it will move. This limitation can be viewed as a virtual

friction which I can use in optimisation.

To prevent discontinuities in optimising, a smooth approximation to the friction present in the

LWR is used,

τf = τmax

(

2

π

)

arctan (βq̇) (4.8)

where τmax is the maximum frictional torque and β is a parameter which affects the slope of

the friction torque near zero. As β tends to infinity, τf approaches τmaxsgn(q̇).
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Figure 4.1: A visualisation of the local overall minimum mass pose (green) and the local overall
maximum mass pose (red) overlaid on the initial joint posture (white).

4.3 Simulation Results and Discussion

Simulations were performed on a PC (i7-2600 @ 3.4 GHz) running Ubuntu 12.04, implemented

using the ROS (www.ros.org) and OROCOS (www.orocos.org) frameworks. The kinematics

and dynamics of the robot were provided in a library by Kuka and these equations of motion

of the robot were integrated using the Dormand Prince 5 method [Dormand and Prince, 1980]

provided by the odeint library in boost::numeric (www.boost.org).

4.3.1 Effectiveness of Overall Optimisations Over the Robot’s Workspace

To demonstrate the effectiveness of considering mass, inertia, friction force, and friction torque

over the workspace of the LWR, I aim to show that, for a large sample of arbitrary, non-singular,

initial joint angles and corresponding end effector poses, the difference in these quantities be-

tween the local minimum posture and the local maximum posture is substantial in a majority

of cases. The local minimum and maximum postures are defined as the sets of joint angles



CHAPTER 4. REDUNDANT MASS AND FRICTION OPTIMISATION 86

corresponding to the local minimum and maximum, respectively, of the optimisation measure,

relative to the initial pose. Figure 4.1 depicts an example of the local minimum and maximum

postures overlaid on the initial joint posture.

1000 random, non-singular, initial joint configurations were found by drawing from a uniform

distribution over the robot’s joint limits for each link and testing for singularities by computing

the singular value decomposition of JJT . Keeping the initial end effector position and orienta-

tion constant, the robot was then optimised using (3.18) from the initial joint angles with the

parameters of (3.16) set to kp = 50, kd = 10, and ωmax = 10rad/s. c was set to the respective

version of (3.10) for mass and inertia and the respective version of (4.4) for friction force and

torque. As (3.16) is used to minimise the optimisation criterion, a modified version was used

to obtain the local maximum:

ωdes =
kp∇c

kd

vd = min

(

1,
ωmax

|ωdes|

)

Fp = −kd(q̇ − vdωdes)

(4.9)

Figure 4.2 depicts the resulting percentage change in the optimisation quantities across all

the trials between the local minimum and maximum configurations, arranged in ascending or-

der. Additionally, Table 4.1 summarises the means and standard deviations of the percentage

improvements that the local minimum configurations represent, relative to the maximum con-

figurations for each criteria over the 1000 trials. For each of the optimisation measures, the

minimum configurations, on average, represent a substantial reduction in their respective opti-

misation quantity, relative to the maximum configurations. Therefore, the overall mass, inertia,

friction force, and friction torque are reduced over the workspace of the robot using our proposed

methods and, as a result, a more natural motion will occur when using these techniques.

4.3.2 Effectiveness of Directional Optimisations Over the Robot’s Workspace

Similarly, the effects of the directional mass, inertia, friction force and friction torque optimi-

sation over the workspace of the robot were examined by optimising on a set of random joint
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Figure 4.2: The percent change in the local minimum and maximum mass postures (a), the
local minimum and maximum inertia postures (b), local minimum and maximum friction force
postures (c), and the local minimum and maximum friction torque postures (d) for 1000 random
poses.

Mass Inertia Friction Force Friction Torque

Mean (%) 44.23 49.99 41.44 52.26

Standard Deviation (%) 20.97 27.67 21.93 29.67

Table 4.1: Mean and standard deviations of the percentage reduction at the optimal pose
relative to the maximum pose for the overall mass, inertia, friction force, and friction torque
optimisations.
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configurations, sampled over the robot’s workspace. 1000 random, non-singular, initial joint

configurations were found by drawing from a uniform distribution over the robot’s joint limits

for each link and testing for singularities by computing the singular value decomposition of JJT .

The robot was optimised in the downward direction using (3.18) from the initial joint angles,

while keeping the initial tool pose constant with the parameters of (3.16) set to kp = 50, kd = 10,

and ωmax = 10rad/s. c was set to the respective versions of (3.13) for mass and inertia and

the respective versions of (4.3) for friction force and torque. Similarly to the previous section,

a modified version of (3.16) was used to find the local maximum (4.9).

The results of these simulations can be found in Figure 4.3, which shows the percentage change

in the effective optimisation criteria across all the trials between the local minimum and maxi-

mum configurations, arranged in ascending order. The means and standard deviations over the

1000 trials for each metric of the percentage improvements that the local minimum configura-

tions represent relative to the maximum configurations are shown in Table 4.2. The effective

mass and friction force in the negative vertical direction and the effective friction torque about

the downward direction are substantially reduced on average across the trials at the local min-

imum poses, as compared to the local maximum poses. These quantities are lessened over the

workspace of the robot, demonstrating the efficacy of our methods in creating a more natural

motion in the preferred direction.

There is a less substantial change in the directional inertia about the vertical direction, on

average, than in the other quantities for the Kuka LWR, however, the optimisation does reduce

the effective inertia for most poses. Figure 4.4 depicts a case in which there is very little change

in the inertia about negative vertical direction at the tool point by overlaying the optimal pose

and least optimal pose on top of the initial joint configuration. While the optimal and least

optimal joint poses are far apart, there is less than a 1% change in the directional inertia for

this end effector pose.

This reduced impact is due to the rotation axis of the final joint aligning with the desired

optimisation axis. The degree to which this alignment occurs affects the amount to which the

effective inertia can be reduced, since this joint must always be rotated regardless of the null-

space posture, when it is not orthogonal to the desired rotation axis. The null-space based
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Figure 4.3: The percent change in the effective mass (a), effective inertia (b), effective frictional
force (c), and effective frictional torque (d) in the vertical direction between the corresponding
local minimum and maximum postures for 1000 random poses.

Mass Inertia Friction Force Friction Torque

Mean (%) 49.99 12.86 49.15 50.83

Standard Deviation (%) 25.05 18.61 23.14 31.48

Table 4.2: Mean and standard deviations of the percentage reduction at the optimal pose
relative to the maximum pose for the directional mass, inertia, friction force, and friction torque
optimisations.
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Figure 4.4: A visualisation of the local minimum inertia pose (green) and the local maximum
inertia pose (red) overlaid on the initial joint posture (white), for a case in which there is limited
improvement in the inertia about the vertical direction.

optimisation scheme cannot affect the inertia about the final joint axis, however, off-axis inertia

is affected by the positions of the other joints, which is why the overall inertia optimisation

controller more substantially decreases the inertial in the principal directions.

4.3.3 Combined Mass and Friction Optimisation Trade-off

As mass, inertia, friction force, and friction torque have different units of measurement, there

must be a weighted trade-off to simultaneously optimise any of the two quantties. Figure 4.5

depicts an example of this trade-off using RVIZ (wiki.ros.org/rviz), by overlaying the optimal

mass pose, optimal frictional force pose and an equally weighted trade-off solution.

The weights in a multivariate optimisation determine the relative importance of the quanti-

ties being optimised. However, if the optimal poses are too far apart, which can occur when
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Figure 4.5: A comparison of the optimal mass pose (red), optimal frictional force pose (green),
and an equally weighted trade-off pose (blue).

optimisation goals are conflicting, a trade-off solution may not work well in reducing either

quantity and only one of the criteria must be chosen. This section aims to determine, on the

Kuka LWR 4+, how much of an optimisation trade-off occurs in general and to find reasonable

weight parameters to be used in the experiments.

To examine the effect of weighted optimisation, weighted solutions for 1000 random configu-

rations were simulated and the resulting optimality measures were compared with the optimal

mass poses and optimal friction force poses. Weighted simulations for 90%-10%, 50%-50%, and

10%-90% mass-friction ratios were performed.

Figure 4.6a shows the percentage trade-off for the principal mass component for the weighted

solutions, compared with the optimal mass configurations found in Section 4.3.1. Similarly,

Figure 4.6b depicts the percentage difference for the magnitude of the friction force vectors

of the weighted solutions compared with the optimal frictional force pose found in Section

4.3.1.

In the majority of cases, the weighted optimisation does not have a substantial effect on the

mass and frictional force values, as compared to the single optimisation results. Indeed, the
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Figure 4.6: Percentage change in the largest principal mass component between the optimal
and weighted trade-off solutions (a) and percentage change in the magnitude of frictional force
vectors between the optimal and weighted trade-off solutions (b).
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Figure 4.7: The L2 distance between the optimal mass and friction force poses for 1000 random
trials (a) and the mass and frictional force measures for a complete rotation of one of the
joints for a single pose, demonstrating the local optima that can be found in the frictional force
measure.
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change is close to zero because the distance between the optimal frictional force and mass poses

is small in general, as shown in Figure 4.7a, which depicts the L2 joint distance between the

local optimal mass and local optimal frictional force postures.

For a small subset of cases, the frictional force is lower in the combined optimisation than at

the local friction measure minimum. This is due to the greater degree of nonlinearity present

in the friction model, which leads to having more local optima. To illustrate this, Figure 4.7b

depicts the mass and friction force measures for a full null-space rotation of a single pose in

which the friction force measure was better at the mass optimum. This figure is parameterized

by joint 3 as this joint completes a full 2π rotation during the null-space motion. A local

friction force optimum exists at q3 = 0.4557rad while the global friction force optimum is at

−0.8445rad, which is very close to the mass optimum at −0.8599rad. As a result, in select

cases, the combined optimisation leads to a better result in friction.

Overall, the results demonstrate that the trade-off on the Kuka LWR 4+ is minimal in general

and therefore, a weighted trade-off solution is valid for the device. To implement the strategy

on the experimental system, the weighting coefficients must be selected. One way that these can

be chosen is on the basis of the relative magnitudes of the friction and mass (i.e. a system which

is more affected by friction is more heavily friction weighted). However, attempting to compare

the relative worth of mass in kilograms and friction in Newtons can be difficult. Alternatively,

the choice can be made based on the relative improvements made by the strategy (i.e. a system

with high mass but very little null-space improvement is weighted more towards friction). We

suggest performing simulations optimising mass and friction over the workspace as done in

Section 4.3.1 and weighting based on the averages of the resulting percentage improvements.

As these percentage improvements are approximately the same on the LWR (44.23% for mass

as compared to 41.44% for friction), a 50%-50% mass-friction ratio has been chosen for the

experiments.

4.3.4 Impact of Modeling Uncertainty on Optimisation

The dynamic parameters and frictional torques on the joints of a real system can be estimated

using techniques such as [Sousa and Cortesão, 2014], [Gautier et al., 2013], and [Kermani et al.,
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Figure 4.8: Model uncertainty optimisation results for frictional force using normally distributed
joint friction estimates.

2007]. However, there can still be a mismatch between the real values and the estimates, which

may have an effect on the optimisation with these parameters. In Section 3.5.4, it was shown

that reasonably small variations in the inertial parameters do not have a substantial effect on

the outcome of the optimisation for mass through 1000 random trials of a single pose, where the

inertial parameters were drawn from a normal distribution with mean equal to the true value

of the parameter and standard deviation arbitrarily set equal to 10% of its value.

To investigate the effects of frictional torque estimation on optimisation, a series of trials were

performed to compare the optimisation results using the true joint friction values and the

results found using estimated joint friction values, which were drawn from a normal distribution,

τf,e ∼ N (τf , (0.1τf )
2). 100 trials were performed for each of 100 random poses (10,000 trials

in total).

Figure 4.8 depicts the percentage increase in the magnitude of the friction force for the estimated

joint friction optimisation, as compared to the friction force found using the true friction values,

arranged in ascending order. The results demonstrate that the resulting friction vector, when

optimising using the joint friction estimates is, in the worst case, 5.298% larger in magnitude

than the optimal vector found using the true friction values. The average increase was 0.0631%

with a standard deviation of 0.361%. As compared to the optimisations of Section 4.3.1, in

which the average decrease in the friction vector using the optimisation strategy was found to
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be 41.44%, the results suggest that this level of parameter variation does not have a large effect

on optimisation.

4.4 Experimental Results and Discussion

So far, I have demonstrated the efficacy of the proposed methods over the workspace of the

Kuka LWR 4+ on static end effector poses in simulation. This section aims to validate our

technique in a experimental setup, in which the end effector’s position is changing over time.

The point-to-point user trials performed here demonstrate the method results in a reduction in

the work required to move the tool over conventional surgical null-space controllers and, hence,

a more natural motion for the user.

4.4.1 Kuka LWR 4+ Implementation

To implement our methods on the Kuka LWR 4+, the control strategy presented previously

for simulation needed to be adapted. Kuka provides three controllers for the LWR 4+; joint

position, joint impedance, and Cartesian impedance. However, the joint impedance mode fo-

cuses on setting desired positions along with stiffness and damping parameters, rather than

directly setting torques or current, which the null-space gradient methodology requires. Addi-

tional joint torques can be added in joint impedance mode, but, due to the filtering performed

by the Kuka controller and the 1.5Nm friction threshold discussed in Section 4.2.4, I found

the system quite difficult to control using only joint torques, particularly for null-space motions

that require more precise combinations of torques to ensure that they do not affect the main

task. Cartesian impedance mode, which can be used to set end effector stiffness, damping,

position and orientation, has additional null-space parameters which can be to used set the

position, stiffness and damping of a joint positioning task projected into the null-space of the

Cartesian pose. However, this again does not allow us to use the original formulation of our

optimisation, as the null-space based gradient descent directly computes torques as opposed to

positions.

To allow us to implement our controller on the robot, I utilised the Cartesian impedance mode
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Figure 4.9: Data flow diagram of optimisation controller with Kuka LWR where xEE is the
current Cartesian pose of the robot, kEE is the desired Cartesian stiffness, dEE is the desired
Cartesian damping, qD is the desired null-space joint angles computed by the dynamic simula-
tion, kq is the desired null-space joint stiffness and dq is the desired null-space joint damping.

with the additional null-space parameters, in combination with a forward simulation of the

dynamics using the controller from the simulations (3.18). Figure 4.9 shows a diagram of the

controller’s data flow. The current Cartesian pose of the robot, xEE , is received through the

Fast Research Interface (FRI) [Schreiber et al., 2010] of the robot controller via User Datagram

Protocol (UDP). This pose is set to the desired end effector pose in a dynamic simulation of

the system, which uses the proprietary rigid body dynamic library of the LWR provided by

Kuka and the control torques computed using (3.18) to integrate the system one time step into

the future using the Dormand-Prince 5 method [Dormand and Prince, 1980], provided by the

odeint library in boost::numeric.

The robot is then commanded through the FRI using the current Cartesian pose of the Kuka,

with the Cartesian stiffness and damping, kEE and dEE respectively, set to zero. The joint

angles on the forward simulated system, qD, are commanded as the joint angles in the null-space

controller of the Kuka, with an appropriate stiffness and damping, kq and dq. To minimise any

errors in the null-space control affecting the user’s commands, lower gains of 100Nm/rad for

the stiffness and 0.1 for damping were used.

1 kHz communication was achieved through the FRI on a PC (i7-3770 @ 3.40 GHz) running

Ubuntu 12.04 (www.ubuntu.com), with the Xenomai real-time kernel patch (www.xenomai.org),

RTnet for real-time networking (www.rtnet.org), and OROCOS for real-time processing compo-
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nents (www.orocos.org). On this system, the forward simulation of the dynamics for a time step

of 1ms was computed in approximately 0.8ms for the worst case of simultaneously computing

all of the optimisation gradients.

The resulting behavior of this controller mimics the simulations above and takes advantage of

the tuned, low level controllers of the Kuka. It assumes that the flexible joint dynamics are

handled by the Kuka controllers, i.e. the Kuka is a rigid body robot, and that the rigid body

dynamic model provided by Kuka is accurate. In 3.5.4, mass optimisation simulations were

performed using estimated model parameters, which were drawn from a normal distribution

with mean equal to the true value of the parameter and the standard deviation equal to 10%

of its value. It was found that small variations from the true values of the inertial parameters

do not affect the results of the optimisation substantially. Section 4.3.4 demonstrates similar

results for frictional optimisation.

4.4.2 Kuka LWR 4+ Experimental Setup

Figure 4.10 depicts the experimental setup which includes the Kuka LWR 4+, ATI Gamma

force/torque sensor (www.ati.ia.com) for measuring the subject’s applied forces and torques,

3D printed tool, and the mock surgical target. The Gamma force/torque sensor was calibrated

with a range of 32N and resolution of 1
160N for forces in the x- and y-direction, a range of

100N and resolution of 1
80N for forces in the z-direction and a range of 2.5Nm and resolution

of 1
2000Nm for torques.

The experiment aims to demonstrate that the methodology presented here allows for a more

natural motion in that it requires less work to perform the same task, when compared to

conventional surgical controllers. As I am not applying guiding forces to the end effector,

the user’s strategy to maneuver the tool can affect the results since work is path dependent.

To reduce the degree of this variation and to more clearly see the effect of the optimisation,

the experiments focused on optimising mass and frictional force only and utilised a mainly

translational task — a series of point-to-point motions. The experiments also solely focused on

translation due to the complexity of designing a 6D target and to reduce the time required to

perform the experiments, already approximately 30-40 minutes per subject.
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Figure 4.10: Experimental setup consisting of Kuka LWR 4+ (1), ATI Gamma force/torque
sensor (2), 3D printed tool (3) and surgical target (4).

Additionally, while the Kuka LWR 4+ provides the required redundant, compliant interface,

it is still a research system and does not have the capability to operate on the small scale

required for a minimally invasive surgery. Current hands-on surgical robots are capable of

aligning orthopedic joint replacement implants within 2mm and 5 ◦ of the preplanned implant

position [Citak et al., 2013], a level of precision the LWR cannot achieve. Therefore, the task

in which I will evaluate the effectiveness of our controller will function on a larger scale than is

typical in conventional, hands-on robotic surgery.

A total of 8 engineering students and post-docs participated in the trials, 5 men and 3 women,

with ages ranging from 20-34. 50% of the subjects had not worked on or with a robot previously.

The subjects were asked to grip the 3D printed tool and not the robot’s body. As the focus
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of this experiment was on the optimisation of mass and frictional force, both translational

quantities, the subjects were asked to keep the tool’s orientation approximately normal to the

surgical target. To reduce stress on the subjects’ wrist, however, rotations about the normal to

the surgical target were allowed. Prior to performing the trials, the subjects were given some

time to familiarise themselves with the controllers, but were not given details about the aim of

the controllers or the experiment in general.

Six reference points were chosen on the body of the surgical target. Subjects moved the tool to

touch these points in five different orders, which were generated randomly and ordered randomly

to avoid selection and training bias. The subjects maneuvered through these five sets of points

three times for each of four controllers. For each subject, the order of the controllers was also

random to avoid training bias. The controllers used in this experiment were active optimisation

of mass and frictional force, fixed optimal posture and two other controllers, which I believe

to represent the current state-of-the-art in hands-on robotic surgery: elbow up control and

damped posture control. Due to the absence of published control strategies for redundant,

hands-on surgical robots, I drew this conclusion based on direct experience with the only two

commercial systems of this kind, the Mako Rio (now of Stryker Corp.) and the Stanmore

Implants Worldwide Sculptor (now also of Stryker Corp.).

Active optimisation was performed using a ratio of 50% − 50% mass measure to frictional

force measure, as the system demonstrates an equal reduction in these quantities under our

optimisation technique, as discussed in Section 4.2.3. The parameters of (3.16) were set to

kp = 50, kd = 10, and ωmax = 10rad/s, the potential velocity was set to 5cm/s for the reasons

explained in Section 4.3.3, and the null-space parameters on the Kuka were set to knullp = 100

and knulld = 0.1.

In 3.5.6, a fixed optimal posture solution was shown in simulation to perform nearly as well as

active optimisation. This strategy aims to allow for the benefits of mass and friction optimisation

to still be taken advantage of in situations where the surgical environment is heavily constrained.

By pre-operatively finding the optimal solution for the region in which the majority of the

surgery will take place, a constant redundancy position control strategy can be used to minimise

the squared joint position to this optimum and the surgical equipment can be arranged around
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an already optimised robot. By including this controller here, I aim to verify that this type of

strategy works in an experimental setup.

The elbow up controller maneuvers the redundancy to keep the robot out of the general work

area of the end effector. This type of control aims to keep the elbow above the end effector and

out of the way of the surgeon. The damped posture controller applies gravity compensation and

damping to the redundancy of the robot. This controller is typically used as a simple way for the

user to reconfigure the robot manually during tasks. The redundancy remains approximately

constant while moving the end effector and a force can be applied to the redundancy to adjust

it accordingly.

The elbow up and fixed optimal posture strategies were implemented using the Cartesian

Impedance mode in the FRI by setting zero stiffness and damping in the Cartesian task and

commanding the necessary constant joint posture in the null-space, with stiffness equal to

100Nm/rad and damping ratio equal to 0.1. The damped posture controller was the default

gravity compensation provided by Kuka, which exhibits the damped postural characteristics

required.

4.4.3 Kuka LWR 4+ Experimental Results and Discussion

Natural motion focuses on reducing the amount of effort it takes for the surgeon to move the tool

attached to the robot. Therefore, the metric used here to compare the control methodologies

is the sum of the absolute value of work over each trial (i.e. the amount of energy the users

transferred to the end effector). The work was computed using the difference in the Cartesian

position calculated from the joint position encoders and the wrench from the force/torque

sensor.

For a single trial of one of the subjects, the cumulative work over time for all four controllers is

shown in Figure 4.11. The damped posture and elbow-up controllers result in more work over

time as compared with the fixed and active optimisation trials. Additionally, the separation

between the standard and optimal controllers appears to be increasing over time, suggesting

that the effect would increase in longer tasks, such as those that take place in surgery.
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Figure 4.11: Comparison of the cumulative work for one user’s trial over time for each experi-
mental test controller.

For the results for all subjects, the work of each trial was normalised by the length of the path

over the trial to account for variations in the lengths of the randomised paths. Additionally,

as I am not applying guiding forces to the end effector, the precise path cannot be prescribed.

General contact-to-contact point style motions, such as those in the trials, exhibit a parabolic

shape, however, there exist user specific variations to these motions including the height of

the trajectory and the amount of deviation from the vertical plane passing through sequential

points [Ziherl and Munih, 2009]. These variations and the amount of rotation applied to the

tool must be taken into consideration as work is path-dependent.

To account for these factors and compare the results between subjects, the length normalised

work of each trial was additionally divided by the mean of the control method with the highest

length normalised work per person. This allows us to examine the relative improvement be-

tween users for the various control methods, taking into account user control variability. The

normalisation can be summarised as follows:

W i,j,k
n =

W
j,k
i

Lj

maxm
1

Ntrials

∑Ntrials

l=1
W

l,m
i

Ll

(4.10)

W j,k
i , the work of subject i for trial j of path k, is divided by the length of the trial, Lj , and then
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Figure 4.12: The median and IQR for the cumulative normalised work value (a) and mean
torque orthogonal to the direction of motion normalised by the control method with the highest
torque (b) across subjects for the four controllers.

by the mean of the path with the highest average length normalised work for subject i.

Figure 4.12a depicts the normalised absolute value of work for all subjects across the experimen-

tal trials for each of the four controllers. The Komogorov-Smirnov test for normality was used

to determine that at least one of the work distributions was not normal. Therefore, the non-

parametric Kruskal-Wallis one-way analysis of variance test was employed to demonstrate that

at least one of the distribution’s medians was different from at least one other group (p < 0.01).

Pairwise comparisons were made using the Dunn-Sidak test to analyse the specific pairs for

dominance. Table 4.3 depicts the results of this test, where a 1 indicates a significant differ-

ence at the 0.01 level and a 0 indicates the opposite. The results demonstrate that the fixed,

pre-optimised solution and active optimisation strategies differ significantly from the damped

and elbow-up strategies. This shows that the optimisation strategies developed here require less

work to perform the same task as compared to standard hands-on surgical redundancy control

strategies and therefore, they create a more natural motion.

Damped Elbow-Up Fixed Active Opt

Damped X 0 1 1

Elbow-Up 0 X 1 1

Fixed 1 1 X 0

Active Opt 1 1 0 X

Table 4.3: Dunn-Sidak results for the experimental trials where a 1 indicates a significant
difference at the 0.01 level and a 0 indicates the contrary.
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Additionally, Figure 4.12b depicts the mean magnitude of the torque orthogonal to the direction

of rotation, normalised per user to account for within subject variation. The Kruskal-Wallis test

determined that at least one of the distribution’s medians was different from at least one other

group (p < 0.01). The Dunn-Sidak test was used to determine that the damped and elbow-up

differ significantly from the fixed and active optimisation strategies at the 0.01 significance level.

As the trials focused on translational motion, these torques can be interpreted as those which

the users applied to ensure a consistent orientation of the end effector. The higher value in the

damped and elbow-up trials would suggest that the users found it more difficult to deal with the

tool, when compared to the fixed and active optimisation cases. Indeed, all subjects informally

commented that the natural motion controllers were much easier to perform the task than the

damped and elbow-up modes.

Lastly, the results indicate that the fixed, pre-optimised control strategy can perform nearly

as well as the active optimisation in situations where the set of poses that the surgeon will

use to perform surgery do not differ significantly from the optimal pose, which is generally the

case in minimally invasive surgery. This demonstrates that, even in heavily constrained surgical

environments, where changes in redundancy are limited, considering end effector mass and

friction can reduce the impact of the end effector dynamics on the surgeon. In less constrained

environments, with more significant changes in the end effector poses, the active optimisation

controller would be expected to improve results over the fixed optimisations.

4.5 Summary

This chapter has presented a null-space based optimisation methodology which reduces the

projection of the joint friction onto the end effector in order to provide the surgeon with an

experience that is closer to the tool unattached to the robot. Performing a null-space optimisa-

tion of the friction at the end effector directly using the joint friction values estimated from a

model would result in rapid changes in the robot configuration when quickly changing direction

of the end effector. In addition, no optimisation would occur when the system was at rest since

the friction would be zero in such a case. A strategy which continues to optimise when the

surgical instrument is not moving is able to ensure a low friction when the next motion takes
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place. Lastly, as the surgeon is in complete control of the tool, I do not have knowledge about

the direction and speed of the next instrument motion. A methodology which can configure

the robot such that the surgeon feels lower friction regardless of the next direction of motion is

advantageous. Therefore, I have developed the “potential velocity” concept to create a friction

optimisation criterion which is joint pose consistent and can provide a general optimisation with

respect to arbitrary motions for our natural motion strategy.

This chapter has developed overall and directional optimality measures for the friction force

and torque at the tool point using the “potential velocity” of the manipulator. Simulation work

has demonstrated the effectiveness of the proposed mass and friction metrics in reducing their

respective quantities over the workspace of a seven degree-of-freedom lightweight serial manipu-

lator. Additionally, a small trade-off was found when performing a combined mass and friction

optimisation for this particular robot. An investigation into the effect of optimising friction us-

ing estimates of the true friction parameters on the robot demonstrated that, for a given level of

parameter variation, there was not a large effect on the resulting optimal pose and corresponding

friction. Lastly, an experimental point-to-point motion user trial demonstrated a reduction in

work when moving the tool, as compared to classic redundancy resolution techniques, resulting

in a more natural motion for the subjects.

In the following chapter, a dynamic active constraints approach will be developed, which will

prevent surgical tool motion into deforming soft tissue regions which have been deemed unsafe

or unnecessary for the surgery. This strategy will generate an implicit constraint surface directly

from point clouds, as this allows the strategy to be applied to various sensing modalities for

intra-operative soft tissue deformation tracking, expanding the methodology’s application to a

variety of surgeries. Simultaneous control of the dynamic active constraints strategy in Chapter

5 and the mass and friction optimisation presented in this chapter will be performed in Chapter

6, through a virtual reality ultrasound scenario.



Chapter 5

Dynamic Active Constraints through

Implicit Surfaces

This chapter presents a novel hands-on control methodology for generating meshless dynamic

active constraints directly from point clouds using implicit surfaces. By creating the dynamic

active constraints from point clouds, this method can be applied to general soft tissue tracking

strategies, such as CT scans, MR imaging, and stereo cameras and therefore, to a variety of

surgical procedures. Additionally, the control technique presented here utilises the dynamics of

the robot to ensure an appropriate constraint impedance, a necessary requirement for hands-on

robotic surgery. The research presented here is an edited version of the work published in:

J. G. Petersen and F. Rodriguez y Baena, “A dynamic active constraints approach for

hands-on robotic surgery”, in Proceedings of the IEEE International Conference on Intel-

ligent Robots and Systems, pp. 1966-1971, Nov. 2013. ➞2013 IEEE.

5.1 Introduction

Chapters 3 and 4 demonstrated a natural motion control strategy which reduced the effects

of the end effector dynamics on the surgeon. By decreasing the effective mass and friction at

the tool point in the null-space, the surgeon’s ease of use was improved and fatigue over long

surgeries could be lessened, without the surgeon’s desired tool pose, velocity, or forces being

105
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affected. In this chapter, I develop a dynamic active constraints control strategy for hands-on

robotic surgery to aid in ensuring patient safety. The combined strategy of natural motion

and dynamic active constraints will be investigated in Chapter 6 in a virtual reality ultrasound

scenario.

Forbidden region active constraints in surgery are space sharing cooperative control strategies

which aim to prevent surgical tool motion into regions considered dangerous, or unnecessary for

the surgery. They have been successfully applied to procedures taking place on rigid anatomy

in commercial hands-on robotic systems such as the Rio (Mako Surgical Corp.) and the Navio

Precision Freehand Sculpting system (Blue Belt Technologies Inc.). Dynamic active constraints

aim to extend the applicability of active constraints to soft tissue surgeries and thereby, increase

accuracy and safety in these deforming environments.

Figure 5.1 depicts a simplified mock-up of a scenario for dynamic active constraints in hands-on

robotic surgery. As opposed to static active constraints which only require a rigid registration

with the bone structure being operated on, dynamic active constraints require an intra-operative

tracking system to precisely measure the deformations of the delicate tissue structures in order

to ensure the correct area is protected throughout the surgery. In addition, the motion and

deformation of the target and the forbidden regions is, in general, unknown a priori. Therefore,

the constraint representation must be able to handle arbitrary shapes and deformations resulting

from interactions between the surgical tool and soft tissue, patient breathing and pulsation, and

other effects such as brain shift [Slotty et al., 2012].

Current dynamic active constraint strategies place restrictions on the motion of the deforming

region or are restricted to particular representations of the underlying geometry, preventing

their applicability to general surgical procedures and constraint region tracking methodologies.

The dynamic virtual fixtures of [Ren et al., 2008] for beating heart surgery were precomputed

from MR and CT images and, therefore, were unable to handle unpredicted motion of the

heart, such as deformation due to tool contact or abnormal changes in the cardiac motion. The

teleoperative dynamic active constraints of [Gibo et al., 2009] were only demonstrated in one

dimension. [Navkar et al., 2012] provided a 3D strategy which was specific to constraining tool

motion inside blood vessels for heart surgery. Dynamic frictional constraints were demonstrated
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Figure 5.1: A mock-up of a scenario for dynamic active constraints in hands-on robotic surgery
consisting of a robot with attached tool, a deforming soft tissue target, and a tracking system.

in position and orientation by [Bowyer and Rodriguez y Baena, 2014], however, the method

required a mesh representation of the constraint geometry, thereby restricting its application to

sensing modalities which can accurately track and deform mesh vertices.

Dynamic active constraints require real-time updating of the deforming tissue with sufficient

procedure dependent accuracy to ensure the delicate anatomy is protected at all times. Regis-

tration of deforming soft tissue is an ongoing research problem, with various different methods

having been demonstrated in magnetic resonance imaging (MRI) [Ferrant et al., 2002] [Kerkhof

et al., 2009], ultrasound (US) [Wein et al., 2013] [Weon et al., 2015], computerised tomography

(CT) [Lawson et al., 2007] [Wein et al., 2008], stereo camera imaging [Ji et al., 2014] [Faria

et al., 2014], and laser range scanning [Cao et al., 2008] [Ding et al., 2011]. Many of these

strategies have not been shown to work in real-time or can only function at low accuracy in

real-time. In addition, the applicability of the sensing strategies is highly dependent on the

type of surgery being performed. A strategy which can generate the forbidden region directly

from point clouds is advantageous, as each of the above methods can be reduced to this data

form and, therefore, such a dynamic active constraints approach would not be dependent on
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the sensing strategy utilised and could be applied to more types of surgeries. Additionally, as

various sensing strategies improve in the areas of accuracy and speed or new sensing modalities

are developed, such a strategy could easily be transfered.

The methodology used in this research to generate the dynamic constraint surface from point

clouds is similar to work on constraint based haptic rendering for dynamic environments [Leeper

et al., 2012] [Rydén and Chizeck, 2013], in that these works use implicit surfaces to define the

constraint surface from streaming point clouds. However, the control strategy developed here

additionally incorporates the dynamics of the robot into the enforcement of the constraint. In

haptic rendering for teleoperation, safety issues for protecting the patient can be vastly simpli-

fied by decoupling the position of the master and slave device when the master penetrates the

constraint boundary. The slave can be position controlled to remain on the surface of the for-

bidden region, ensuring the tool does not reach the delicate tissue, while forces are commanded

to the user to return the master to free space. In hands-on robotic surgery, such a decoupling

strategy is not possible, as the surgeon and the robot jointly control the surgical instrument

and, as such, penetration into the constraint region will occur in impedance controlled devices.

Additionally, the physical contact between the robot and the surgeon couples the dynamics of

the two. Therefore, the dynamics of the robot must be incorporated into the enforcement of

the constraint to ensure an appropriate impedance to the surgeon’s forces and torques.

An alternative strategy to ensure the tool does not penetrate into the constraint region is to use a

non-backdrivable system with admittance control, such as that employed in [Taylor et al., 1999]

and [Bettini et al., 2004]. Non-backdrivable motors do not allow external torques to rotate the

motor shaft. Therefore, the robot cannot move without a command to the motors. Admittance

control systems translate the user’s applied forces and torques into linear and angular velocities

for the robot, typically in a proportional fashion. These so-called hard active constraints can be

implemented in such a control setup by completely removing the commanded forces and torques

which would maneuver the tool into the forbidden region when computing the desired velocity

for the robot.

However, the use of admittance controlled robots in hands-on robotic surgery removes a critical

enhancement that impedance control provides, that is, to allow the surgeon to directly feel
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the interaction forces between the robot and the surgical environment through the tool. The

surgeon can utilise this natural feedback to more precisely apply forces and torques to the target

tissue. A lack of this type of feedback has been linked to increased tissue damage [Joice et al.,

1998] [Wagner et al., 2002].

Joint level braking systems such as [Schneider and Troccaz, 2001] and [Tenzer et al., 2012] have

been developed in an attempt to implement hard active constraints for impedance controlled

systems. In addition to preventing motion into the forbidden region, these types of strategies are

energetically passive in that they can filter the user’s motion, but cannot apply forces to move

the tool. These types of devices are intrinsically safer than autonomous or actuated systems,

however, the application of braking torques at the joint level to impose constraints in Cartesian

space can be discontinuous. Additionally, implementing this type of strategy requires a robot

redesign to accommodate a brake at each joint. A software based solution for dynamic active

constraints in hands-on robotic surgery is much more easily applied to general devices, including

current clinically applied robots.

For all of the above reasons, a software based dynamic active constraints approach has been

developed, which has the potential to be applied in the future to current commercial hands-

on robotic surgical systems. The strategy can generate constraints directly from point clouds,

allowing the application of this method to general tracking methodologies, and the dynam-

ics of the robot have been incorporated into the enforcement of the constraint to provide an

appropriate impedance to the surgeon’s wrench.

This chapter will first demonstrate the metaball approach for generation of an implicit surface

from a point cloud. Next, the Implicit Function Jacobian will be derived, which defines the

normal to an implicit surface’s level sets. Dynamic active constraints using the Implicit Function

Jacobian will then be demonstrated, including a methodology which can incorporate predicted

motion. A multi-priority null-space task hierarchy will be applied to allow for simultaneous

application of the dynamic active constraints, unimpeded motion along the surface and posture

control for null-space optimisations. Simulations demonstrate the proposed control methodology

constraining a planar robot to constraint isosurfaces generated from two different points clouds,

one in which the point cloud’s motion is unknown and the other in which the point cloud’s motion
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is known. Finally, an experiment using a dynamic brain phantom and a lightweight seven degree-

of-freedom robot demonstrates the feasibility of the proposed method on a physical setup. The

dynamic active constraints strategy demonstrated in this chapter will be applied concurrently

in Chapter 6 with the natural motion strategy developed in Chapters 3 and 4.

5.2 Implicit Surface Generation from Point Clouds

As previously discussed, there exist a variety of methods to track deforming soft tissue in order to

accurately apply active constraints to protect the patient. The forbidden region can be registered

using MRI, US, CT, stereo camera imaging or laser range scanning. These sensing modalities are

dependent on the surgery type and many are still in development towards providing real-time

updates of the soft tissue structure with high accuracy. An active constraints strategy which

can function using each of these data types would simplify its application and allow for easy

transference between sensing schemes as current strategies are improved in speed and precision

and novel techniques are developed. Therefore, the methodology presented here generates the

constraints surface from point clouds, as each of the above mentioned methods can be reduced

to this constraint representation.

Point clouds are a generic representation of 3D objects which can handle arbitrary deformations

and motions. In this section, an implicit surface will be produced from this point cloud to

surround the area chosen to be protected. The surface is smooth and continuous in order to

allow for unimpeded motion of the robot along the constraint surface. The methodology used in

this section to generate the implicit surface is a modified version of that used in [Leeper et al.,

2012]. In their work, implicit surfaces were used for haptic rendering of arbitrary point clouds

and some of the effects of parameter choice, cloud density, and noise on the formation of the

surface were analysed. In this work, implicit surfaces are used to generate a three dimensional

constraint to which the robot will be controlled.

Compactly supported radial basis functions have been used to wrap the desired constraint

point cloud in order to produce the implicit surface, as these functions provide several useful

properties. A compactly supported function is one which is zero outside of some bounded set.
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Figure 5.2: A plot of the value of the Wendland function 4,2 as a function of the normalised
distance from the origin.

Compactly supported radial basis functions are only non-zero within a particular radius, [0, R],

around the point they are centered on. When evaluating where the tool point is in relation to

the implicit surface, constraint points which are further than a distance R from the end effector

will not affect the computation. This is valuable for enacting active constraints on large point

cloud data sets as these data sets can be partitioned to decrease processing time and allow

for real-time application. Additionally, the property of compact support can be used to detect

that the end effector is approaching the constraint surface and allow control strategy switching.

Lastly, the derivatives of compactly supported radial basis functions are zero at the edges of the

compact set, f ′(0) = f ′(R) = 0, such that they provide a continuous scalar field. This property

prevents discontinuities from forming in the constraint surface when the tool is approaching or

moving away from a new point, and helps to ensure smooth control.

The particular radial basis function used in our experiments is the Wendland function ψ4,2(r)

which is depicted in Figure 5.2 [Wendland, 1995].

ψ4,2(r) =















(

1− r
R

)6
(

35
(

r
R

)2
+ 18 r

R
+ 3

)

r ≤ R

0 r > R

(5.1)

where r is the current radius and R is the radius of influence.
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Figure 5.3: The change in the constraint isosurface (red) which results as the constraint points
converge (black crosses).

An implicit function is generated using radial basis functions by finding the weighted contri-

bution of the distance between each sensed constraint point and the tool point. In computer

graphics, this is commonly referred to as a metaball surface representation [Blinn, 1982].

f(x, t) = T −
∑

i

ψ4,2(‖xtp(t)− xi(t)‖) (5.2)

where f(x, t) = 0 is the implicit surface which will be the isosurface that defines the boundary

of the forbidden region, T is the threshold value, xtp(t) ∈ R
p is the position on the robot’s tool

point at time t and xi(t) ∈ R
p is the i-th sensed constraint point at time t.

To demonstrate how the metaball approach generates the isosurface and how multiple points are

handled, Figure 5.3 plots the resulting constraint surface for two constraint points for varying

inter-point distances. At far enough a distance, the points do not interact with one another and

spherical isosurfaces are generated around each point. As the points come together, the surface

interpolates to provide a single smooth isosuface around both the points.

Further, the radius of influence, R, and the threshold, T , impact the resulting constraint surface

which is generated from the point clouds. To illustrate this, Figure 5.4 depicts the effect of these

properties on the resulting isosurface, shown in red, when constructing the constraint surface

from two constraint points, shown as black crosses. Increasing the radius of effect, which is the

maximum distance a point can have an effect on the computation of the isosurface, increases

the distance between the surface and the point, whereas increasing the threshold value reduces



CHAPTER 5. DYNAMIC ACTIVE CONSTRAINTS 113

Figure 5.4: The effect of the radius of influence and threshold on the constraint isosurfaces (red)
which result from a set of constraint points (black crosses).

the distance between the surface and the point. [Leeper et al., 2012] showed that the choice

of the radius of influence and threshold to ensure a smooth isosurface should be based on the

density of the point cloud which they defined as the average separation between points in the

cloud. Results in the above two graphs shown are in 2D for simplicity, however, metaballs are

easily applied in 3D.

Methods exist which can fit an implicit surface to a point cloud such that the zero set directly

passes through the points [Savchenko et al., 1995] [Morse et al., 2005]. Alternatively, the method

described above generates a surface which surrounds the point cloud defining the delicate tissue.

In using an offset distance, a factor of safety is directly included into the representation, ensuring

there is some distance for constraint forces to be applied before the surgical instrument reaches

the vulnerable anatomy. This is vital since, as discussed in Section 5.1, hard active constraints

can not be applied in hands-on robotic surgery. The minimum protection distance of rmin can
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(a) Sensed points (blue circles) on
the surface of an area of anatomy
which is to be constrained.

(b) Constraint isosurface (red)
constructed from the sensed points
using (5.2).

(c) The level sets (green) of the
constraints isosurface which will
be used for control.

Figure 5.5: A demonstration of how the implicit surface is generated from the sensed anatomy
points and the level sets which will be used for control.

be computed for a chosen radius of effect, R, by setting the threshold equal to,

T = ψ4,2(rmin) (5.3)

Figure 5.5 summarises the dynamic active constraints strategy thus far. Points are sensed on the

anatomy to be constrained, using the surgery appropriate sensing modality in Figure 5.5a. The

constraint isosurface is then generated from these sensed points using (5.2), as demonstrated

in Figure 5.5b. In the next sections, the level sets to the constraint isosurface shown in Figure

5.5c will be used to control the tool point to the constraint surface.

5.3 The Implicit Function Jacobian

Equation (5.2) defines a time-deforming implicit constraint surface which is to serve as the mo-

tion constraint for the robot. To control the motion of the robot in relation to the surface, I will

now derive a Jacobian which defines the normal of the current level set of the implicit constraint

surface which the robot tool point currently lies on. We have named this the Implicit Function

Jacobian. The following derivation requires the constraint isosurface, f , to be continuous and

df
dt

and d2f
dt2

to exist and be continuous. This condition is satisfied by ψ4,2 and this control

methodology will work for any such constraint surface which satisfies these conditions.

To compute the Implicit Function Jacobian, the time derivative of the function which defines
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the constraint surface is first found.

df

dt
=
∂f

∂t
+ Jf

dx

dt
= 0 (5.4)

where ∂f
∂t

∈ R
p is the partial derivative of f explicitly with respect to time,

Jf =

[

∂f
∂x1

. . . ∂f
∂xp

]

(5.5)

is the Jacobian of f with respect to the spatial coordinates, and

dx

dt
= ẋ =













ẋ1
...

ẋp













(5.6)

is the vector of spatial variable velocities.

Since, in general, the spatial variables cannot be controlled directly, the Jacobian matrix which

relates the joint velocities to the spatial variable velocities will be used.

ẋ = Jq̇ (5.7)

Substituting (5.7) into (5.4), rearranging, and normalising yields,

JfJ

‖JfJ‖
q̇ = −

1

‖JfJ‖

∂f

∂t
(5.8)

JfJ

‖JfJ‖
represents a relation between joint velocities and the velocity along the normal to the

level set of the constraint function that the robot end effector currently lies on. That is, if the

current position of the tool point is xc such that f(xc, t) = c for some constant c, then
JfJ

‖JfJ‖
q̇

will be equal to the velocity of the constraint function in the direction of the gradient at the

end effector. When the tool point lies in the zero set of the constraint function {x|f(x, t) = 0}

and, as such, lies on the desired constraint surface, the velocities produced will be along the
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(a) The sensed points (blue), generated constraint
isosurface (red), and level sets (green) overlaid on
the anatomy which is to be protected from the
tool.

(b) The normals to the level sets and zero set of
the constraint function overlaid on the previous
diagram, which are used to control the tool point
to the zero set.

Figure 5.6: An explanatory diagram of the level sets of the constraint isosurface and the con-
straint level set normals which are used to guide the tool to the zero set.

normal to the desired constraint surface. The Jacobian that represents this relationship, I will

define to be the Implicit Function Jacobian.

JIF ,
JfJ

‖JfJ‖
(5.9)

To more clearly illustrate these concepts, the level sets to the constraint isosurface which corre-

spond to where the surface equals a constant are shown in Figure 5.6a. The normals to the level

sets of the forbidden region boundary in joint space which are defined by the Implicit Function

Jacobian are shown Figure 5.6b.

ẋIF is defined to be the velocity of the constraint function in the direction of the normal to the

current level set.

ẋIF , JIF q̇ (5.10)

The right hand side of (5.8) is the actual velocity of the surface in the direction of its normal.

Perfect tracking of the time variations of the surface requires controlling the velocity of the

robot’s end effector to equal this value in the direction of the normal to the constraint surface.
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Therefore, the desired constraint surface normal velocity, ẋdesIF , is defined to be equal to this

value.

ẋdesIF , −
1

‖JfJ‖

∂f

∂t
(5.11)

5.4 Dynamic Active Constraints Using the Implicit Function

Jacobian

In order to control the robot to lie on the desired constraint surface, the Implicit Function

Jacobian has been incorporated into the operational space approach [Khatib, 1987] and its

recursive null-space extension [Sentis, 2007]. The operational space approach transforms the

joint dynamics into the dynamics of task space in order to create controllers which are linear in

the accelerations of the chosen task.

The dynamics of a robot with n joints can be expressed in the Lagrangian formalism as

A(q)q̈ + b(q, q̇) + g(q) = Γ (5.12)

where A is the inertia matrix, b is the Coriolis-centrifugal vector, g is the gravity vector, and Γ

is the generalised force vector.

For some arbitrary task xt = T (q) and its instantaneous kinematics ẋt = Jtq̇ (where Jt is the

task Jacobian), the task space dynamics can be computed by

J
T

t (Aq̈ + b+ g = Γ) ⇒ Λtẍt + µt + pt = Ft (5.13)

where J t = A−1JT
t Λt is the dynamically consistent inverse of Jt, Λt = (JtA

−1JT
t )

−1 is the

operational space inertia matrix, µt = J
T

t b− ΛtJ̇tq̇ is the operational space Coriolis-centrifugal

vector, pt = J
T

t g is the operational space gravity vector, and Ft is the vector of operational

space forces.
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By appropriately choosing Ft = Λtẍ
ref
t +µt+pt, where ẍ

ref
t is the reference acceleration control

input, the dynamics of the robot can be linearised in the task space. These operational space

forces are mapped back to actuation torques through the transpose of the Jacobian.

Γ = JT
t Ft (5.14)

Using the operational space technique, I can transform the joint space dynamics into the space

of the constraint using JIF .

Γ = JT
IFFIF = JT

IF (ΛIF ẍ
ref
IF + µIF + pIF ) (5.15)

where ΛIF is the implicit function space inertia matrix, µIF is the implicit function space

Coriolis-centrifugal vector, and pIF is the implicit function space gravity vector.

Next, suitable low level acceleration controllers which will control the robot’s end effector to lie

on the desired surface, must be defined. Two cases arise when constraining the robot; constraint

surfaces the motion of which is known or predicted, and constraint surfaces which are static or

the motion of which is unknown.

The motion of known time-varying surfaces can be tracked by using a feed-forward controller

which compensates for the normal velocity and acceleration of the surface.

ẍrefIF = ẍdesIF +Kp (fset − f(xc, tc)) +Kd(ẋ
des
IF − JIF q̇) (5.16)

where

ẍdesIF , −
d

dt

(

−
1

‖JfJ‖

∂f

∂t

)

(5.17)

is the acceleration of the surface in the direction of its normal, xc is the current tool position, tc

is the current time, fset is the desired level set to control to, Kp is a diagonal matrix of position

gains, and Kd is a diagonal matrix of velocity gains.
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Figure 5.7: Diagram demonstrating the desired behavior of the tool point constraint; to apply
forces to move the user and robot out of the constraint while allowing free motion tangent to
the constraint isosurface.

If the time deformations of the isosurface are unknown, the current estimate of the constraint

can be controlled to using the following controller.

ẍrefIF = Kp (fset − f(xc, tc))−KdJIF q̇ (5.18)

In addition to controlling the robot to lie on the constraint surface, the hands-on controller

should provide unimpeded motion along the surface, which is illustrated in Figure 5.7, and

provide a posture for the remaining degrees of freedom. This is accomplished with the recursive

extension to the operational space approach [Sentis, 2007], which allows for a hierarchy of an

arbitrary number of tasks to simultaneously operate. Each task in the hierarchy operates in

the degrees of freedom left over from higher order tasks by operating in the null space of the

previous Jacobians. This controller takes the form,

Γ =

N
∑

k=1

JT
k|prec(k)Fk|prec(k) (5.19)

where Jk|prec(k) = JkNprec(k) is the Jacobian of the k-th task operating in the null space of the

previous k−1 tasks, Nprec(k) = I−
N
∑

k=1

Jk|prec(k)Jk|prec(k) is the combined null space of the higher

order tasks, and Fk|prec(k) is the forces of the k-th task acting in the null space of the previous
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k − 1 tasks.

The three-task prioritised controller which hierarchically constrains the robot, allows motion

along the surface of the constraint, and controls the residual degrees of freedom is

Γ = JT
IFFIF + JT

pt|IFFpt|IF + JT
p|pt|IFFp|pt|IF (5.20)

where Jpt is a two degree of freedom Cartesian velocity Jacobian and Jp is the Jacobian of the

posture. Fpt|IF controls the forces in the Cartesian directions along the surface and Fp|pt|IF

controls the forces in the residual posture.

While the above controller directs the user to the constraint isosurface, outside the constraint,

the user should be unimpeded in moving the tool. Therefore, when away from a constraint

surface, the following controlle,r which consisted of a Cartesian position controller and a joint

controller in the null space, should be used.

Γ = JT
ptFpt + JT

p|ptFp|pt (5.21)

where Jpt is the Cartesian velocity Jacobian, Fpt is the Cartesian force, Jp|pt is the joint or

postural Jacobian acting in the null space of the Cartesian Jacobian, and Fp|pt is the force of

the posture acting in the null space of the Cartesian velocity Jacobian.

When the user approaches the surface with the end effector and reaches the zero set, the

controller is switched to the surface constraint controller (5.20). Similarly, when the user moves

the tool away from the surface, the controller is switched back to (5.21).

Γ =











JT
IFFIF + JT

pt|IFFpt|IF + JT
p|pt|IF f(xc) ≤ 0

JT
ptFpt + JT

p|ptFp|pt f(xc) > 0
(5.22)
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(a) (b)

Figure 5.8: A simulated four degree-of-freedom planar robot being constrained to an implicit
surface (red), which was generated from unpredicted constraint points (black crosses) while
moving sinusoidally in the horizontal direction. Two points in time are depicted: (a) at t = 2.5s
and (b) t = 12.5s

5.5 Results

5.5.1 Surface Tracking Simulation

A 2D dynamic simulation was implemented in Matlab R2012a (Mathworks Inc.) to test our

control algorithm. To mimic a scenario in which the soft tissue deformation was not periodic

or predictable, the controller was first tested using constraint points for which the motion was

unknown a priori and the position of the points was updated at 40 Hz to simulate stereo camera

data rates. In addition to constraining the end effector to the isosurface, to simulate the surgeon

moving the end effector, a feed forward controller was used to control the horizontal direction of

the position of the end effector to follow a sinusoid. Lastly, the residual posture was controlled

to the zero position.

Figure 5.8 depicts the simulated robot kinematic chain, constraint points and constraint surface

at two time intervals during the simulation. In Figure 5.9a, the error in the level set of the

constraint over time is shown. Due to the discrete nature of the range data, at every update

of the camera, the error in the position constraint jumps to a non-zero value and the controller
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Figure 5.9: Simulation results for the unpredicted surface demonstrating the controller perform-
ing gradient descent to the zero set of the end effector after each constraint point update (a)
and the horizontal tracking of a sinusoid by the end effector (b).

performs gradient descent along the level sets of the implicit constraint function. As the posi-

tioning of the end effector in the horizontal direction functions in the null space of the constraint

task, this gradient descent does not affect the horizontal trajectory and the secondary task con-

troller is still able to track the desired trajectory as shown Figure 5.9b. This demonstrates that

the primary constraint task does not affect the surgeon’s ability to maneuver the tool along the

surface, even in the presence of errors in the primary task due to point cloud updating.

To evaluate the proposed strategy in a scenario where the motion of the constraint points

is known or predicted, a 2D simulation was created for testing the controller operating on a

constraint surface in which the motion of the points was known. Each constraint point’s x and

y position were defined to be known sinusoids. Similarly to the previous simulation, the motion

of the surgeon was mimicked by a sinusoid trajectory commanded on the horizontal direction

of the end effector, and the posture was commanded to the zero position.
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(a) (b)

Figure 5.10: A simulated four degree-of-freedom planar robot being constrained to an implicit
surface (red) which was generated from constraint points whose motion was known (black
crosses), while moving sinusoidally in the horizontal direction. Two points in time are depicted:
(a) at t = 2.5s and (b) t = 7.5s

Figure 5.10 shows the robot and constraint at two different times during the simulation. Figure

5.11a demonstrates that the controller performs an approximately critically damped response

to a level set of zero while Figure 5.11b shows that the controller simultaneously tracks the

desired position trajectory. The prediction of the point cloud motion allows the velocity and

acceleration in the normal direction of the level sets of the implicit surface to be computed.

Utilising this information in the controller allows the robot to perfectly track the motion of

the constraint surface. Additionally, as in the previous simulation, the control actions of the

primary constraint task do not affect the simulated surgeon’s motions in the null-space. These

results are dependent on the accuracy of the prediction.

5.5.2 Experimental Setup

The experimental setup used to verify the proposed control strategy in a physical setup is shown

in Figure 5.12. A Kuka LWR 4+ was controlled through the Fast Research Interface (FRI, Kuka

Robotics GmbH) with a PC running Ubuntu 10.04, OROCOS (orocos.org) and ROS Electric

(ros.org). Torques were commanded to the FRI operating in the axis-specific impedance control
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Figure 5.11: Simulation results for the predicted surface demonstrating the controller performing
gradient descent to the zero set of the end effector after each constraint point update (a) and
the horizontal tracking of a sinusoid by the end effector (b).

mode with the virtual spring stiffness and damping parameters set to zero. We modified the

open source Whole-Body Control Software to create our controllers [Philippsen et al., 2011]. A

dynamic soft tissue brain phantom made of Platsil Gel was created and actuated using a linear

actuator controlled by an Arduino Uno. An Optotrak Certus (Northern Digital Inc.) was used

to track two markers attached to the outer surface of the brain phantom and the generated

point clouds were sent to the Controller via the User Datagram Packet over Internet Protocol

(UDP/IP). The surface variations were approximately 1cm in amplitude and had a frequency

of about 0.45 Hz.

In both controllers of equation (5.22), the Cartesian gains were set to zero to allow for the user to

freely control the tool in Cartesian space and along the surface. The acceleration level postural

controllers were set to damp out any motion in the posture, allowing the user to maneuver the

postural degrees of freedom if necessary, while ensuring they approximately held their position
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Figure 5.12: The experimental setup consisting of a Kuka LWR 4+ (1), a dynamic soft tissue
phantom (2) and Optotrak markers (3)

while the user was controlling the end effector. Additionally, as opposed to the simulations,

the Coriolis-centrifugal forces were not compensated for on the LWR. However, due to the low

velocity nature of these experiments, this did not affect the results significantly. To more clearly

demonstrate the effect of constraining to surface, the level set threshold for switching between

the constrained and unconstrained controllers was raised to two from the zero set. This means

that for a small region outside of the constraint boundary, the controller will direct the motion

of the tool to the constraint surface.

The experiment aimed to demonstrated the ability of the constraint to actively limit the motion

of the tool when near the constrained region. The tool began approximately 10cm away from the

brain surface and the user attempted to contact the tool with one of the markers on the brain

while the dynamic active constraints strategy was applied to prevent this from occurring.
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Figure 5.13: Dynamic phantom results depicting level set of the end effector over the trial.

5.5.3 Dynamic Brain Phantom Experimental Results

Figure 5.13 shows the error to the constraint surface during the experiment utilising the phantom

and Figure 5.14 shows the magnitude of force the user applied to the robot during the test. At

the start of the experiment, the tool was away from the surface and no torques were commanded

to constrain the tool. The user moved the tool towards one of the markers on the moving

constraint brain and at time t = 3.85s, the tool passed the level set limit, engaging the constraint

and applying forces to limit the user’s motion. At approximately 25.5 seconds, the user exerted

a force on the tool away from the constraint and at t = 26.15s the constraint disengaged,

allowing unimpeded movement of the end effector. More detailed experimental results will

be presented in the following chapter, however, the results here demonstrate the feasibility

of the proposed controller to run in real-time on a seven degree-of-freedom manipulator. In

addition, the controller successfully prevented the user from colliding with the dynamic brain

phantom.

5.6 Summary

In this chapter, a dynamic active constraints approach for hands-on robotic surgery has been

demonstrated, which utilises point clouds to generate an implicit surface and a multi-priority

null-space controller to constrain the tool point. The ability to apply the technique to point
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Figure 5.14: Magnitude of user applied forces during dynamic phantom tests.

clouds allows the strategy to be utilised with various sensing modalities which can, in general,

be reduced to such a representation, thereby expanding the potential usage of the technique

to various surgeries. The null-space controller incorporates the dynamics of the robot into the

enforcement of the constraint in order to provide an appropriate impedance to the surgeon’s

wrench. Additionally, the controller allows for free motion tangent to the constraint and Chapter

6 will demonstrate optimisations in the remaining postural degrees-of-freedom.

Simulation work demonstrated the accuracy of the proposed strategy in constraining the robot

to the surface of the constraint and allowing free motion tangent to the constraint isosurface for

point clouds the motion of which was either known or unknown. Experiments with a lightweight

seven degree-of-freedom redundant robot on a dynamic brain phantom showed the feasibility of

the approach in a physical setup. In the next chapter, more thorough experiments will estab-

lish the effectiveness of the proposed dynamic active constraints technique in a virtual reality

ultrasound scenario. Additionally, the dynamic active constraints methodology developed here

will be shown working concurrently with the natural motion controller developed in Chapters

3 and 4 for minimising the effects of the end effector dynamics on the surgeon.



Chapter 6

Virtual Reality for Testing Shared

Control

This chapter presents an immersive virtual reality setup for testing shared control strategies for

hands-on robotic surgery on dynamic soft tissue. Preliminary controls research on soft tissue

requires a suitable testing environment, and developing accurate phantoms which mimic the

deformation of real tissue can be difficult. We propose a setup in which the robot is registered

with a virtual environment such that the robot’s position in the real world aligns with that of

the virtual environment, preserving the complex dynamic interaction between the surgeon, the

control strategy, and the robot. The motion of soft tissue can be simulated and interaction

forces and torques can be applied to the robot. We develop a chest ultrasound scenario for

diagnosing pleural effusion and pneumothroax within this virtual environment and use it to

demonstrate the simultaneous application of the dynamic active constraints strategy developed

in Chapter 5 and the natural motion technique of Chapters 3 and 4. In addition, I show the

efficacy of the dynamic active constraints in improving the user’s accuracy and ensuring safety

for the patient when performing ultrasound scans.

128
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6.1 Introduction

The previous chapters developed shared control strategies to ensure a more natural motion for

the surgeon and to protect the patient from tool movement into dangerous deforming regions

during surgery. This chapter aims to show the concurrent application of these strategies and

to demonstrate the efficacy of the dynamic active constraints approach developed here in a

scenario which closer to clinical application. To do so, an environment which allows for the

testing of the complex dynamic interactions between the surgeon, the robot, the controller,

and the soft tissue is required. In vivo clinical trials of surgical control strategies provide direct

evidence as to whether a shared control strategy is effective. However, there are safety concerns,

particularly in the preliminary stages of the controller’s development, where the controllers have

not demonstrated stability when interacting with complex deforming soft tissue. To allow for

testing surgical control strategies in a safer manner, soft tissue phantoms have been developed.

These phantoms aim to replicate the material properties of various organs so that the synthetic

soft tissue responds to tool interactions such as indentation and cutting in a similar way to the

real tissue and/or results in a comparable image to sensing technologies as scanning real tissue

[D’Souza et al., 2001] [Chen et al., 2010] [Faulkner et al., 2015]. Additionally, some phantoms

mimic the deformations of the soft tissue in response to heart beat and breathing [Cattilino

et al., 2014], and gravity [Reinertsen and Collins, 2006] [Forte et al., 2014].

However, it is difficult to design a phantom which can simultaneously accomplish multiple

properties (i.e. appropriate indentation response and cutting response) [Lamouche et al., 2012].

Therefore, soft tissue phantoms still tend to be limited to simpler scenarios. In addition, soft

tissue phantoms must be replaced when excessive indentation or cutting has occurred to allow

for additional testing or training.

As an alternative to soft tissue phantoms, a virtual reality environment has been developed for

testing shared control strategies in hands-on robotic surgery. Like soft tissue phantom solutions,

it provides a safe alternative to preliminary testing control strategies in vivo, however, the

virtual environment is more flexible, as different soft tissues and surgeries can be more easily

adapted and tested. Additionally, the virtual environment can be easily reset, which allows for

repeatable testing and training, whereas phantoms must be recreated.
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VR environments have been used previously to test and train surgeons in laparoscopic surgery

[Sun et al., 2007] [Nagendran et al., 2013] [Liu and Curet, 2015]. Surgical trainees who practice

in virtual reality have been shown to have improved abilities over those who trained using

standard programmatic training methods in laparoscopy [Jordan et al., 2001] [Seymour et al.,

2002] demonstrating the value of VR training environments. However, to our knowledge, this

is the first application of VR technology to hands-on robotic surgery. Additionally, the VR

concept of co-location [Swapp et al., 2006], where sensory cues such as haptics and audio, are

aligned in both the virtual and real space, has been used to give the user a better sense of

presence. The physical robot is registered and aligned with the virtual scene such that the

user can grasp the real robot and see the corresponding virtual copy in the same location. This

preserves the interaction between the robot, controller, and user while the soft tissue interaction

can be simulated. To our knowledge, this environment represents the first VR surgical theater to

co-locate the full robot kinematics within the environment, thereby improving immersion.

Immersion in VR is the sense of being physically present within a virtual environment [Pausch

et al., 1997]. The level of immersion experienced by the user is dependent on both the capabilities

of the hardware (resolution, field of view, refresh rate, etc.) and the detail of the virtual

environment itself [Mahalil et al., 2014]. Training in a more immersive environment, one which

is closer to the clinical scenario, “can help surgeons develop high-level skills while also reducing

stress and improving their confidence for carrying out those skills in the real environment, with

real patients.” [Dargar et al., 2015].

A similar concept to virtual reality is augmented reality (AR), which aims to provide additional

information to the user by overlaying registered, real-time 3D images onto the real world. This

type of strategy has been used in surgery to display sensing information to the surgeon about

the underlying anatomy, such as vasculature, and other information, such as pre-operative

planning [Alaraj et al., 2011] [Zhu et al., 2014]. AR can be used in conjunction with robotic

assistance, such as active constraints, or alone, when assisting the surgeon. Commercially

viable AR solutions which are accurate and compact in design remain in development due to

issues in both software and hardware. The AR device must be registered in real-time with

the environment at sufficient precision and occlusion, where real world objects pass in front of

virtual objects, must be handled appropriately. AR hardware must be able to present clear
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images at a high refresh rate and have the computational capacity to perform the registration

and handle occlusion, yet be ergonomic and light enough to be worn by the user comfortably.

At present, however, a VR environment can be used to determine the viability of complex AR

strategies. By testing AR strategies in virtual reality, the primary development issues in AR

are removed and AR’s efficacy in providing useful information to the user can be more directly

assessed, towards future implementation in real surgery.

This chapter will first discuss the proposed scenario, ultrasound (US) for diagnosing pleural

effusion and pneumothorax, which will be used to validate our shared control strategies. The

technical details of the implementation of the virtual surgical environment will then be discussed,

followed by the experimental design, which compares performing the US scans with no assis-

tance, augmented reality assistance, and robotic assistance through dynamic active constraints

with augmented reality. The results demonstrate an improvement in safety and accuracy when

using robotic assistance through dynamic active constraints.

6.2 Simulated Ultrasound for Diagnosing Pleural Effusion and

Pneumothorax

Limitations in the accuracy of the Kuka, in addition to limited resources for creating a high

fidelity surgical simulation, made finding a suitable clinical scenario difficult to identify. The

medical scenario I will use to validate our shared control strategies within the virtual surgical

environment is pleural effusion and pneumothorax diagnosis with US. Pleural effusion is an

accumulation of excess fluid in the pleural cavity, the fluid-filled region surrounding the lungs.

Similarly, pneumothorax is an accumulation of air within this space. These conditions interfere

with breathing by restricting the expansion of the lungs and can be caused by physical trauma

to the chest or a variety of medical conditions.

Ultrasound is used in determining if pleural effusion or pneumothorax have occurred in the

patient and the locations in which fluid has accumulated. It is also used in guiding the needle

for thoracentesis, which is the procedure to remove the excess fluid or air resulting from these

conditions. Ultrasound is able to better detect pleural effusion than X-ray radiology, including
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in cases where there is a very small amount of pleural effusion [Gryminski et al., 1976]. The per-

formance of US in detecting pleural effusion is comparable to that of computerised tomography

(CT) [Yu et al., 1993], with the benefit of being radiation free and portable, as well as providing

real-time imaging [Beckh et al., 2002]. Performing ultrasound at the bedside is faster and safer

than transporting the patient to a CT scanner, particularly in patients in potentially critical

condition [Feller-Kopman, 2007]. Lastly, US reduces complications by improving accuracy in

needle placement when performing thoracentesis as compared to no US guidance and, conse-

quently, is lower cost due to the lessened length of stay resulting from fewer complications [Patel

et al., 2012] [Mercaldi and Lanes, 2013].

However, US is a very operator dependent procedure as image acquisition and interpretation

occur simultaneously, requiring a sufficiently high level of skill and concentration [Havelock

et al., 2010]. To achieve a good scan for pleural effusion or pheumothorax, the US probe

must be positioned between the ribs and orientated such that the scanning plane is directed

between ribs and the probe is perpendicular to the skin [Doelken and Mayo, 2008]. Additionally,

pressure must be applied in the direction perpendicular to the skin and the magnitude of this

force depends on the patient’s body mass index [Dhyani et al., 2014]. Studies have shown that

if force application is too high, musculoskeletal injuries can occur [Mirk et al., 1999].

Due to these requirements, ultrasound requires a training program supervised by an experienced

professional and a program for maintaining these skills. The minimum standards for chest

ultrasound training in the UK have been established by the Royal College of Radiologists [The

Royal College of Radiologists, 2012]. To achieve the most basic level of competency, Level 1,

trainees require one session of at least 5 ultrasound scans per week for 3 months supervised by

a doctor with Level 2 competency or 2 years of experience at Level 1. In addition, to maintain

Level 1 competency, 20 exams must be performed per year, with no more than 3 months of

time lapsing between scans.

This chapter aims to demonstrate that robotic assistance can be used to improve the accuracy

and speed of performing ultrasound scans, leaving the surgeon able to better focus on inter-

preting the ultrasound scans. By applying dynamic active constraints at the target points, the

user can feel when he or she is applying too much force, and constraint forces can be applied to
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Figure 6.1: System diagram of the hands-on robotic surgery virtual environment.

ensure the user’s forces do not reach levels that can harm the patient. Additionally, constraining

the orientation of the tool simplifies the operator’s control of these degrees-of-freedom, thereby

improving accuracy.

6.3 Virtual Surgical Environment

6.3.1 System Overview

The virtual reality surgical environment setup used for the ultrasound scenario is shown in

Figure 6.1. In this system, the physical robot, a Kuka LWR 4+ controlled by a Linux PC,

is registered and aligned with a virtual surgical environment running on a Windows PC and

rendered on an Oculus Rift (Oculus VR, LLC.) head-mounted display, such that the physical

robot’s position in the real world matches that in the virtual one. In doing so, the user can

interact with the real robot, allowing for the complex dynamic interaction between the user, the

control strategy, and the robot to take place, while the user is immersed in the virtual surgical

theater. In addition, the motion of the soft tissue can be simulated and the interaction forces

and torques between the robot and this tissue can be applied to the robot.

The Linux PC (i7-3770 @ 3.40 GHz), which communicated with the Kuka LWR 4+ and com-

puted the tissue interaction wrenches and the DACs and natural motion control commands, ran

Ubuntu 12.04 (www.ubuntu.com), with the Xenomai real-time kernel patch (www.xenomai.org),

RTnet for real-time networking (www.rtnet.org), and OROCOS for real-time processing com-
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Figure 6.2: Visualisation of the overall surgical theater developed in Unity.

ponents (www.orocos.org). The Windows PC (i7-3770 @ 3.40 GHz), which rendered the virtual

scene to the Oculus Rift and deformed the soft tissue, utilised Unity 4.6 (Unity Technologies

ApS), a game creation engine.

The following subsections provide more detail on the individual components and their imple-

mentation.

6.3.2 Virtual Surgical Theater

The virtual surgical theater, shown in Figure 6.2, was constructed using Unity 4.6, using 3D

models created in Solidworks (Dassault Systemes S.A.) and Blender (Blender Foundation), and

free models from 3D Warehouse (3dwarehouse.sketchup.com) and Archive3D (archive3d.net).

The patient’s body was created using MakeHuman (makehuman.org) and breathing motions

were simulated by applying a sinusoidal scaling of the chest at a frequency of 0.2Hz, which is

within resting adult respiratory rates [Lindh et al., 2009]. The peak motions in the patient’s

breathing are shown in Figure 6.3.

Within the surgical environment, a patient monitoring system, shown in Figure 6.4, was created,

consisting of a heart and blood pressure monitor, a visualisation of the current US image, and

an indicator of the desired points to be scanned. US scans were blurred based on the error in
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(a) Minimum point in the breathing motion. (b) Maximum point in the breathing motion.

Figure 6.3: Motion of the virtual patient’s chest during breathing.

(a) (b)

Figure 6.4: The patient monitoring system used to inform the user about the status of the US.

the distance and orientation between the ultrasound probe and the target points to simulate

the effects of misalignment of the US probe. As the user moved the tool closer to the correct

position and orientation, the US image would increase in clarity.

The images were pre-blurred to reduce the computational load during run-time. From an orig-

inal clear US image, increasingly blurred images were progressively generated by averaging the

RGB values of the pixels within a set radius of each pixel. Within the simulation, the appropri-

ate US image was chosen based on the following formula, which normalises and combines the

position and orientation errors:
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USindex =
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(6.1)

where d is the L2 distance between the closest target point and the tool point, θ is the angle

between the normal to the closest target point and the tool, nmax is the total number of images,

dmin and θmin are the error bounds for a successful scan and dmax and θmax are the upper

error bounds on the blurring. The parameters used in the experiments here are shown in Table

6.1.

Parameter dmin dmax θmin θmax nmax

Value 0.01m 0.05m 15◦ 30◦ 21

Table 6.1: Parameter values used in simulating the blurring of the US due to misalignments in
position and orientation between the US probe and the target points.

When the US probe was positioned such that the distance and orientation errors, d and θ, were

below the set thresholds, dmin and θmin, the border surrounding the US image turned yellow,

as shown in Figure 6.4a. After 3.5s, the border was turned green and a marker was placed on

the indicator board, as seen in Figure 6.4b, to indicate to the user that a successful scan had

been completed.

6.3.3 Head-Mounted Display

The virtual reality head-mounted display used in this setup was the Oculus Rift Development

Kit 2 (Oculus VR, LLC.) shown in Figure 6.5. The Rift utilises an IR camera to track LEDs

embedded in the headset in order to accurately update the position and orientation of the

viewpoint cameras within the virtual scene. To further ensure that the headset visualisation

matches the motion of the user’s head and to reduce motion sickness caused by a mismatch

between head motion and the camera poses, the Rift requires the visualisation to be updated

at a fixed rate of 75Hz.



CHAPTER 6. VIRTUAL REALITY FOR TESTING SHARED CONTROL 137

Figure 6.5: The Oculus Rift head-mounted display and tracking camera.

Figure 6.6 depicts the first person view of the surgical theater, seen through the Rift when

using the system. Current solutions for tracking hand configurations, such as the Leap Motion

Controller (Leap Motion Inc.), have difficulties in tracking the hand when grasping objects.

Therefore, I utilised a simplified solution to improve immersion in which I assumed the user was

always reaching for the tool. The user’s virtual arm was attached to the Oculus Rift camera in

approximately the shoulder position and the inverse kinematics of the arm joints were solved

such that the hand grasped the tool. When the tool point was out of workspace of the arm, the

arm was set to be reaching toward the tool point.

6.3.4 Integration of the Robot into the Virtual Scene

To allow the user to accurately maneuver the robot within the virtual scene, the physical and

virtual robots must match in position and orientation. This is done by registering the Kuka and

Oculus Rift and positioning the Oculus Rift camera frame relative to the virtual robot using

the transformation matrix obtained during registration.

Points on the tracking camera, shown in Figure 6.7, were measured relative to the camera frame

and touched with the robot end effector to measure the points in the robot frame. The rigid

transformation matrix between the camera and robot frames was then computed using the SVD
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Figure 6.6: The Oculus Rift view of the surgical theater including the robot, patient, and
monitoring system.

method [Bellekens et al., 2014]. The cross-correlation matrix, W , between the centers of the

two point clouds was first computed,

W =
∑

N

(ri − rm) (ci − cm)T (6.2)

where N is the total number of points, ri and ci are the i-th corresponding points in the robot

and camera frames respectively, and rm = 1
N

∑

N

ri and cm = 1
N

∑

N

ci are the point cloud centers.

The rotation matrix between the point sets was then computed as,

R = UMV T (6.3)

where U and V are computed from the SVD of W = USV T and M = diag(1, 1, det(UV T ))

ensures that the resulting matrix contains only rotations and not reflections. The translation

can be computed from this rotation matrix and the point clouds means.

t = rm −Rcm (6.4)
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Figure 6.7: Oculus Rift tracking camera with the points touched highlighted with spheres.

6.3.5 Ultrasound-Body Feedback

Within the Linux robot controller, a visualisation of which is shown in Figure 6.8, feedback

forces and torques were implemented to simulate the interaction between the ultrasound and

the patient’s body. The true interaction of the tool with the patient involves forces and torques

reciprocally applied to both the patient and the US probe, based on the particular areas of

contact (i.e. ribs or stomach). Additionally, deformation of the patient’s body would occur also

and the amount of deformation would be based on the particular contacted area. Due to the

computational complexity of such a soft tissue interaction, a simplified form was implemented,

which ignored the deformation of the patient’s body and assumed a uniform stiffness for the

body. Instead, the US probe penetrated into the patient’s body mesh and feedback forces were

generated based on a linear stiffness parameter and the depth of this penetration.

To calculate the forces and torques of the tool-tissue interaction to apply on the robot to the

user, first, the distance the tool was penetrating into the body mesh was found. This was done

by computing the closest points on the triangular body mesh to 6 points on the US probe,

seen in red in Figure 6.9, using conventional barycentric coordinate methodologies [Ericson,

2004]. The normal of the corresponding closest triangle was used to determine if the tool

was inside or outside of the mesh. The point-to-mesh method was chosen over mesh-to-mesh

algorithms to ensure a control rate of 1kHz. From the penetration algorithm, the feedback

forces were computed for each point chosen on the ultrasound probe using the following linear

force feedback law,
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Figure 6.8: RVIZ visualisation of the Linux side robot and patient used for computing the body
feedback forces and torque.

F bf
pi

=















−kbfp dpn̂− kbfd Jpi q̇ : dp > 0

0 : dp ≤ 0

(6.5)

where kbfp and kbfd are the stiffness and damping of the body feedback respectively, dp is distance

the point pi has penetrated into the mesh, n̂ is the normal vector from pi to the closest mesh

point, and F bf
pi is the body feedback for a single point, pi. The gains used in this experiment

were empirically set to kbfp = 100 and kbfd = 5 to minimise penetration of the tool into the body

mesh without any oscillatory instabilities occurring.

The Kuka LWR utilises a single application point for end effector forces and torques and,

therefore, the feedback forces must be transformed onto this application point.

F bf =
∑

pbf

F bf
pi

(6.6)
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Figure 6.9: Rendering of the US probe tool with the points used in the closest point search for
computing body feedback in red.

τ bf =
∑

pbf

(pi − pcp)× F bf
pi

(6.7)

where F bf and τ bf are the body feedback forces and torques, respectively, applied to the control

point, pcp.

6.3.6 Ultrasound Targets

The ultrasound target points were estimated from clinical instructions detailing the use of

thoracic ultrasound in pneumothorax [Reardon, 2015] and are shown in Figure 6.4. The normals

to each target point were computed as the mesh normal of the closest point to the target on

the patient’s body.

The applied force required to obtain a good scan depends on the body mass index (BMI) of the

patient. The average force has been shown to vary between 7.5N for normal BMI and 9.8N for

high BMI [Dhyani et al., 2014]. The target points were therefore offset into the body along the
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normal 1.5cm such that the resulting force from the body feedback when the US probe was at

the target point was 9N .

6.3.7 Active Constraints and Natural Motion

The dynamic active constraints strategy presented in Chapter 5 was used to prevent the US

probe from penetrating too far into the body mesh and, consequently, harming the patient via

force application which was too high. A set of constraint points were chosen such that the zero

set of the generated implicit surface passed through the target points by offsetting from the

target points along their respective normals and computing the threshold using the minimum

protection distance formula from Chapter 5, T = ψ(rmin).

As discussed in Chapter 4, applying natural motion on the Kuka LWR 4+ requires the use

of the Cartesian impedance control mode, due to limitations in applying null-space control

torques in joint impedance mode whereas in Chapter 5, the joint impedance mode was used to

implement dynamic active constraints. To apply these shared control strategies simultaneously,

the dynamic active constraints strategy must be adapted to the Cartesian Impedance mode for

the Kuka.

The methodology developed in Chapter 5 is a dynamics model-based control strategy which

applies forces to control the acceleration of the end effector via joint torques. In Cartesian

impedance mode, this is not possible, however, forces and torques can be set at the tool point

as was done for body feedback. Therefore, I will convert the strategy to a direct force application

at the end effector. In addition, I will expand the strategy to constrain multiple points at the end

effector and to apply torques to constrain orientation. The same 6 points at the end effector

used to compute the body feedback wrench (Figure 6.9) were used to compute the dynamic

active constraints forces. For each of these points, the force feedback was computed in the

implicit function task space and projected in the end effector frame,

F dac
pi

=
JT
f (pi)

‖Jf (pi)J(pi)‖

(

kdacp (fset − f(pi))− kdacd JIF (pi)q̇
)

(6.8)

where F dac
pi

is the dynamic active constraints feedback for a single point pi, Jf (pi) is the Jacobian
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of constraint surface with respect to the spatial variables evaluated at pi, J(pi) is Jacobian

relating joint velocities to Cartesian velocities at pi, k
dac
p and kdacd are the stiffness and damping

of the dynamic active constraints respectively, fset is the desired level set threshold, f(pi) =

T −
∑

J ψ4,2(‖pi − pc,j‖) is the current level set of pi with respect to the set of J constraint

points pc,j , and JIF (pi) =
Jf (pi)J(pi)

‖Jf (pi)J(pi)‖
is the Implicit Function Jacobian evaluated at pi.

The desired constraint forces can then transformed onto the application point to find the total

desired dynamic active constraints forces and torques.

F dac =
∑

pdac

F dac
pi

(6.9)

τdac =
∑

pdac

(pi − pcp)× F dac
pi

(6.10)

where F dac and τdac are the dynamic active constraint forces and torques, respectively, applied

to the control point, pcp. The parameters used in these experiment for the dynamic active

constraints including the radius of effect R, the threshold T , and the desired level set fset

previously defined in Chapter 5.2 can be found in Table 6.2.

Parameter kdacp kdacd R T fset
Value 4 0.2 0.05m 0.3242 0

Table 6.2: Parameter values used in the dynamic active constraints controller.

In addition to limiting the forces applied by the user via dynamic active constraints, orientation

constraints were used to ensure the US probe was correctly aligned with body normals to allow

for a good scan. The desired orientation at each time step was computed using a spherical linear

interpolation (SLERP) between the normal vectors of the target points at each instance in time.

The tool orientation was commanded to this interpolation of the targets normals and not the

body normal to simplify the control for the user and to prevent excessive rotations at the sides

of the body. To handle the multiple targets and for situations where the tool was not near the

target points, the interpolation was region based. The different regions, which are shown in

Figure 6.10, were defined based on the y-coordinate of the tool and target points. When the end

effector is in a region between two target points, the desired normal is an SLERP interpolation
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Figure 6.10: Labeled top down view of the patient’s body and scan point orientation normals
for computing the desired orientation of the US probe.

based on the y distance to each point. Outside these regions, the tool is commanded to the

closest target normal. This strategy is summarised by the following equation, which computes

the desired end effector normal.

nvec =















































n1 : ytool ≥ y1

sin((1−t1,2)φ1,2)
sin(φ1,2)

n1 +
sin(t1,2φ1,2)
sin(φ1,2)

n2 : y1 > ytool ≥ y2

sin((1−t2,3)φ2,3)
sin(φ2,3)

n2 +
sin(t2,3φ2,3)
sin(φ2,3)

n3 : y2 > ytool ≥ y3

n3 : y3 > ytool

(6.11)

where yi is the y position of point i, ytool is the y position of the tool point, ni is the normal

vector of point i, φi,j = arccos(ni · nj) is the angle between normal vectors ni and nj , and

ti,j = yi−ytool
yi−yj

is the normalised interpolation factor based on the distance the tool point is

between points i and j in the y-coordinate. The orientation gains on the Kuka were empirically

set to kp = 50 and kd = 0.5.
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Figure 6.11: A subject performing US scans within the experimental environment.

Natural motion was applied in the null-space using the dynamic simulation strategy developed

in Chapter 4. End effector mass and friction force were simultaneously optimised with a ratio

50%-50%. Similarly to Chapter 4, the parameters of (3.16) were set to kp = 50, kd = 10, and

ωmax = 10rad/s, the potential velocity was set to 5cm/s, and the null-space parameters on the

Kuka were set to knullp = 100 and knulld = 0.1.

6.4 Experimental Setup

A total of 9 non-surgeons participated the experiment, seven males and two females. Two of

the subjects were left-handed and seven were right-handed. The ages of the participants ranged

from 21-34. Each subject performed the US scans with the assistance modes 3 times each for
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Figure 6.12: The visualisation of the body normals at the points to be scanned used in the AR
and dynamics active constraint with AR assistance modes.

a total of 9 trials and 27 scanned points per subject. The order of the assistance modes was

randomised to minimise possible learning effects. Prior to performing the trials, to reduce the

possibility of training effects, users were given some time to familiarise themselves with the

assistance methods and performing the ultrasound scan, but were not given details about the

controllers and the aims of the experiment in general. The total time for each subject to perform

the full experiment was approximately 20-30 minutes.

The experiments aimed to demonstrate the advantages of using robotic assistance, specifically

dynamic active constraints, in performing US scans for detecting pleural effusion. 3 methods

were compared: no assistance, augmented reality (AR), and dynamic active constraints with

augmented reality (DACs with AR).

The no assistance mode aimed to mimic the use of a standard US probe. The robot was

commanded with gravity compensation and the wrenches of the tool-tissue interaction were the

only applied forces and torques to the user. Visually, the subjects only saw the US monitor and

the desired scan points indicator.

AR aims to provide additional assistance to the user by embedding virtual information within

the physical world. In these experiments, AR assistance provided a visualisation of the body
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normals at the necessary scan points, as shown in Figure 6.12, to aid the user in correctly

posing the US probe. This information is hypothesised to improve the accuracy in positioning

and orientating the US probe as compared to no assistance. This mode aimed to mimic that

of using a standard US probe with additional visual assistance. Similarly to the no assistance

case, the robot was only commanded with gravity compensation and the forces and torques of

the tool-tissue interaction.

While AR assistance aims to provide additional visual information to the surgeon, thereby

making it easier to perform procedures, there is still a chance of hurting the patient or performing

the procedure incorrectly due to the lack of enforcement of these guides. Robotic assistance

aims to control some of these degrees-of-freedom while still leaving the surgeon in control of

the overall procedure. The DACS with AR assistance mode utilises dynamic active constraints

to limit the forces which the surgeon is applying to the body of the patient and controls the

orientation to be aligned with the target points. In doing so, the likelihood for damage to

the patient is reduced and a more accurate scan is guaranteed, leaving the surgeon to focus

better on interpreting the US scan. In addition to the gravity compensation and the interaction

forces and torques of the tool with the soft tissue, wrenches were applied at the end effector to

control the orientation of the robot and to enforce the dynamic active constraint when the tool

penetrated too deeply into the body mesh.

In each scenario, the robot was used with its end effector as the US probe, in order to apply the

body feedback forces and torques. However, only in the dynamic active constraints scenario did

the robot apply additional forces and torques to guide the user. Natural motion was applied in

the null-space in all three modes to ease the user’s movement of the tool.

6.5 Results

Four metrics were selected to assess the effectiveness of the assistance modes; average position

error, average orientation error, average applied force, and trial length. Average position and

orientation error are used as a measure of accuracy. Average applied force indicates the level

of safety for the patient and trail length measures the speed at which the user can perform the
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US scans. The results for these metrics across all subjects can be found in Table 6.3.

The average position error is the mean distance the end effector position was from the closest

target point and its distribution across all subjects and assistance modes is shown in Figure

6.13a. Similarly, the average orientation error is the mean angle between the closest target

normal and the tool and its distribution across all subjects and assistance modes is shown

in Figure 6.13b. The average applied force is computed as the mean body feedback force

and reflects the counter forces to the user’s applied forces. Its distribution across all subjects

and assistance modes is shown in Figure 6.13c. The average position error, orientation error,

and applied force were only computed when the tool was penetrating the body mesh to avoid

measuring movements between scan points. The trial length is the total time the user took to

perform the scans starting from the first penetration of the body mesh with the tool and ending

with the last scan. The distribution for this metric across all subjects and assistance modes can

be found in Figure 6.13d.

Each of the metrics was found to be non-normally distributed using the Komogorov-Smirnov

test. Therefore, the non-parametric Kruskal-Wallis one-way analysis of variance test was used

and it was found that, for all four metrics, at least one of the distribution’s medians was

different from at least one other group at the 95% confidence level. To analyse specific pairs

for dominance in the medians, pairwise comparisons of the assistance modes were made using

the Dunn-Sidak test at the 95% confidence level. Additionally, the Brown-Forsythe test was

used to make pairwise comparisons between the variances of the assistance modes at the 95%

confidence level. The results of the pairwise median and variance comparisons are shown in

Table 6.4.

6.6 Discussion

The experiments compared the performance of the subjects in performing US scans for di-

agnosing pleural effusion using three assistance modes; no assistance, augmented reality, and

dynamic active constraints with augmented reality. The experimental results demonstrate that

the DACS with AR significantly improve the accuracy, safety, and speed of the simulated ul-
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Assistance Average Position Average Orientation Average Applied Trial
Mode Error (mm) Error (◦) Force (N) Length (s)

None 9.62 ± 2.50 9.35 ± 3.00 12.22 ± 1.58 253.71 ± 248.94

AR 7.41 ± 1.41 6.14 ± 3.11 10.41 ± 1.57 94.87 ± 101.16

DACs and AR 7.24 ± 1.52 2.76 ± 1.58 8.70 ± 1.23 49.08 ± 24.34

Table 6.3: The mean and standard deviation of the metrics from the virtual reality experimental trials across all subjects for the three
assistance modes. Note that the large standard deviations of the trial lengths are a result of the skewed nature of the non-normal distributions.

Assistance Average Position Average Orientation Average Applied Trial
Mode Error Error Force Length

None vs AR ⋆ ⋆/• ⋆ ⋆/•
None vs DACs and AR ⋆ ⋆/• ⋆ ⋆/•
AR vs DACs and AR ⋆/• ⋆ •

Table 6.4: Significance results for the performance metrics across subjects for the three assistance modes. ⋆ represents a significant difference
in the means for a given and assistance mode pairing at the 95% confidence interval. • represents a significant difference in the variances
for a given and assistance mode pairing at the 95% confidence interval.
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Figure 6.13: The median and IQR for the performance metrics across subjects for the three
assistance modes. None signifies no assistance, Visual signifies augmented reality assistance,
and ACs and Visual represents the dynamic active constraints with AR assistance.
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trasound task.

Accuracy in performing the US task is indicated by the average position and orientation error

metrics, computed as the mean distance and angle respectively, between the end effector and

the closest target point when the tool is penetrating the body mesh. Improving accuracy in

posing the US probe ensures the desired regions are being properly scanned and is important

in guiding needle insertion to remove air or fluid in the region surrounding the lungs. The

no assistance condition performed significantly worse than both the AR and DACs with AR

assistance modes, which lends evidence to the hypothesis that a reduction in information about

the location of the target points results in low accuracy. The visual guides allowed the users

to reduce the error perpendicular to the line passing through the target point and the closest

point on the body mesh, leaving only the small error between the tool point and the target

point along the normal.

The DACs with AR mode performed significantly better than the AR only mode when it comes

to orientation error, however, there was no significant difference in position error between the

two modes. The improvement in rotational error is consistent with the additional assistance

provided by the DACs, which constrains the orientation of the tool. The DACs also prevent

the US probe from being applied too forcefully to the patient by restricting the penetration

depth of the tool. However, this failed to significantly affect the position error. The position

error measurement here is the absolute distance between the target point and the tool point

and, therefore, does not directly reflect the depth of the tool, which is the position restriction

placed on the tool by the DACs.

Safety is assessed within the virtual US task by the average applied force, which is computed

as the mean body feedback applied to the user in response to the tool penetrating the body

mesh. By reducing the applied forces of the surgeon, musculoskeletal injuries can be reduced.

The no assistance mode again performed significantly worse than the other modes in force

application, with an average 40.5% increase in the worse case. Without any assistance in

position, orientation, or force, the subjects could not easily estimate which of these parameters

needs to be improved upon to achieve a clear scan. In other words, they could not discern

whether the position of the device was to blame for the lack of clarity in the US image (indicating
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the degree of error from the optimal pose), or any of the other parameters. When no guidance

was provided on these parameters (no assistance mode), subjects developed search strategies,

which included applying excessive force. In the assisted modes (AR and DAC, and DAC),

subjects had guidance on both position and orientation and therefore, a narrower search space.

This lead to more controlled searches and a lighter application of force.

There was a significant difference in the average force application across trials between AR

modes where DACs were present and where they were not. The lack of DACs resulted in a

19.7% increase in average force application over AR with DACs and therefore, DACs helped

reduce the force applied to the virtual patient, demonstrating increased safety in US scanning.

As discussed above, from observing the trials, the AR assistance mode lessened the mean force

over no assistance as it provided more information to the user, making it more clear what

error needed to be corrected to achieve a good scan. However, there still was ambiguity in

determining the correct pose and force and, therefore, users still applied higher forces than

necessary when using the AR only assistance mode, whereas the assistance mode with DACs

limited the application of force.

Speed in performing the US scans within the virtual environment is assessed by the trial length,

which was computed as the time between the first penetration of the tool with the body mesh

until the last point is successfully scanned. Increasing the speed at which the physician can

perform US scans reduces the time to diagnosis or treatment. There was a significant increase

in the trial length when performing the US scans with no assistance as compared to the AR and

DACS with AR assistance modes. These results suggest that the subjects found it difficult to

determine whether to translate, rotate, or apply force to achieve a good scan without additional

assistance to reduce the dimensionally of the scanning, and were forced to find the appropriate

parameters by trial and error.

There was a significant difference between the AR assistance mode and the DACs with AR

mode in the variances of the trials lengths, however, there was not a significant difference in the

medians. These results would suggest that providing visual feedback was the most significant

factor in reducing the time it took to perform these scans, but, that additional constraints on

the orientation and applied force did not significantly affect the speed.
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The conclusions drawn from these experiments are limited by the realism of the soft tissue simu-

lation, the testing on the control strategies on non-surgeons, and the selection of the controllers

which were compared.

The feedback forces and torques from the tool interaction with the body were generated via

a linear feedback law. Soft tissue simulation including factors such as varying stiffness and

damping due to interactions with different bones and organs and deformation of the patient’s

body due to tool contact would provide a more realistic environment with which to evaluate

the assistances modes. Soft tissue simulation software such as the Simulation Open Framework

Architecture (SOFA) [Allard et al., 2007] could be incorporated to enhance the realism, however,

are very computationally expensive to run, particularly to simulate a large portion of the body

and effects such as cutting.

Surgeons demonstrate a higher level of dexterity and hand-eye coordination than the average

population [Francis et al., 2001] and, therefore, the impact on accuracy, safety, and speed in these

experiments performed by non-surgeons may be lessened when tested on clinicians. Due to the

current clinical application of active constraints and the wide body of research demonstrating

similar benefits, it would be expected that the constraints would still assist the surgeon, however,

this must be explicitly demonstrated with these specific dynamic active constraints.

Due to time constraints, an assistance mode which applied dynamic active constraints on depth

and orientation without augmented reality was not tested. It would be expected that the

improved results on applied force and orientation error when using the DACs with AR would be

preserved, however, the position error would increase due to the lack of visual information about

the target points. Additionally, comparing the performance of the dynamic active constraints

developed within this thesis with classical potential field constraint approaches in this task

would evaluate the effectiveness of the proposed technique over a standard methodology.

6.7 Summary

This chapter has presented a virtual environment for testing hands-on robotic surgery control

strategies. The physical robot and VR environment are registered such that virtual robot and
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physical robot are aligned. This allows the user to interact with the robot and its control

strategy and dynamics in the same way he or she would in a real scenario. As opposed to in

vivo and phantom trials, the virtual environment allows for repeated testing of shared control

strategies and surgical training through simulation of the soft tissue interaction with the tool.

Additionally, such a system is more flexible than phantom trials, as multiple types of surgery

can be more easily adapted and tested.

An ultrasound scenario for diagnosing pleural effusion and pneumothorax was developed in

a virtual surgical environment to test the shared control strategies developed in the previous

chapters. The technical details of the virtual environment and the experimental design were

discussed. The experiment compared the performance in taking US scans with no assistance,

augmented reality assistance, and robotic assistance with augmented reality. The results demon-

strated that robotic assistance through dynamic active constraints and AR improved the user’s

ability to perform the US scans safely and accurately. The next chapter will draw conclusions

about the thesis contributions with regards to the stated research aims, discuss the limitations

of the work presented in this thesis, and identify future areas of research.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Hands-on robotic surgery is where the surgical tool is attached to the end effector of the robot

and the surgeon maneuvers the instrument by directly applying forces and torques to the tool.

The main advantage of performing surgery in this way is that the forces and torques of the

interaction between the robot and the surgical environment can be felt through the tool, with-

out the use of an additional force/torque sensor at the end effector. The surgeon can more

precisely apply forces and torques to the patient using this natural feedback, as opposed to

teleoperative systems, which have issues with stability and sterilisability in providing haptic

feedback. Additionally, as compared to autonomous robotic systems for surgery, the surgeon

remains more involved in the procedure, increasing its acceptance among physicians and regula-

tory bodies [Davies et al., 2004]. To further improve results, shared control strategies, in which

the robot and user simultaneously apply control polices to accomplish a task, are used. This

thesis has presented three contributions to shared control for hands-on robotic surgery; natural

motion, dynamic active constraints through implicit surfaces generated from point clouds, and

a virtual reality environment for testing shared control.

The first contribution made in this thesis is the concept of natural motion. Attaching the

surgical instrument to the end effector of the robot imposes the dynamics of the robot at the

tool point on the surgeon maneuvering the tool. These dynamics can include gear backlash,

155



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 156

joint friction, the mass and inertia of the robot links, and other disturbances. The additional

dynamics can limit the ability of the surgeon to perform the surgery by reducing his or her

dexterity and increasing fatigue. Natural motion aims to reduce these end effector dynamics

and make the feeling of the surgeon’s interaction with the robot closer to that of the surgical

instrument unattached to the robot.

Current shared control strategies for hands-on robotic surgery only compensate for gravity. In

the general robotics literature, cooperative control methodologies have been developed which

aim to ease the user’s ability to maneuver objects. These strategies utilise impedance controllers

to effectively amplify the user’s applied forces and torques, which enable the user to lift heavy

objects. However, an increased risk of contact or coupling instability occurs when impedance

controllers attempt to emulate dynamics that differ significantly from the intrinsic hardware

dynamics [Colgate and Hogan, 1989]. Due to the complexity of the surgical environment, en-

suring stability using these types of strategies would be difficult and, therefore, not applicable to

clinical scenarios. In addition, these strategies increase the surgeon’s applied forces and torques

to the tissue, potentially leading to an unintentional injury to the patient. They also affect

the ability of the surgeon to accurately feel the forces and torques of the tool-tissue interaction

through the end effector, removing a substantial benefit of hands-on robotic surgery.

In Chapters 3 and 4, an optimisation strategy was demonstrated which reduces the mass, inertia,

friction force, and friction torque at the end effector via control of the redundant degrees-of-

freedom. By performing the optimisation in the null-space of the tool point, a more natural

motion is created without affecting the surgeon’s command of the surgical instrument. Sim-

ulation work demonstrated the effectiveness of the natural motion strategy in reducing these

dynamic quantities in specific as well as general directions over the workspace of the robot. The

experimental results of Chapter 4 prove a significant reduction in the work required to move

the tool when using natural motion in a general point-to-point motion task, easing the user’s

ability to maneuver the surgical instrument. Additionally, natural motion was embedded in

a realistic clinical environment in Chapter 7, demonstrating a seamless coexistence with other

controllers, in this case, dynamic active constraints.

Within current clinically applied hands-on robotic systems, active constraints are used to protect
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the patient and enable higher accuracy than what the surgeon can accomplish alone. Active

constraints apply forces and torques to the surgeon to prevent the surgical tool from entering

regions which have been deemed unsafe or unnecessary for the surgery. At present, however,

clinical applications are limited to rigid bone surgeries, as the constraint representations in

these scenarios are fixed and intra-operative tracking and registration of the patient’s anatomy

is simplified. Recently, research into dynamic active constraints, which can protect soft tissue

deforming under such effects as tool interaction and heart beat, has begun in order to expand

the range of surgeries active constraints can benefit.

The second contribution of this thesis has been developing a dynamic active constraints method-

ology which can directly generate, in real-time, a constraint surface from a streaming point

cloud of the region to be protected and incorporates the dynamics of the manipulator into its

enforcement. Current dynamic active constraint approaches restrict the allowed motion of the

deforming region and/or require specific geometric representations of the patient’s anatomy. To

be effective across a wide range of surgeries, dynamic active constraints strategies need to be

able to handle a variety of different modalities for intra-operative tracking and updating of the

constraint region. The constraint representation must be able to take on arbitrary shape, in

order to handle the unknown deformations which may occur due to pulsation, breathing, and

tool-tissue interactions. Rebuilding the constraint surface from point clouds at each time step

avoids issues in structured representations, such as meshes, in tracking and updating under

complex deformations, such as indentation and cutting.

Recently, low cost 3D cameras and range finders have become ubiquitous and provide fast point

cloud representations of the environment. Additionally, more standard sensing methodologies

used in surgery, such US and CT scans, can be reduced to point clouds. Therefore, constructing

the constraint from point clouds allows for the strategy’s general application to many types of

surgeries.

The methodology used to generate the dynamic constraints surface is similar to previous strate-

gies for constraint based haptic rendering of dynamic environments from points clouds [Leeper

et al., 2012] [Rydén and Chizeck, 2013]. The fundamental difference in the control strategy

developed herein is that the dynamics of the robot have been incorporated into the enforcement
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of the constraint. In haptic constraint enforcement, the master and slave device can be decou-

pled and the slave can be position controlled to remain outside the constraint region, thereby,

ensuring the tool does not reach the soft tissue. Such a decoupling strategy is not possible

in hands-on robotic surgery, as the surgeon directly applies forces and torques to the robot

and impedance controlled devices are used to allow the surgeon to feel the tool-environment

interaction through the robot. As a result, penetration will occur into the constraint region.

Additionally, this physical contact between the robot and surgeon couples the dynamics of the

two. Therefore, an impedance control strategy has been developed which incorporates the dy-

namics of the robot in order to provide an appropriate impedance to the surgeon’s forces and

torques when the tool has penetrated the constraint region.

Chapters 5 and 6 develop and demonstrate, experimentally, the efficacy of the implicit surface

dynamic active constraints shared control strategy in protecting the patient and increasing

accuracy in performing tasks on soft tissue.

The last contribution of this thesis is the development of a virtual reality environment for testing

shared control strategies for hands-on robotic surgery. Preliminary testing of robotic control

strategies is not performed in vivo due to safety concerns and expense. Soft tissue phantoms,

which aim to mimic the motion of soft tissue, have been developed as an alternative method on

which to test such strategies. However, phantoms are still limited in their ability to replicate

soft tissue motion. It is difficult to devise a soft tissue phantom which can mimic the numerous

mechanical properties of an organ in response to interactions such as indentation and cutting

and exhibit deformation due to breathing and pulsation.

Similarly to soft tissue phantoms, a virtual environment offers a safe alternative to preliminary

testing of shared control strategies, however, VR is more flexible and makes repeated trials

easier. A virtual reality environment is limited by computational power rather than the ability

to create a chemical recipe and it can be easily changed between different types of surgeries

on various parts of the anatomy, once the soft simulation has been developed for a particular

region of the body. In addition, the VR surgical environment can be easily reset to allow for

repeated testing or training with hands-on shared control strategies, as opposed to soft tissue

phantoms, which require a new phantom for each trial in scenarios with cutting or plastic
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deformation.

In the virtual reality setup, the physical robot is registered and aligned with the virtual robot,

allowing the complex dynamic interactions between the robot dynamics, the control strategy,

and the user to be preserved. To emulate the tool’s interaction with the soft tissue, forces

and toques can be applied at the robot and soft tissue simulation can be used to simulate

deformation. This VR surgical environment was used in Chapter 6 to evaluate the dynamic

active constraints strategy of Chapter 5 and demonstrate the simultaneous application of natural

motion and dynamic active constraints.

In addition to the potential benefits for hands-on robotic surgery, the contributions developed

here have application to general robotics. Dynamic active constraints generated from point

clouds could be applied to complex tasks on deforming objects to avoid particular regions of

the item being worked on. Natural motion could be applied to general physical human-robot

interaction to reduce the impact of the robot’s end effector dynamics on the collaborating

human. Similarly, the virtual reality environment designed for hands-on robotic surgery can be

used for testing shared control strategies in human-robot interaction, providing an immersive

environment which preserves the complex interaction between the robot, the control strategy,

and the user.

7.2 Limitations and Future Work

There are several limitations to the research presented in this thesis which will be highlighted

in this section. In addition, future research directions which could address these limitations are

discussed.

The experimental validations of the shared control strategies presented within this thesis were

performed by non-surgeons. Surgeons have been shown to have a higher level of hand-eye

coordination and dexterity on average [Francis et al., 2001]. This above average performance

may reduce the improvements in accuracy and safety demonstrated in Chapter 6 when utilising

the dynamic active constraints control strategy, however, the benefits of active constraints shown

in the general literature and the clinical application of these types of strategies would lead us
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to conclude that these dynamic active constraints would still significantly improve performance

and protect the patient.

Regarding the experimental validation of natural motion, the dynamics of a robotic manipulator

have been shown to affect user movements both for surgeons and novices as compared to freehand

movements and it was hypothesised that the surgeons formed an internal representation of these

dynamics, which allowed them to maneuver more smoothly [Nisky et al., 2014]. However, as

natural motion reduces the work required to move the tool in general, it is expected that this

reduction would occur regardless of the user’s compensation strategy and the results for surgeons

would be similar to those of non-surgeons.

The dynamic active constraints methodology demonstrated herein focused solely on the con-

struction of the constraint from point clouds and the control strategy to enforce the constraint.

While these are important aspects in creating a viable strategy for protecting soft tissue, to

implement this type of controller in a clinical scenario, several other areas of research relating

to sensing the soft tissue deformation and tracking the constraint region must be pursued.

The experiments utilised simple point markers to track the constraint surface. Data generated

from 3D cameras and range finders can be very dense, slowing down construction of the implicit

constraint surface. The constraint region must also be identified from the pre-operative plan,

further slowing down its construction. In such cases, the data must be partitioned and pos-

sibly sub-sampled to ensure real-time applicability. Similar work has demonstrated real-time

application of similar techniques [Leeper et al., 2012] and, therefore, I expect the problem to

be solvable. To use imaging modalities which do not directly produce point clouds, strategies

for choosing the appropriate point clouds must be developed. An algorithm which can, in real

time, identify the critical area to protect and choose points in an appropriate density must be

developed.

In addition, robust real-time soft tissue deformation registration solutions must be developed

for current sensing modalities, such as US and CT, to enable the usage of these dynamic active

constraints with these devices. At present, research is ongoing in these areas to improve accuracy

in surgical procedures.

The methodology with which to define the constraint region has not been discussed. Current
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clinical systems for rigid bone surgeries use preplanned geometries defined by the surgeon. It

is likely a similar strategy could be employed to define the constraint region for dynamic active

constraints from pre-operative imaging. Further research could enable additional constraints to

be generated to automatically protect sensitive structures, such as blood vessels, using machine

learning techniques on intra-operative imaging.

Issues relating to noise in the data produced from the real-time sensing and its effect on the

accuracy of the dynamic active constraints surface and stability of the control algorithm under

such conditions has not been examined. The impact of this noise would be dependent on relative

magnitude of the noise and the accuracy required for the procedure at hand.

Finally, issues of occlusion have not been addressed within this thesis. Occlusion occurs when

a tool or other item blocks the view of the region to be protected from the sensing device.

Appropriate filtering techniques must be developed to detect occlusion, and prediction strategies

may be used to estimate the constraint surface during these cases, in order to ensure the patient

is protected.

The natural motion experiments presented here demonstrated a reduction in work when per-

forming a point-to-point motion task. However, these results, while showing a reduction in work

for general motions, do not directly reflect a reduction in work when performing a clinical pro-

cedure. Surgical tasks operate on a smaller scale and over a longer time period than is possible

to perform on the Kuka LWR 4+. The true efficacy of this strategy in reducing surgeon fatigue

and restoring dexterity remains to be shown in a clinical task.

Additionally, due the large torques required to rotate the Kuka end effector by a significant

amount, the experimental task in Chapter 4 focused on translational motion only. The efficacy of

the natural motion strategy in improving rotational quantities was demonstrated in simulation,

however, the ability of the strategy to improve rotational quantities on a physical system must be

shown. Furthermore, the ability to optimise rotational and translation quantities simultaneously

was not investigated.

The use of natural motion within a surgical theater would require additional safety features

incorporated into the strategy including joint limit and obstacle avoidance. The formalisation

of natural motion as a null-space based gradient descent allows for the addition of other weighted
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optimisation criteria. However, these additional features remain to be tested.

Lastly, all natural motion simulations and experiments were performed on the Kuka LWR 4+.

Significant benefits were shown on this particular robot, however, the improvements the null-

space strategy can provide are highly dependent on the kinematics and dynamics of the specific

robot being optimised. The application of natural motion to various kind of redundant robots

should be pursued to determine the general effectiveness of this strategy.

The final experiments of Chapter 6 were demonstrated in a virtual reality environment in

which the feedback from the tool’s interaction with the patient’s body was simulated using

a simple linear feedback law. This feedback provided a good preliminary validation of the

proposed dynamic active constraints and their simultaneous application with natural motion

optimisation. However, a more accurate simulation of this interaction which can, for example,

include deformation of the patient’s body due tool contact and feedback forces and torques

which vary based on the organs and bone structures contacted by the tool, would provide a

more realistic evaluation of the proposed strategies. Furthermore, the true efficacy of these

methods could only be demonstrated in a clinical task performed on a real patient.
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